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Abstract

Competitive rowing highly values boat position and velocity data for real-time feedback
during training, racing and post-training analysis. The ubiquity of smartphones with
embedded position (GPS) and motion (accelerometer) sensors motivates their possible
use in these tasks. In this paper, we investigate the use of two real-time digital filters to
achieve highly accurate yet reasonably priced measurements of boat speed and distance
traveled. Both filters combine acceleration and location data to estimate boat distance
and speed; the first using a complementary frequency response-based filter technique,
the second with a Kalman filter formalism that includes adaptive, real-time estimates of
effective accelerometer bias. The estimates of distance and speed from both filters were
validated and compared with accurate reference data from a differential GPS system
with better than 1 cm precision and a 5 Hz update rate, in experiments using two
subjects (an experienced club-level rower and an elite rower) in two different boats on a
300 m course. Compared with single channel (smartphone GPS only) measures of
distance and speed, the complementary filter improved the accuracy and precision of
boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%,
respectively, while the Kalman filter improved the accuracy and precision of boat speed,
boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively.
Both filters demonstrate promise as general purpose methods to substantially improve
estimates of important rowing performance metrics.

Introduction 1

Non-intrusive collection of data from athletes during practice and competition provides 2

opportunities for evidenced-based performance evaluation and coaching. Traditional 3

kinematic measurement techniques in sports have frequently required elaborate 4

equipment to capture the motion of human body segments and associated sports 5

equipment; see examples in [1]. With the growing functionality and ubiquity of 6

smartphones, athletes and coaches have access to an increasingly capable and 7

sophisticated measurement system that includes the phone’s inertial measurement unit 8

(three dimensional angular rate gyroscope, accelerometer, and magnetometer) and 9

determinants of location (GPS, GLONASS, etc.). Modern smartphone technology 10

provides position measurements that can be sampled up to about 1 Hz with stationary 11

absolute accuracy between 0.5 m to 16 m and stationary root mean square error (RMSE) 12
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between 14 m to 71 m, making them more precise than accurate [2]. The phones also 13

output acceleration and angular velocity data at rates up to about 200 Hz [3]. 14

Competitive rowing aims at maximizing the average boat speed over a specified race 15

distance. For competitions over a typical race distance, the time domain race-to-race 16

variability for elite rowers is approximately 1% and this has been proposed as “an 17

irreducible error for any measure of rowing performance” [4]. However, the discrete unit 18

of action and control in rowing is the stroke and this accordingly represents the domain 19

in which many training and racing parameters are communicated and analyzed. For 20

example, rowing speed is represented in the stroke domain as the product of stroke rate 21

and distance per stroke. 22

In Olympic rowing races, the historical speed difference between finish positions 23

(first and second; second and third; etc.) has averaged at 0.42% [5]. Contextualized in 24

the approximately 200 strokes that it takes to complete a 2000 m race, rowers who 25

generate an additional 5 cm per stroke will ordinarily gain a one place improvement in 26

race finish. Thus, it follows that the accuracy and precision of distance per stroke 27

measurements must be better than 5 cm in order to generate meaningful insight and 28

feedback. Satellite-based positioning systems (GPS, etc.) do not ordinarily afford this 29

level of accuracy and precision thus limiting their effectiveness in the analysis of any 30

individual stroke. We posit that more accurate and precise measures of boat movements 31

for individual strokes will enable a more direct examination of the causal relationships 32

between rower-oar-boat system mechanics and race performance. Therefore this study 33

seeks to improve the accuracy and precision of rowing performance metric 34

measurements. 35

The paper begins with a brief review of the immediately related literature and is 36

followed by an explanation of the problem and statistics used to quantify accuracy and 37

precision of the desired kinematic performance metrics. Two methods are then 38

presented for fusing the smartphone position and motion data to generate more 39

accurate estimates of these metrics. Finally, the estimates are presented against ground 40

truth data collected from a differential GPS (DGPS) system for validation. We close 41

with discussion of the implications and use cases. 42

Related work 43

Real-time water-relative boat speed in rowing has traditionally been measured by either 44

a pitot tube or a small impeller attached to the hull. Modern speedometers make use of 45

GPS receivers to calculate Earth-relative speed and distance in the distance, time, and 46

stroke domains. For example, the popular SpeedCoach GPS (Nielsen Kellerman, 47

Boothwyn, PA, USA) outputs metrics such as boat speed, stroke rate, distance, and 48

elapsed time based on GPS and/or impeller measurements. The accuracy and utility of 49

these systems are limited by the position measurement accuracy and/or the uncertain 50

and frequently fluctuating current velocity. GPS alone has been used to measure 51

position during long distance (15,000 m) rowing events [6] and low cost GPS systems 52

have also been shown to be capable of providing real-time speed estimates during 53

rowing [7]. 54

Other references exist with high accuracy (0.1 m s−1 to 0.3 m s−1) GPS 55

measurements for rowing [8] and the use of high accuracy differential GPS [9], but these 56

systems are often impractical for ordinary rowing applications because they require 57

establishing and operating an additional stationary base station. There has been success 58

in creating differential GPS systems from a network of smartphones that improve 59

location estimates to 1 cm accuracy at 1 Hz [10] and a differential GPS-tailored 60

Kalman filter has been used for the specific task of rowing position prediction [11]. 61

Researchers have improved the accuracy of position and speed estimates in rowing 62

August 12, 2019 2/31



by incorporating acceleration measures. Accelerometer-derived speed shows strong 63

correlation to impeller-derived speed measurements in still water [12]. GPS and 64

accelerometer sensor fusion have been used to estimate position and velocity during 65

GPS network downtime [13,14]. Reference [15] compares GPS accelerometer-derived 66

velocity to high speed video footage,and [16] measures differential GPS and acceleration 67

showing the utility of advanced sensors. 68

A network of IMUs on the rower can capture rowing with results similar to motion 69

capture cameras [17] and real-time accelerometer-based feedback has been found to 70

improve rowing consistency when used on indoor ergometers [18]. Tessendorf et. al [19] 71

use an elaborate IMU sensor array (Xsens, Enschede, Netherlands) to demonstrate the 72

utility of metrics for characterizing on-water rowing performance but this system 73

requires extensive setup time and expertise and is cost prohibitive for the typical rower. 74

Various filters have been used to improve smartphone position estimates for walking 75

in [20], but the large sensor error causes difficulties when applied to this more general 76

problem. 77

Among the various methods that have been proposed to improve measurement 78

results during rowing, the most similar to the present paper is that of Hermsen [21]. 79

Hermsen’s primary goal was to estimate the position, speed, and stroke rate of the boat 80

based on a consumer-grade accelerometer and GPS sensor for real-time wireless 81

transmission and display to viewers of the rowing event. The proposed linear Kalman 82

filter-based approach fused data from the two sensors and estimated rowing speed. The 83

found finish times are 14% more accurate than those estimated with GPS data alone. 84

Although real-time estimates were desired, this solution to handling sensor orientation 85

bias required an offline after-the-fact computation leaving real-time implementation 86

infeasible. 87

None of these prior methods offer an accurate and precise estimate of boat distance 88

traveled and boat speed that is inexpensive, simple, works with a single consumer grade 89

GPS sensor, and can operate in real-time. In this paper, we present two methods that 90

can do so. These methods provide a strong foundation for further improvements to the 91

desired estimates. 92

Problem formulation 93

We desire highly accurate estimates of the distance the boat travels along its path 94

during each individual stroke using readily available and easy to use consumer products, 95

such as, a smartphone. High accuracy allows for inter-rower, -race, and -day repeatable 96

comparisons in both distance traveled and boat speed. In competitive rowing, boats 97

move on the order of 10 m per stroke. We have found smartphones to have raw accuracy 98

on the order of 1 m and a precision of 0.8 m by comparison with our differential GPS 99

measurements; see Table 1. Our ultimate goal is to improve this distance accuracy by 100

roughly two orders of magnitude, allowing distance per stroke estimates that approach 101

1 cm accuracy. Additionally, we want the capability of calculating these estimates in 102

real time and to not rely on knowledge of the specific boat and rower to facilitate easy 103

to use and simple real-time training feedback to coaches and rowers. Our proposed 104

methods to accomplish these goals consist of four major components: 105

Data collection A smartphone is rigidly attached to a boat and used to collect GPS 106

data at an average sampling rate of 0.3 Hz and accelerometer data at 107

approximately 100 Hz. (A differential GPS unit is also attached to the boat to 108

measure boat position at approximately 5 Hz for validation purposes, but this is 109

not part of the evaluated method.) 110
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Table 1. Sensor measurement accuracy and precision.
The rows corresponding to the smartphone GPS provide the accuracy (central error,
CE [2]) and precision (standard deviation, SD) of the GPS-derived position relative to
simultaneously collected DGPS position of the moving pair of sensors (see the following
section for our definitions of these statistics). The smartphone accelerometer rows
provide a measure of precision of the sensor’s body fixed acceleration when the
smartphone is motionless. Similarly, the differential GPS rows provide a measure of
precision of the motionless rower position relative to the motionless base station. The
duration of the data logs used to derive these metrics and the frequency at which they
were sampled are listed for each sensor.

Sensor Measurement Value

Smartphone GPS CE of NS position 1.01 m
(Moving, 32 sec, 0.3 Hz) CE of EW position 0.89 m

SD in the NS position 0.81 m
SD in the EW position 0.70 m

Smartphone Accelerometer SD along the X axis 2.67 mg
(Motionless, 96 sec, 100 Hz) SD along the Y axis 2.45 mg

SD along the Z axis 1.59 mg

Differential GPS SD in the N-S position 3.2 mm
(Motionless, 57 sec, 10 Hz) SD in the E-W position 1.7 mm

Sensor fusion Fusion of the raw GPS and accelerometer measurements to estimate 111

distance traveled at the accelerometer sampling rate (100 Hz). 112

Rowing metric computation Stroke transition detection is used to calculate the 113

distance traveled per stroke, stroke rate, and boat speed. 114

Error estimates Estimates from the sensor fusion are compared to “true” values 115

obtained from the differential GPS measurements. 116

Fig 1 provides a schematic of the aforementioned general flow of data and processing 117

algorithms. The primary algorithms, i.e. transforming raw smartphone data to distance 118

and speed estimates, are designed for real-time computing, but the actual results for the 119

purposes of the paper were computed offline and are available in the companion 120

software (see https://gitlab.com/mechmotum/row_filter). In this section we 121

elaborate on the four components listed above, beginning with the characterization of 122

the measurement data. We then propose the desired accuracy of the metrics, and finally 123

provide the details of the two sensor fusion methods. 124

Accuracy and precision 125

It is worth carefully defining the accuracy and precision of repeated measurements of a 126

motionless sensor and those of a moving sensor [2]. 127

Accuracy specifies how close a given measurement is to the true value. In the case of 128

planar Cartesian horizontal position measurements (x1 . . . xn, y1 . . . yn) derived from 129

latitude and longitude of a motionless sensor, we use the Central Error, CE, defined 130

in [2] as a measure of accuracy. This is the Euclidean distance between the average of a 131

set of measurements, (x̄, ȳ), and the sensor’s true position, (xs, ys). 132

CE2
xy =

[
1

n

n∑
i=1

(xi − xs)

]2
+

[
1

n

n∑
i=1

(yi − ys)

]2
= (x̄− xs)2 + (ȳ − ys)2 (1)

August 12, 2019 4/31

https://gitlab.com/mechmotum/row_filter


Fig 1. Data processing pipeline flow chart.
Grey rectangles indicate the real-time algorithm process. White rectangles indicate the
validation process. Parallelograms represent raw data from the sensors.
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Precision characterizes how repeatable measurements are. For measurements from a
motionless sensor the standard deviation, σ, about the mean position in the planar
Cartesian coordinates is a measure of precision.

σ2
x =

1

n

n∑
i=1

(xi − x̄)2, σ2
y =

1

n

n∑
i=1

(yi − ȳ)2 (2)

The Federal Geographic Data Committee recommends using the Root Mean Square 133

Error (RMSE) to characterize error in geographic position measurements [2]. It is 134

important to note that RMSE is a function of both accuracy and precision. For example, 135

increases in either the Central Error or the standard deviation will increase RMSE: 136

RMSE2
xy =

1

n

n∑
i=1

[
(xi − xs)2 + (yi − ys)2

]
= CE2

xy +
n− 1

n

(
σ2
x + σ2

y

)
(3)

We have elected to report RMSE values in this paper to follow this convention. We 137

calculate the error between the smartphone measurements (or smartphone derived 138

estimates) and the measurements from the differential GPS, which we define as ground 139

truth. 140

Furthermore, we are primarily concerned with estimates of the distance, d(t), and
speed, v(t), along the boat’s nearly straight path during rowing. So we additionally
define the accuracy and precision of these time varying estimates. We calculate the
distance for the smartphone, dSP, and DGPS, dDGPS, at any given discrete time
measurement, ti, with the following equation, using smartphone or DGPS data
respectively:

d(ti) = d(ti−1) +
√

[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2. (4)

The boat speed is then estimated from the DGPS data using backward differences.

vDGPS(ti) =
dDGPS(ti)− dDGPS(ti−1)

ti − ti−1
(5)

Additionally, the boat speed is also reported directly from the smartphones internal 141

estimates. 142

Given the boat distance and speed along the path we calculate the RMSE of any
estimate of the two prior quantities by comparing them with the counterparts derived
from the differential GPS data to quantify accuracy and precision (Eqs (6) and (7)). In
this case n is taken as the number of samples associated with the signal of higher
sampling rate, and linear interpolation is used to find intermediate samples of the signal
with lower sampling rate.

RMSE2
d =

1

n

n∑
i=1

de(ti)
2 =

1

n

n∑
i=1

[d(ti)− dDGPS(ti)]
2 (6)

RMSE2
v =

1

n

n∑
i=1

ve(ti)
2 =

1

n

n∑
i=1

[v(ti)− vDGPS(ti)]
2 (7)

With given errors de and ve at every time sample, the mean of the errors (Eqs (8)
and (9)), and the standard deviation of the errors, (Eqs (10) and (11)) can be computed
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with

d̄e =
1

n

n∑
i=1

de(ti) =
1

n

n∑
i=1

[d(ti)− dDGPS(ti)] (8)

v̄e =
1

n

n∑
i=1

ve(ti) =
1

n

n∑
i=1

[v(ti)− vDGPS(ti)] (9)

σ2
de

=
1

n

n∑
i=1

[de(ti)− d̄e]2 (10)

σ2
ve =

1

n

n∑
i=1

[ve(ti)− v̄e]2 (11)

The central errors are then simply

CEde
=
√
d̄2e = |d̄e|, CEve

=
√
v̄2e = |v̄e|. (12)

The RMSE is related to the error mean and standard deviation by

RMSE2
d = CE2

de
+ σ2

de
, RMSE2

v = CE2
ve + σ2

ve . (13)

Lastly, we calculate the RMSE of the actual distance per stroke relative to the
estimated distance per stroke for all strokes, or subsets of strokes.

RMSEds
=

√∑m
i=1[dsi − dDGPSsi]2

m
(14)

where dsi is the ith distance per stroke from an estimate and m is the number of strokes. 143

Data collection 144

Smartphone GPS 145

The smartphone provides global position estimates accessed via the iPhone software 146

development kit. Latitude and longitude are received at a variable sampling rate 147

between 0.1 and 1Hz, usually at an average of about 0.3 Hz when the sensor is in 148

motion. Once the data is transformed into an Earth-local Cartesian coordinate system 149

with respect to the WGS84 coordinate system [22], the precision of motionless 150

measurements can be determined; see Table 1. For repeated measurements over a short 151

duration (<15 min) we assume that any inherent systematic bias of the GPS relative to 152

true position is constant and does not degrade our distance calculations. None of the 153

metrics of interest we describe later requires knowledge of the absolute position of the 154

boat on the earth; instead we require only relative sample-to-sample (x, y) position 155

differences. Even though systematic bias can be quite large, e.g. 16 m, the precision of 156

repeated measurements over a short duration can be at least an order of magnitude 157

higher [2], which is advantageous in our case. 158

Using a Piksi differential GPS system (SwiftNav, San Francisco, USA) as a measure 159

of ground truth relative position (with better than 1 cm precision) we characterized the 160

motionless and moving mean-subtracted distribution of smartphone position 161

measurement errors; see Table 1. The cumulative distance traveled along the boat’s 162

path is calculated from the relative distance between each (x, y) coordinate; see Eq (4). 163

We rely on numerical differentiation (backward differences, see Eq (5)) using the 164

sensor-recorded time stamps to compute speed from the DGPS position measurements. 165
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Smartphone acceleration 166

The smartphone accelerometer provides three dimensional body-fixed acceleration 167

measurements with an average precision (SD) of about 0.02 m s−2, updated at 168

approximately 100 Hz. When affixed to the boat, we are interested in the component of 169

acceleration tangent to the boat’s travel path on the water surface, which is 170

approximately the smartphone’s y component in our case. 171

The small yaw (typically <1°) angular motion during typical rowing [5] allows us to 172

ignore the lateral acceleration component. We also ignore effects of any boat rolling 173

motion, because it is typically negligible as well [5]. Pitch angular motion is similarly 174

small (<1 °) [5] but because of the relatively large gravitational acceleration, even small 175

changes in pitch mounting orientation, or static boat pitch mean that the longitudinal 176

smartphone acceleration measurement will be biased; see Fig 2. 177

In general, we use only the smartphone-fixed longitudinal component of acceleration,
αy to estimate distance, but must take into account the pitch effects and accumulation
of error from twice integrating the biased accelerometer measurement. Although this
could be corrected by a calibration procedure [21], it is generally not practical in the
expected smartphone consumer use case. Fig 2 illustrates how the smartphone
body-fixed sensed acceleration relates to the actual acceleration parallel to the water’s
surface. The acceleration vector a = α− gẑ′ can be written as two scalar equations by
projecting onto the ŷ′, ẑ′ axes.

ay = αy cos θ − αz sin θ (15)

az = αy sin θ − αz cos θ − g (16)

These two equations can be combined to show that the longitudinal acceleration is:

ay =
αy

cos θ
− (az + g) tan θ (17)

If the smartphone pitch, θ, and the vertical acceleration, az, of the boat are small,
then the longitudinal acceleration a is given by the following linear approximation:

a = ay ≈ αy − gθ. (18)

For example, if θ were 6 degrees due to off-level mounting and average boat pitch, 178

the gravity term could cause up to a meter per second error in the estimate. 179

Desired kinematic metrics 180

Stroke rate 181

Rowing involves periodic propulsive strokes by the rower(s) delivered through the oars 182

to generate boat movement. These create a periodic kinematic pattern of boat 183

accelerations and pitching that reliably maps to the characteristic phases of the stroke. 184

Similar to others [14], we defined the endpoints of the stroke (the end of one and start 185

of the next) as the timepoint that corresponds to the minimum peak values of 186

longitudinal boat acceleration. This instant in time reliably corresponds to the 187

transition from the recovery phase to the beginning of the propulsive phase of the 188

stroke, commonly referenced in rowing as the “catch” [5]. These time instants can be 189

detected in real-time using the method from [23], for example. Fig 3 illustrates the 190

reliability of individual stroke endpoints detected using this method as well as the 191

consistency of the rowing technique and the data quality during the experiments. On 192

the rare occasion when visual inspection of the data demonstrated a clear stroke 193

detection misidentification, the data from that stroke was excluded from any relevant 194

analyses. These stroke timepoints are then used to calculate the stroke-domain metrics 195

of interest: distance per stroke and stroke rate. 196
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Fig 2. Diagram of a rowing boat under speed with an imperfectly aligned
bow-mounted smartphone.
The smartphone coordinate system ŷ, ẑ is oriented relative to the horizontal coordinate
system ŷ′, ẑ′ by a varying pitch angle θ. The accelerometer-reported acceleration α
differs from the actual ŷ′ component because it includes a gravitational component. The
actual acceleration a of the phone is then a = α− gẑ′. We desire the magnitude of the
acceleration a projected onto the horizontal plane but we do not know θ at any given
time. As described in the “smartphone acceleration” section, the sensed ŷ acceleration
differs from the true ŷ′ acceleration by a moderate intrinsic bias and a larger term gθ
which accounts for the projection of the gravity vector on the pitched ŷ axis.

(a) Elite rower (b) Club-level rower

Fig 3. Boat-fixed longitudinal acceleration as a function of percent stroke
from two trials (elite and club-level 24SE.).
Each stroke is plotted as a orange line and the mean of all strokes as a dark line. The
repeatability of the measured longitudinal acceleration, especially for the elite rower,
validate the consistency of rowing technique, the robustness of the stroke endpoint
identification, and the quality of the accelerometer data itself.
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(a) Elite rower (b) Club-level rower

Fig 4. DGPS computed boat speed as a function of percent stroke for two
trials (elite and club-level 24SE).
Each stroke is plotted as a orange line and the mean of all strokes as a dark line.
Because the DGPS data is sampled at only 10 Hz and the relative precision is lower
than the accelerometer, the measured speed profile is less smooth and repeatable than
the acceleration profiles in Fig 3.

Boat speed 197

Average boat speed along the shortest path to the finish is the primary metric rowers 198

must maximize to win a race. We can compute reference boat speed by using the 199

differential GPS measurements and Eq (5), and for the smartphone we rely on its 200

internal speed estimate directly as it seems to be estimated via an algorithm that is 201

more accurate than simple numerical differentiation of the distance. Fig 4 shows the 202

DGPS computed speed measures for two trials at the same stroke rate. 203

Determining instantaneous earth-relative boat speed relies on accurate distance 204

estimates. The smartphone provides a moderately accurate but reasonably precise 205

position update at a sample rate on the same order of magnitude as the stroke rate, i.e. 206

0.3 Hz, which is only useful for average speed estimates over a number of strokes. Given 207

a 0.8m precision in the distance measurements (Table 1), the accuracy of the speed 208

estimates from the phone are on the order of 0.3 m s−1. If the desired location precision 209

of 5 cm was achieved at sampling rates approaching 100 Hz, the speed accuracy and 210

frequency updates could potentially increase to 0.02 m s−1 and a thus deliver data on 211

intra-stroke speed variations. 212

Distance per stroke 213

Boat speed is the product of two separate but correlated variables in the stroke domain: 214

stroke rate and distance per stroke. We calculate distance per stroke for each stroke by 215

subtracting the interpolated distance, Eq (4), at each pair of subsequent stroke 216

start/stop times. The same synchronized start/end time values are used for the 217

smartphone-derived and reference differential GPS data allowing a direct comparison of 218

the various estimations of boat distance. This comparison will allow an estimate of the 219

accuracy and precision of each estimate method presented below. 220

As another indication of the effectiveness of the stroke endpoint identification 221

procedure and the subsequent calculations of stroke time, distance per stroke and 222

average speed, Table 2 reports the derived data and statistics on the strokes of the two 223

trials portrayed in Figs 3 and 4. 224
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Table 2. Summary DGPS data for strokes from elite and club-level 24SE
trials depicted in Figs 3 and 4.

elite club-level

Stroke Duration Distance Speed Duration Distance Speed
[s] [m] [m s−1] [s] [m] [m s−1]

1 2.52 10.10 4.03 2.50 9.80 3.90
2 2.48 10.10 4.05 2.43 9.43 3.80
3 2.37 9.89 4.15 2.44 9.71 3.98
4 2.36 9.98 4.18 2.37 9.49 4.02
5 2.35 10.03 4.26 2.52 10.02 3.93
6 2.31 9.79 4.27 2.62 10.28 3.95
7 2.29 9.89 4.32 2.37 9.42 3.95
8 2.33 10.06 4.30 2.41 9.59 3.99
9 2.25 9.59 4.22 2.49 9.82 3.91
10 2.28 9.84 4.39 2.49 9.84 3.86
11 2.28 9.89 4.36 2.47 9.63 3.90
12 2.43 10.52 4.36 2.37 9.32 3.95
13 2.41 10.36 4.26 2.57 10.07 3.90
14 2.40 10.27 4.34 2.44 9.66 3.93
15 2.39 10.21 4.32 2.61 10.34 3.97
16 2.42 10.20 4.24 2.43 9.47 3.93
17 2.37 9.98 4.20 2.47 9.76 3.92
18 2.38 10.09 4.24 2.46 9.68 3.96
19 2.34 9.95 4.20 2.46 9.56 3.86
20 2.33 9.66 4.16 2.56 9.98 3.92
21 2.42 9.34 3.91
22 2.43 9.54 3.97
23 2.46 9.62 3.93
24 2.44 9.30 3.78

AVG 2.36 10.02 4.24 2.46 9.69 3.92
STD 0.07 0.23 0.10 0.07 0.29 0.05
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Fig 5. Block diagram depicting the complementary filter algorithm.
The smartphone speed and acceleration are fused to create an improved speed estimate
and then that estimate is fused with the smartphone GPS-derived distance to create an
improved distance estimate.

Sensor fusion method 1: complementary filter 225

The first method of combining smartphone accelerometer and GPS data stems from the 226

classical idea of characterizing input-output behavior based on frequency response. We 227

utilize two complementary filters in series, Fig 5, with each filter made up of two 228

real-time discrete 2nd order Butterworth filters, namely one low-pass presented in [24] 229

and one high-pass of similar design. Integrating the biased and noisy acceleration 230

measurement introduces drift in the resulting speed and distance estimates, as expected. 231

The high-pass filter is used to extract the high frequency portion of these estimates and 232

to exclude the low frequency drift component. The low-pass filter extracts the low 233

frequency portion of the smartphone speed and GPS-derived distance estimates. Each 234

pair of two filtered signals is then summed at each accelerometer sample time to update 235

the estimates. The results are more accurate speed and distance estimates. 236

Extrapolating GPS data 237

Since the GPS measurements occur less frequently than the accelerometer
measurements, the smartphone speed and GPS-derived distance are linearly
extrapolated, Eq (19), between GPS updates at each accelerometer update. This
process uses the prior two GPS samples to provide an smoothed complementary filter
input. This simple additional ”filtering” procedure improves the distance estimate by
37% and the speed estimate by 20%. In the equation below the i index represents the
accelerometer update time and the k index represents the last GPS update prior to ti.
This amounts to using the average speed derived from the GPS to make the
extrapolation.

d(ti) = d(ti−1) +
d(tk)− d(tk−1)

tk − tk−1
(ti − ti−1) (19)

Bias and the Butterworth filter 238

A Butterworth filter creates a maximally flat passband and is relatively easy to
implement digitally. At the cutoff frequency it rolls off gradually but is sufficient for
many biomechanical filtering needs [1]. The transfer functions for the low- and
high-pass 2nd order Butterworth filters are shown in Eqs (20) and (21) together with
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Table 3. Average optimal Butterworth filter cutoff frequencies.

Distance Filter Speed Filter

low [Hz] high [Hz] low [Hz] high [Hz]
0.189 3.789 0.0166 0.0457

the equations for the magnitudes of frequency response.

Hlow(s) =
ωc

s2 +
√

2ωcs+ ωc

, |Hlow(jω)| = 1√
1 +

(
ω
ωc

)4 (20)

Hhigh(s) =
s2

s2 +
√

2ωcs+ ωc

, |Hhigh(jω)| = 1√
1 +

(
ωc

ω

)4 (21)

In the first filter in this series, we low-pass filter the smartphone GPS speed estimate
and high-pass filter the longitudinal accelerometer measurement. The accelerometer
output is the sum of the acceleration along the travel path minus a term that varies
with boat pitch around a constant bias, i.e. αy − gθ. In the frequency domain, these
two input signals can be written as

Xlow(jω) = V (jω) (22)

Xhigh(jω) = A(jω) + a0 (23)

where a0 represents the bias. Once filtered, the magnitude of each signal becomes

|Ylow(jw)| = V (jw)√
1 + ( w

wc
)4

(24)

|Yhigh(jw)| = |A(jw)|√
1 + (wc

w )4
+

a0√
1 + (wc

w )4
. (25)

In order to filter the effects of the accelerometer bias from the speed estimate, the 239

high-pass cutoff frequency must be tuned to maximize the desired signal and to 240

minimize the bias term in Eq (25). If the bias term has significant frequency content in 241

the same bandwidth as the desirable signal, it is difficult to separate them. Fig 6 shows 242

that the frequency content of the bias term, a0, is very low and that the high pass filter 243

is effective at removing the bias. Thus, this filter is very suitable for this application 244

where the accelerometer bias is approximately constant. 245

Cutoff frequency selection 246

A unique cutoff frequency is computed for each filter (low-pass and high-pass, each for 247

distance and speed) for each trial. We calculate these parameters using an offline 248

nonlinear least squares procedure to minimize the squared error between the filtered 249

distance and the differential GPS distance. These optimal cutoff frequencies are 250

averaged across all trials and the result is used in the real-time implementation, see 251

Table 3. Since the high-pass cutoff frequencies for distance were large and did not have 252

much effect on the performance of the filter above 10 Hz, the average was computed 253

only over cutoff frequencies below 10 Hz. 254

Using the optimal cutoff frequency for each trial as opposed to the average over all 255

trials would decrease the distance RMSE by an average of 20% and the speed RMSE by 256

an average of 8%. However, calculating optimal cutoff frequencies would require 257

post-processing and would render this filter unsuitable for real-time estimation. 258
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Fig 6. Example of low and high frequency components of speed derived
from the integrated accelerometer measurement.
The blue curve shows the effect of the accelerometer bias on the speed estimate. The
approximately constant slope of this curve indicates that the accelerometer bias is also
approximately constant. The orange and green curves show the measurement separated
into low and high frequency components.

Sensor fusion method 2: Kalman filter 259

The Kalman filter algorithm fuses data collected from different sensors with a predictive 260

dynamic physical model to estimate the target time-varying variables of interest, known 261

as states. The estimation results are expected to be more accurate than those obtained 262

from any individual sensor [25]. Although the Kalman filter formalism makes several 263

fundamental mathematical assumptions, perhaps the most important of which are 264

random Gaussian process and measurement noise to guarantee the ultimate optimality, 265

these assumptions are often relaxed in practice and the technique still works [26]. 266

In our case, the body-fixed longitudinal acceleration of the boat is measured and 267

used as an input to a kinematic model to predict the displacement and speed of the boat 268

along its path. The predictions are then compared with the smartphone GPS-derived 269

distance traveled and speed measurement, and the errors are used as feedback to adjust 270

the estimation in real time. The Kalman filter gain can be tuned to balance the sensor 271

and model uncertainty to achieve optimal accuracy. Details regarding the application of 272

Kalman filtering to this estimation problem will be discussed in this section. 273

Boat kinematic model 274

The Kalman filter relies on a discrete dynamic model describing the kinematic
relationships along the path. The actual horizontal acceleration a is integrated twice in
discrete time to obtain distance d and speed v,

dk+1 = dk + vk∆t. (26)

vk+1 = vk + ak∆t (27)

where the subscripts are shorthand for dk = d(tk), etc. 275
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As noted previously and illustrated in Fig 2, the smartphone’s accelerometer axis ŷ
is not, in general, perfectly aligned with the boat’s horizontal travel path. Additionally,
the accelerometer has an inherent bias due to its construction and nature. Neither are
stationary but can be modeled as such for improved filter performance. If we want to
use the smartphone acceleration αy in place of a in Eq (27), we must compensate for
these biases adjusting the accelerometer’s measurement. To do so, we introduce an
unknown constant bias state, φk, as

φk+1 = φk (28)

and replace a with αy,k − φk, where φk is a model for the sum of the inherent 276

accelerometer bias and the mean of gθ(t) that characterizes the bias due to boat pitch 277

from (Eq 18). The augmented speed state equation becomes 278

vk+1 = vk + (αy,k − φk)∆t. (29)

This bias can be thought of as the “effective” bias, in that it is the sum of the “real” 279

sensor bias and the mean value of gθ. It has now become a new state to be estimated by 280

the filter which will effectively account for drift of integration error accumulation. The 281

time varying component of gθ(t) is the sum of two parts: a roughly periodic remnant 282

and a small truly random measurement noise. These two parts are lumped together as 283

“process noise” wk below. 284

Lastly, we make use of two measurements, d and v, which are the smartphone GPS
derived distance and speed along the travel path to correct our kinematic model
predictions. Eqs (26) and (29) can be written in state space form to facilitate the design
of the filter.

xk+1 = Axk + Buk + wk (30)

yk = Cxk + Duk + νk (31)

where

xk = [dk, vk, φk]T , uk = [αy,k], yk = [dk, vk]T , (32)

and

A =

1 ∆t 0
0 1 −∆t
0 0 1

 , B =

 0
∆t
0

 , C =

[
1 0 0
0 1 0

]
, D =

[
0
0

]
. (33)

The terms wk and νk are the process and measurement noise representing model and 285

sensor uncertainty, respectively. 286

Kalman filter formulation 287

Based on the state space model of boat kinematics, we design a Kalman filter to
estimate the states xk over time. The Kalman filter generates the estimates in two
steps: the model prediction update and the measurement update. In the prediction
update, an a priori estimate is made based on the input, the estimated state at the
previous time instant, and the model,

x̂−k = Ax̂+
k−1 + Buk−1, (34)

where the superscript − denotes the a priori estimate and + denotes the final (a
posteriori) estimate. In our case, the acceleration measurement is fed as the input to
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the kinematic model to calculate the instantaneous speed and distance. Meanwhile, the
Kalman filter provides an estimate of the covariance P of the state estimate according to

P−k = Ak−1P
+
k−1A

T
k−1 + Q, (35)

which characterizes the estimate accuracy. In Eq (35), Q is the assumed covariance of 288

the process noise wk. 289

In the measurement update step, an a posteriori estimate is made based on the
difference between the model prediction and the output measurement error feedback,

x̂+
k = x̂−k + Lk(yk − ŷ−k ) (36)

where

ŷ−k = Ckx̂
−
k + Dkuk, (37)

and where Lk is the Kalman gain matrix calculated as 290

Lk = P−k C
T
k (CkP

−
k C

T
k + R)−1. (38)

In Eq (38), R is the covariance of the assumed random output measurement noise 291

νk. During this step, the estimate covariance is also updated 292

P+
k = (1− LKCT

k )P−k . (39)

If both the process noise wk and measurement noise νk are indeed Gaussian, the a 293

posteriori estimate obtained in Eq (36) is optimal in the sense that it has minimum 294

covariance P. In our case, the smartphone GPS derived distance and speed 295

measurements are used to compare with and correct the a priori estimate of boat 296

distance and speed. 297

The model prediction is performed at approximately 100 Hz in accordance with the 298

sampling rate of the accelerometer, while the measurement update is carried out at the 299

less frequent update rate of the GPS, about 0.3 Hz. 300

The performance of the Kalman filter relies heavily on the choice of values for the Q 301

and R matrices. The optimal values for both are difficult, if not sometimes impossible, 302

to know, and the noises are often not actually Gaussian. But in practice, the Q and R 303

can often be tuned to create a good estimate. We are able to directly calculate the 304

smartphone measurement variances by using the DGPS measurements as the true 305

values (see Eqs (10) and (11)) and use them to populate the diagonals of R. 306

R =

[
25.279 0

0 100

]
(40)

P0 =

1 0 0
0 1 0
0 0 0.51

 , x0 =

 d0
v0

0.42

 (41)

Our process model is a simple and exact kinematic model so the only terms that 307

may have appreciable process noise are the acceleration input and the bias. We assume 308

that the process noise is negligible because of the quality of the acceleration 309

measurement and the dominance of the bias term (over variance) in the development of 310

error in the estimate. We thus, set Q = 0 to reflect this, and the filter trusts the model 311

fully when no measurements are available, relying completely on the bias estimate to 312

provide accurate estimates between measurement updates. The model is initialized with 313

the first distance and speed measurement and an initial guess of the bias (see Eq41) 314
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using the mean value raw acceleration, αy,k, for a single trial. It is noted that the initial 315

state variance P0 are non-zero as we do not have confident knowledge about the initial 316

values of states (including acceleration bias). Hence the measurements are used in the 317

initial stage to adjust the state and bias estimation (even though Q = 0), which is 318

critical for achieving accurate estimation. We found the values for Q and R generally 319

robust with respect to variations in rower and boat (see 320

https://gitlab.com/mechmotum/row_filter for details). Note that we could obtain 321

incremental gains in model accuracy if we further turned Q and R for individual rowers 322

and boat configurations, however this choice would be inconsistent with our intent to 323

build an easy-to-use, general purpose solution. 324

A Note on real-time algorithm implementation 325

We did not implement these filtering algorithms on an actual smartphone in real-time, 326

but our algorithms, written in Python, can be directly translated to a smartphone’s 327

associated programming language. The complementary filter, Kalman filter, and peak 328

detection algorithms have 110, 440, and 160 floating point operations per time step, 329

respectively. The maximum floating point operations per time step is then the sum of 330

the Kalman filter and peak detection, 600. We desire real-time updates at 100 Hz so the 331

total neccesary FLOPS is 60 thousand. Contemporary smartphones have FLOPS 332

capabilities between 5 billion to 35 billion. Thus the real-time implementation of these 333

algorithms is relatively trivial and have little consequence on overall computation time. 334

Experimental methodology 335

Experiments were performed two days apart to validate the effectiveness of the 336

proposed sensor fusion methods using a different rower-boat combination on each day: 337

an experienced club-level (18 years rowing experience, age=63, height=1.68 m, 338

weight=70 kg) sculling a 2 person boat (2002 Hudson mid-weight, 2X) alone, and an 339

elite rower (2016 Olympic participant, age=31 height=2.00 m, weight=100 kg) sculling 340

a single person boat (2004 Hudson heavy-weight, 1X). The 2X boat was used with a 341

single rower to allow for ease om mounting of the measurement equipment to the empty 342

bow seat before a mounting option for the single scull was developed. In each 343

experiment, the rower performed a series of trials (each over a distance of approximately 344

300 m) in an inlet to a lake (Lake Washington, West Sacramento, CA, USA) that is 345

part of deep water ship channel in both the northwest and southeast directions (Fig 7). 346

A SpeedCoach GPS (Model 2, Nielson-Kellerman, Boothwyn, PA) was used onboard to 347

display to the rower their current stroke rate. An example trial path is shown in Fig 7. 348

An iPhone 7 smartphone with iOS 11.3 (Apple, Cupertino, USA) running a custom 349

data-logger app SwingRow 1.1 (Hegemony Technologies, Davis, CA) was rigidly 350

attached to the deck of the 1X boat using positive-locking fasteners (Dual Lock, 3M, St. 351

Paul, MN) at the position and orientation shown in Fig 8. A second smartphone 352

running the same data-logger app was put into a “rowers wallet” (Hegemony 353

Technologies, Davis, CA), positioned flat against the back of the rower at the top of the 354

pelvis, and worn throughout the experiments. A ruggedized, waterproof camera 355

(HERO4 Session, GoPro, San Mateo, USA) was mounted to the stern hull facing the 356

rower to collect video. A differential GPS roving antenna (Piksi, Swiftnav, San 357

Francisco, USA) was also attached to the hull as shown in Fig 8 (or in the spare seat in 358

the case of the 2X boat). 359

Each rower performed a series of trials over a range of assigned stroke rates (target= 360

16, 20, 22, 24, 26, 28, max) in opposing directions (NW and SE) on the same 300 m 361
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Fig 7. Satellite image showing a typical trial path.
The single red dot on the shore is the location of the DGPS base station. The mean
latitude and longitude are 38.566435 ° and -121.556365 °, respectively.

Fig 8. Sensor locations during elite trials.
2004 Hudson heavy-weight with the elite rower, annotated for experimental hardware.
Note the DGPS antenna is clearly visible to the sky (above 15 degrees from horizontal
in all directions it with a clear view to the sky).
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Fig 9. Convergence of the Kalman filter bias state over a single trial (elite
16NW).
The filter bias state typically takes about 20 seconds to converge to a relatively constant
value.

course. The water current in the inlet was investigated and found to be negligible. The 362

collected data is available in the supplementary materials. 363

Results 364

Both the smartphone and the DGPS provide time measurements originating from the 365

same GPS satellites. We use these times to synchronize the measurements between 366

devices and we calculate estimates of the three variables distance, speed, and distance 367

per stroke at those times using the two aforementioned filters and directly from the 368

smartphone position data. This section discusses the comparisons among these three 369

estimates (smartphone: SP, complementary filter: CF, and Kalman filter: KF) of each 370

of the variables. A description of the detailed analysis procedure can be found in the 371

accompanying software (https://gitlab.com/mechmotum/row_filter). We present 372

data summaries for each subject (rower-boat combination) in the following figures. We 373

do so simply to show that the two filters are able to improve the metric estimates for 374

subjects that have significant differences (mass, peformance, etc.) and purposely make 375

no claims about filter performance between subjects due to having too few subjects. 376

Filter convergence 377

The Kalman filter’s performance relies on the effective bias φ converging to a constant 378

value. Fig 9 shows φ as a function of time for a single example trial. In this case it takes 379

almost 20 seconds (or approximately 6 strokes) for convergence, which is about one 380

fourth of the length of the trial. For this reason we limited the calculation of steady 381

state performance data (RMSE) to the last ten strokes of each trial. 382

The filter converges to a different value of φ for each rower-boat combination and 383

stroke rate. Fig 10 shows the steady state values of φ for every trial. The effective bias 384
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Fig 10. Terminal values of the Kalman filter bias state φk for each trial.
Each dot represents a single trial at the mean stroke rate. The bias is dependent on the
rower/boat combination and boat speed.

increases with stroke rate as does the average boat pitch angle. 385

Rowing races at amateur and professional levels typically range from 1000-5000 386

meters in length and are completed in timeframes that range from 3 minutes to 20+ 387

minutes. Every boat before a race will execute an extensive warmup involving many 388

hundreds and probably thousands of strokes over 30+ minutes. This warmup period 389

provides ample opportunity to complete all of the filter convergence for this 390

implementation so that it will be optimally tuned and operational for the totality of a 391

race. 392

Distance estimates 393

Fig 11 shows, using an example from a single elite trial (16NW) after filter convergence, 394

all estimates of total distance travelled. Fig 12 shows the errors of these estimates 395

relative to the DGPS-derived distance. The Kalman filter estimate is similar to the 396

smartphone at the GPS updates and provides a reasonably drift free estimate between 397

adjacent smartphone updates. The complementary filter is less influenced by the 398

smartphone distance measurements and provides a better estimate of the true distance 399

traveled. 400

Fig 13 portrays the distribution of RMSE for the distance estimates relative to the 401

DGPS for all trials for the elite and club-level rowers. The complementary filter shows 402

improvement for both rowers and the Kalman filter shows improvement for the 403

club-level rower. The Kalman filter actually is more than a meter worse for the elite 404

rower when comparing the medians. The large distance RMSE for the filters is 405

attributable to the relatively poor accuracy in the GPS measurement. In contrast, the 406

errors in distance per stroke estimates are primarily influenced by measurement 407

precision, which are improved by the filters relative to the smartphone. Nevertheless, 408

the complementary and Kalman filters improve the median estimate by 42% and 22% 409

when all trials are considered. 410
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Fig 11. Example total boat distance traveled estimates.
The figure indicates distance traveled as a function of time for the last 30 s of the elite
16NW trial as estimated by the smartphone, complementary filter, and Kalman filter.
The blue dots indicate the actual smartphone measurement update and the blue line is
the piecewise constant interpolation in between updates. The alternating gray and
white sections indicate each stroke. The reported RMSE values are relative to the
DGPS distance shown in black. Each RMSE is calculated at the accelerometer sampling
rate, i.e. 100 Hz.
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Fig 12. Example boat distance estimate errors.
Error in the smartphone, complementary filter, and Kalman filter distance estimates
relative to the DGPS for the last 30 s of the elite 16NW trial. The “saw-tooth”
smartphone error curve is derived from the piece-wise constant curve shown in Fig 11 to
highlight the issue it poses when one desires to calculate distance per stroke. The
alternating gray and white sections indicate each stroke. The RMSE values are the
same as in Fig 11.

Fig 13. Summary of the distance estimate errors for all trials.
Comparisons of the distributions of RMSEd of the distance estimates from the three
methods for the last 10 strokes of each trial.
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Fig 14. Example boat speed estimates.
The figure indicates the speed as a function of time for the last 30 s of the elite 16NW
trial as estimated by the smartphone, complementary filter, and Kalman filter. The
alternating gray and white sections indicate each stroke. The reported RMSE values are
relative to the DGPS computed speed shown in black. Each RMSEv is calculated at the
100 Hz accelerometer sampling rate.

Boat speed estimates 411

Fig 14 shows example speed estimates for a typical trial after convergence from both the 412

complementary and Kalman filters compared to those derived from the raw smartphone 413

GPS and the differential GPS measurements. The RMSE of the estimates relative to 414

differential GPS are tabulated for the post-convergence portion and shown on the graph 415

for that trial. Both filters track the differential GPS derived speed throughout the 416

stroke much more closely than the smartphone GPS derived speed, which is more like 417

an average speed. Both of the filters improve the estimate by over a factor of 2 in this 418

trial. 419

Fig 15 shows the summary of the calculated speed RMSEs for each rower. It is clear 420

that both of the filters improve the speed estimates for all trials, also by about a factor 421

2 or more when comparing the medians. Overall, the complementary and Kalman filters 422

improve the median estimate by 44% and 48% when all trials are considered. 423

Distance per stroke estimates 424

Fig 16 compares the distance per stroke estimates computed from the smartphone, 425

complementary filter, and Kalman filter with respect to the differential GPS derived 426

estimates. The percentage improvement for the complementary filter is 62% and 81% 427

for the elite and club-level rowers whereas for the Kalman filter it is 75% and 87%, 428

respectively. The average of the error median values of the filters is 49 cm, which is still 429

an order of magnitude larger than the goal of less than 5 cm. It is important to note 430

that distance per stroke estimates are not affected by any constant bias present in the 431

distance error (Fig 12). As long as the distance estimate has good precision and 432

equivalent slope to the actual distance traveled across each stroke, the distance per 433
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Fig 15. Summary of the speed estimate error for all trials.
Comparisons of the distributions of RMSEv of the speed estimates from the three
methods for the last 10 strokes of each trial.

stroke errors can be low. 434

Discussion 435

Rowing research, training, and racing methodologies are necessarily linked to the 436

accuracy and precision of the available measurement systems. The emergence of 437

location technologies like GPS make it possible to derive and report speed and related 438

metrics in the stroke domain, e.g., stroke rate and distance per stroke. However, efforts 439

to monitor and effect meaningful elite-level race result at an individual stroke level were 440

shown in the introduction to require location accuracy and precision better than 5 cm, 441

which systems like GPS cannot deliver. Thus, the aforementioned stroke level metrics 442

derived from available systems should be recognized as approximations. These 443

instrumentation limitations prevent direct and quantitative investigations of the 444

complex causal relationships between rower-oar-boat system mechanics and boat 445

performance at and within the level of an individual stroke. For these purposes, this 446

study has explored methods for achieving more accurate and precise measures of boat 447

movement. We created a system using consumer electronics and services and focused on 448

designing a general purpose and easy-to-use solution that could be broadly deployed in 449

the rowing community. 450

We have presented two alternative estimation methods for boat distance traveled, 451

boat speed, and distance per stroke. Both methods similarly perform better (are more 452

accurate) in most cases than direct output from the smartphone, but neither reach the 453

desired sub 5 cm distance per stroke accuracy. The complementary filter has the 454

disadvantage that the filter cutoff frequencies were not updated to optimal values in 455

real-time, and the optimal offline values we found do not robustly handle all stroke rates 456

for the two rowers and boats investigated. This makes the Kalman filter method more 457

attractive because the bias term is adaptively updated for every rower and boat; i.e. the 458

filter tunes itself. Nevertheless the complementary filter performs as good as or better 459
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Fig 16. Summary of the distance per stroke error for the last 10 strokes of
each trial.
Comparison of the distance per stroke error relative to the DGPS-derived value for all
trials for the elite and club-level rowers, respectively. The numbers indicate the median
values.

than the Kalman filter for our set of trials. Both filters take time to converge to a steady 460

error from a zero speed start, so the first few strokes in a race will produce less accurate 461

results. A future study could consider minimizing the startup time by tuning the filters 462

further, but there is likely a tradeoff in accuracy and precision of the estimates. 463

Both of our presented methods provide better estimates of boat speed and distance 464

per stroke over any prior work that uses a single low-cost commercially available GPS 465

system. The closest prior work on rowing is the thesis from Hermsen [21]. Hermsen’s 466

concept was similar but did not offer the online adaptation that our Kalman filter 467

design provides and there were no reported improvements in any metric but predicted 468

time. Our methods do not provide estimates as accurate as the measurements available 469

using differential GPS systems, but considering the cost and convenience of use our 470

methods are more attractive for general consumer use cases. 471

We have sought to develop a general purpose boat motion model that is independent 472

of stroke rate, and the models presented in this paper were constructed from 473

experiments involving single rowers with rowing rates that ranged from 16 to 34 strokes 474

per minute. The markedly inferior performance of distance per stroke measures in the 475

smartphone (SP) estimate relative to the CF and KF methods is largely attributed to 476

the smartphone’s limitation of having only a relatively low position sampling frequency. 477

In the case of high stroke rate rowing where stroke frequency (at the high end faster 478

than 0.5 Hz) exceeds the smartphone location sampling frequency ( 0.3-0.5 Hz), there 479

are numerous instances between location samples where a stroke ends, a second stroke is 480

completed, and a third stroke begins. In these cases, the distance per stroke error of the 481

second stroke is the entire distance traveled. Accordingly, the CF and KF models stand 482

to add the most value for high rate rowing, e.g., racing rates. 483

It may be possible to further reduce estimation errors by implementing changes to 484

the model that reflect unique or special aspects of rowing. For example, rowing 485
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necessarily occurs on a level plane (water) and boat movement dominantly occurs along 486

the longitudinal axis of the boat. Both of these conditions imply kinematic constraints 487

that were not completely modeled in this study. If the choice to build a general-purpose 488

model was relaxed and special purpose models were developed that were tuned to 489

specified ranges of rowing rates, rowing ability, and boat class, then special purpose 490

model accuracies would definitely improve. Additionally, relatively expensive 491

commercial sports position and speed sensors can sample position at higher rates than a 492

smartphone and thus can be useful to address the significant errors due to the low 493

frequency sampling of the smartphone. However, these high frequency sampling 494

solutions do not eliminate the inaccuracies and imprecision of the position 495

measurements and thus at present do not represent a viable method for realizing the 496

distance per stroke estimation accuracy of 5 cm or less. Rowers and teams could also 497

invest in a DGPS and immediately gain the necessary accuracy and precision, but the 498

costs are higher and the hardware is more cumbersome. Once we accomplish 499

improvements that can achieve this level of accuracy and thus can enable more 500

microscopic analyses of rowing mechanics, we anticipate the emergence of a new 501

generation of tools for testing and coaching the boat-racing performance. 502

Conclusion 503

We have presented two methods to estimate the distance, speed, and distance per stroke 504

along a rowing boat’s path in real time that provide improved accuracy and precision 505

results from the relatively low accuracy sensors in a single smartphone attached to the 506

boat. These improved estimates can be used to create a more detailed analysis of the 507

rower’s performance. Specifically, we show that the distance per stroke can be estimated 508

to an accuracy and precision of about 50 cm, which is an improvement over smartphone 509

estimates but still insufficient for detailed stroke-by-stroke level differentiation of boats 510

in a racing event with relatively close elapsed times. The more continuous data on boat 511

speed that our methods create open up opportunities to analyze rowing mechanics and 512

performance within a stroke. Overall, this paper demonstrates the capability that 513

carefully crafted, activity-specific sensor fusion algorithms can have with low accuracy 514

sensors. Accessible inertial measurement units, like those in smartphones, are 515

continually decreasing in cost and size and stand to play a larger role in collecting field 516

data in sports. The utility of these systems will depend on the development and 517

improvement of application-specific sensor fusion algorithms. 518

Nomenclature 519

Complementary Filter 520

ω frequency 521

ωc cutoff frequency 522

A smartphone accelerometer input signal 523

a0 accelerometer bias 524

D smartphone GPS input signal 525

H transfer function 526

j unit imaginary number 527
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k index for prior GPS update 528

s denotes the frequency domain (s = jw) 529

V smartphone speed inpu signal 530

X input signal 531

Y output signal 532

Error Calculations 533

d̄e, v̄e mean errors of distance and speed estimates 534

x̄, ȳ mean of Cartesian coordinates 535

σde,ve standard deviation of distance and speed estimate errors 536

σx,y standard deviation of the Cartesian coordinates 537

CEde,ve central errors of the distance and speed estimates 538

CExy central errors of the Cartesian location 539

RMSEd,v,ds root mean square errors of distance, speed, and distance per stroke 540

RMSExy root mean square errors of the Cartesian location 541

d distance traveled along the boat’s path 542

de, ve errors in distance and speed estimates, respectively, relative to differential GPS 543

measurements 544

ds distance per stroke 545

i sample index 546

m Number of strokes 547

n number of time samples 548

t time 549

v magnitude of the velocity along the boat’s path 550

x east-west position on the local EPSG 3310 WGS84 plane 551

xs, ys true Cartesian coordinates 552

y north-south position on the local EPSG 3310 WDGS84 plane 553

Kalman Filter 554

αyk input: smartphone body-fixed longitudinal acceleration component 555

νk measurement noise vector 556

∆t time differential 557

A state transition matrix 558

B input matrix 559

C output matrix 560
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D feed-through matrix 561

Lk gain matrix 562

P0 initial estimate covariance 563

Pk estimate covariance 564

Q process noise covariance matrix 565

R measurement noise covariance matrix 566

uk input vector 567

wk process noise vector 568

x0 initial state vector 569

xk state vector 570

yk output vector 571

φk state: accelerometer bias 572

ak input: acceleration 573

dk state: distance 574

vk state: speed 575

Other Symbols 576

αx,y,z smartphone body-fixed acceleration components 577

α boat mounted body-fixed smartphone acceleration vector 578

x̂′, ŷ′, ẑ′ smartphone path-fixed unit vectors 579

x̂, ŷ, ẑ smartphone body-fixed unit vectors 580

a path-fixed acceleration vector 581

θ boat pitch angle 582

a magnitude of the acceleration along the boat’s path 583

ax,y,z smartphone path-fixed acceleration components 584

g acceleration due to gravity 585

CF abbreviation for complementary filter 586

KF abbreviation for Kalman filter 587

SP abbreviation for smartphone 588
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