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Background: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative func-
tional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can sup-
port surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method
for measuring deltoid and rotator cuff elongation.
Methods: Complete scapular and humeral models were extracted from computed tomography scans of 40 subjects. First, a statistical shape
model of the complete humerus was created and evaluated to identify the muscle attachment points. Next, a muscle wrapping algorithm was
developed to identify the muscle paths and to compute muscle lengths and elongations after reverse shoulder arthroplasty implantation. The
accuracy of the muscle attachment points and the muscle elongation measurements was evaluated for the 40 subjects by use of both complete
and artificially created partial humeralmodels.Additionally, themuscle elongationmeasurementswere evaluated for a set of 50 arthritic shoul-
der joints. Finally, a sensitivity analysis was performed to evaluate the impact of implant positioning on deltoid and rotator cuff elongation.
Results: For the complete humeral models, all muscle attachment points were identified with a median error< 3.5 mm. For the partial humeral
models, the errors on the deltoid attachment point largely increased. Furthermore, all muscle elongationmeasurements showed an error< 1mm
for 75%of the subjects for both the complete andpartial humeralmodels. For the arthritic shoulder joints, the errors on themuscle elongationmea-
surementswere<2mmfor75%ofthesubjects.Finally,thesensitivityanalysisshowedthatmuscleelongationswereaffectedbyimplantpositioning.
Discussion: This study presents an automated method for accurately measuring muscle elongations during preoperative planning of shoulder
arthroplasty. The results show that the accuracy in measuringmuscle elongations is higher than the accuracy in indicating the muscle attachment
points. Hence, muscle elongation measurements are insensitive to the observed errors on the muscle attachment points. Related to this finding,
muscle elongations can be accurately measured for both a complete humeral model and a partial humeral model. Because the presented method
also showed accurate results for arthritic shoulder joints, it can be used during preoperative shoulder arthroplasty planning, inwhich typically only
the proximal humerus is present in the scan and in which bone arthropathy can be present. As the muscle elongations are sensitive to implant
positioning, surgeons can use the muscle elongation measurements to refine their surgical plan.
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Adequate deltoid and rotator cuff tensioning in reverse
shoulder arthroplasty (RSA) is crucial to maximize post-
operative functional outcomes and to avoid complica-
tions.12,15,35 Insufficient muscle tension can lead to
instability problems and limited range of motion.15,20,35

Over-tensioning the deltoid muscle can result in acromial
fractures, a complication with an incidence of 1%-7%.2,7,9,36

Because muscle tension is affected by muscle length, del-
toid and rotator cuff elongations should be taken into ac-
count during preoperative planning of RSA procedures.

Not only implant design and position but also patient
anatomy has an important impact on the muscle elongations
following RSA procedures.15 Several studies have investi-
gated the effects of implant design and positioning on
muscle elongations. Roche et al28 evaluated the impact of
implant design and placement on muscle elongations using
a musculoskeletal shoulder model and reported more
anatomic muscle tension with lateralization of the humerus.
Wright et al37 quantified deltoid elongation for 3 different
baseplate positions during cadaveric testing and found that
an inferior baseplate position increases the deltoid muscle
length. L€adermann et al14 showed that rotator cuff length-
ening is affected by the glenoid implant configuration while
observing the largest rotator cuff elongation when per-
forming bony increased-offset (BIO) RSA. Although the
impact of implant design and positioning on muscle elon-
gations has been studied, a high level of uncertainty on how
to ensure adequate muscle elongation during preoperative
RSA planning still exists among surgeons.28 Indications of
deltoid and rotator cuff elongations as part of preoperative
RSA planning can support surgeons in evaluating muscle
tension and refining their surgical plan accordingly.35

To measure deltoid and rotator cuff elongations during
preoperative planning, an accuratedand preferably auto-
mateddmeasurement method is desired. Therefore, accu-
rate identification of patient-specific muscle attachment and
wrapping points is required. Manual indication of muscle
attachment sites on the images or 3-dimensional (3D)
models is time-consuming and subject to interobserver
variability.10,35 Automated methods have been reported that
transfer the muscle attachment and wrapping points from
one bone model to another by defining a transformation
matrix between the bone models.13,16,24,27 However, the
accuracy of these transformation or morphing methods can
be limited for bone models with more distinct shapes.24

Moreover, the reported morphing algorithms have diffi-
culties with incomplete bone shapes. This is problematic in
the case of preoperative shoulder arthroplasty planning, as
the medical images typically contain only the proximal
humerus.13,24 More recently, machine learning–based
methods have been introduced to automatically detect
multiple landmarks in medical images.21,23,38 Although
promising results have been shown, the accuracy of these
approaches is dependent on the amount of data used for
training. Additionally, only landmarks actually present on
the images can be identified, thus limiting the applicability
of these methods to medical images with the muscle
attachment points within the field of view of the scan.

Several studies have shown the potential of statistical
shape modeling for automated landmark prediction based
on partial or complete bone models.25,26,31,33 Statistical
shape models (SSMs) are fitted to a target bone model,
thereby better maintaining point correspondence and being
less dependent on bone shape in comparison to morphing
methods. Salhi et al29 evaluated the prediction accuracy of
muscle attachment regions on the scapula and humerus
using an SSM approach. Although good accuracy was re-
ported, the study used only a limited evaluation data set and
did not report the errors that can be expected on muscle
elongation measurements. Therefore, the goal of our study
was to develop and evaluate the accuracy of an automated
method for measuring deltoid and rotator cuff elongation
during preoperative planning of RSA based on an SSM
approach. The presented method consists of a landmark
identification landmarking algorithm to identify the muscle
attachment points and a wrapping algorithm to identify the
path of each muscle around the bones and implants. Once
the muscle paths were known, muscle elongation was
defined as the change in muscle length relative to the pre-
operative joint state. Because preoperative shoulder
arthroplasty images typically contain only the proximal
humerus, the accuracy of the muscle attachment points and
muscle elongation measurements was evaluated for both
complete and partial humeral models. Additionally, the
automated workflow accuracy was evaluated for a data set
of arthritic shoulder joints, used for preoperative planning
of shoulder arthroplasty. Finally, a sensitivity study was
performed to demonstrate the effect of implant positioning
on muscle elongations.

Materials and methods

Data

We selected a set of 40 computed tomography (CT) scans with a
complete scapula and humerus to evaluate the muscle elongation
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measurements. The average slice spacing of the acquired images
was 0.5 mm. The set included 25 men and 15 women, with an
average age of 63 years. All selected scapulae and humeri showed
no significant signs of bone defect or arthropathy. The scans were
manually segmented by Mimics image processing software
(version 20; Materialise, Leuven, Belgium) and converted into 3D
models, with a mean triangular edge length of 1.5 mm for the
scapulae and 2 mm for the humeri. To simulate the presence of an
incomplete humerus in the scan and evaluate its impact on the
presented method, partial humeral models were created from the
40 complete humeral models by artificially cutting the bone to
30% length from the top.

For indication of the muscle attachment points, SSMs of the
scapula and humerus were required. A scapular SSM was already
presented in a previous study.25 This SSM included 66 three-
dimensional models of healthy scapulae and was used to suc-
cessfully reconstruct glenoid bone defects. The scapular models
were segmented from CT scan images and showed no signs of
bone defect or arthropathy (cysts, osteophytes, or sclerosis). For
the humerus, a new SSM was built based on the same 40 complete
humeral models that were used for evaluation. The creation of the
SSM is described later.

To assess the accuracy of the automated workflow on arthritic
joints, 50 CT scans were randomly selected from a data set of
images used for preoperative planning of shoulder arthroplasty.
All scapulae and humeri showed signs of bone defect or
arthropathy. The scans had an average slice spacing of 0.6 mm and
were acquired with different machine parameters. By use of
Mimics software (version 20), the scapula and proximal humerus
were converted into 3D bone models with mean triangular edge
lengths of 1.5 mm and 2 mm, respectively.
Anatomic landmarks

We identified 11 anatomic landmarks on the scapula and 6 on the
humerus. On the scapula, the subscapularis, supraspinatus, and
infraspinatus attachment points were located centrally and close to
the medial side of the subscapularis, supraspinatus, and infraspinatus
fossa, respectively (Fig. 1). The teres minor attachment point was
Figure 1 Anatomic lan
defined in the middle of the scapula’s lateral rim. The middle and
posterior deltoid attachment points were located at the tip of the
acromion and at the middle of the scapular spine, respectively.
Furthermore, the scapular coordinate frame was defined by the gle-
noid center point (center of mass of all points on the glenoid surface),
trigonum spinae (midpoint of the triangular surface on the medial
border), and angulus inferior (most inferior point).8,25 To compute the
wrapping of the muscles, 2 additional landmarks were identified: the
acromial and coracoid neck points.

On the humerus, the supraspinatus, infraspinatus, and teres minor
attachment points were located on the anterior, lateral, and posterior
sides of the greater tubercle, respectively (Fig. 2). The subscapularis
attachment point was defined on the middle of the lesser tubercle.
Because the deltoid tuberosity was not clearly visible on the humeral
model, the deltoid attachment point was identified at 50% of the
humeral length and above the lateral epicondylar point, consistent
with what has been reported in cadaveric studies in the
literature.19,22 The deltoid attachment point on the humerus was the
attachment point for both the middle and posterior deltoid.
Humeral SSM

To create a humeral SSM, the muscle attachment points and epi-
condylarpointsweremanually indicatedonthe40completehumerus
models by 2 experts (J.P. andK.P). The deltoid attachment point was
derived from the lateral epicondylar point, as described previously.
Themean landmark positions of the 2 observers were projected onto
the surface of the humeral model to obtain the final landmark posi-
tions. These final landmarks served as inputs for creation of the hu-
meral SSM. Interobserver variability was computed for all muscle
attachment points as the distance from the observed landmark posi-
tion to the mean landmark position.34

On the basis of the 40 complete humeral models and indicated
landmarks,anSSMwascreated(Python,version3.7;PythonSoftware
Foundation,Wilmington,DE,USA).Tocapture thevariationbetween
the models, all humeral models required corresponding points. To
solve the corresponding-point problem, onemodel of the data set was
registered asa template toall othermodels.25,33First, the templatewas
aligned to the other models using an iterative closest point (ICP)
dmarks on scapula.



Figure 2 Anatomic landmarks on humerus.
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algorithmwithout scaling. Then, a thin plate spline (TPS) registration
algorithm32 was applied using the manually indicated landmarks to
guide the shapedeformationof the template to the othermodels.Next,
an elastic surface registration algorithm, as described by Danckaers
et al,6 was applied to fine-tune the shape deformation. After registra-
tion, all models were aligned by excluding the translational and rota-
tional variations using aProcrustes algorithmwithout scaling.Finally,
a principal component analysis was performed to extract the mean
shape and the different modes of variation.5

Automated landmark identification

The muscle attachment points and coordinate frames could be
automatically identified on a target shape using an SSM.25,33 The
required landmarks were manually indicated on the mean SSM
shape and then transferred to the target shape by registering and
fitting the SSM. For the scapula, the registration and fitting
method was described in a previous study.26 Via an iterative
approach, the mean SSM shape was registered to the target
scapular shape, corresponding points were identified, and the SSM
coefficients were computed by adapting the SSM shape to match
the identified corresponding points (Python, version 3.7).

For the humerus, the registration and fitting methods were
adapted to account for the axisymmetrical shape of the humerus
and to include scans that contained only the proximal humerus.
The adapted registration method consisted of 2 steps (Fig. 3):
First, the mean shape of the SSM was cut by planes at different
heights, and each resulting proximal mean shape was aligned to
the target shape using an inertia registration. Uniform scaling was
applied to account for the difference in size. Between all the
cutting planes, the one that minimized the root-mean-square
(RMS) of the distances between the proximal mean shape and the
target shape was selected. Second, the selected proximal mean
shape was iteratively rotated around its long axis and registered to
the target model through an iterative closest point (ICP) algorithm
to find the rotation angle that minimized the RMS of the distances.
This second step enforced good alignment despite the axisym-
metrical shape of the humerus.

After the registration, the SSM was fitted to the target humeral
shape. The fitting method, as described in a previous study,26 was
adapted to ignore points that were lying under the selected cutting
plane, as obtained from step 1 of the registration. Hence, these
points were excluded from the corresponding point search of the
fitting method so that only the information present in the scan was
taken into account.

After fitting the SSM, the muscle attachment points were
projected from the fitted SSM shape onto the target scapular and
humeral shape. Because the CT scans of some patients contained
only the proximal part of the humerus, the deltoid attachment
point could not always be projected onto the target humerus
because in these cases the corresponding surface was not avail-
able. Therefore, the deltoid attachment point was only projected
onto the target humeral shape if it was lying above the cutting
plane obtained from the registration method (Fig. 3). This meant
that the deltoid attachment point could be floating if only the
proximal humerus was present in the scan.

Muscle length measurement

Once the muscle attachment points were identified, the rotator cuff
and deltoid paths could be computed. Similarly to existing
musculoskeletal models,11,30 each muscle was represented by a
line trajectory (Fig. 4). The rotator cuff was visualized by 4 line
trajectories: supraspinatus, infraspinatus, subscapularis, and teres
minor. The deltoid muscle was shown by 2 line trajectories:
middle deltoid and posterior deltoid. The anterior deltoid was
excluded in this study to avoid the need for a 3D model of the
clavicle.

Awrapping algorithm was used to identify the wrapping points
forcing the muscle to wrap around the bones and potential im-
plants (Python, version 3.7) (Fig. 5). This wrapping algorithm is a
recursive algorithm that identifies the most distant point from the
muscle line segment in a specific direction. This direction was
obtained as follows: first, a fixed wrapping direction was defined
for each muscle (Fig. 5, a). For the supraspinatus, infraspinatus,
subscapularis, teres minor, middle deltoid, and posterior deltoid,



Figure 3 Workflow for registration and fitting of humeral statistical shape model (SSM) to target humeral shape. The target humeral
shape can contain the complete humerus or only the proximal part (left). First, the best cutting plane and best rotation angle are selected to
register the SSM to the target humeral shape (middle). Second, the SSM is fitted to the target humeral shape while all SSM points that are
below the selected cutting plane are ignored (right).

Figure 4 Rotator cuff and deltoid visualization for preoperative situation (a) and with planned shoulder arthroplasty (b) Muscle
elongation is defined as the difference in length between the planned and preoperative situations.
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Figure 5 Wrapping algorithm. (a) For every muscle, a fixed wrapping direction is defined. (b) The fixed wrapping direction is projected
onto the plane perpendicular to the muscle line, and the farthest point along this projected wrapping direction is identified as the wrapping
point. (c) The muscle line is split into 2 separate line segments, and the wrapping algorithm is recursively applied to each of these segments.
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the fixed wrapping directions were superior, posterior, anterior,
posterior, lateral, and posterolateral, respectively, relative to the
scapular coordinate frame. Then, this fixed wrapping direction
was projected onto the plane, perpendicular to the muscle line
(Fig. 5, b). Hence, the wrapping algorithm looked for the most
distant point on the bones or implants along this projected
wrapping direction. After identification of this wrapping point, the
muscle was split into 2 separate line segments and the algorithm
was applied to both segments separately, until no more points
could be found along the projected wrapping direction (Fig. 5, c).

To avoid wrapping of the supraspinatus and subscapularis
around the acromion and coracoid, the acromial and coracoid
surfaces were cut off before the wrapping algorithm was started.
All points of the scapular model that were lying superior and
posterior to the acromial neck landmark or superior, anterior, and
lateral to the coracoid neck landmark, measured in the scapular
coordinate frame, were not taken into account in the calculation.

When the muscle path was known, the muscle length was
computed as the sum of the lengths of the different line segments.
Muscle elongation was defined as the difference in muscle length
between the preoperative situation (no implant) and the post-
operative or planned situation, in which a shoulder arthroplasty
has been (virtually) implanted (Fig. 4).

Evaluation of humeral landmark identification
accuracy

The accuracy of the automatically identified humeral landmarks
and their effect on muscle length and elongation measurements
were evaluated by comparing the manually indicated landmarks
with the automatically identified landmarks for the set of 40
scapular and humeral models. First, the muscle attachment points
on all 40 scapular and humeral models were automatically iden-
tified by fitting the SSMs and projecting the landmarks, as pre-
viously explained. Because the humeral SSM was created from
the same data used for the evaluation data set, a leave-one-out
cross validation was performed. For each selected humerus, a new
‘‘sub’’-SSM was created from all 39 remaining humeri while
excluding the selected humerus. This evaluation was repeated for
all 40 humeri. After identification of the muscle attachment points,
additional wrapping points were determined and the muscle
lengths were computed. Next, reverse humeral and glenoid im-
plants (DePuy Synthes, Warsaw, IN, USA) were virtually
implanted. For all subjects, glenoid and humeral implants (38-mm
glenosphere) were positioned in a fixed position. The glenoid
metaglene was positioned 5 mm below the glenoid center point
and in 0� of inclination and version relative to the mediolateral
axis of the scapula.1,3 The humeral implant was positioned along
the humeral shaft, with 30� of retroversion. The muscle lengths
were recomputed, and the muscle elongations relative to the
preoperative situation were calculated. Finally, the muscle length
and elongation measurements were repeated for all subjects using
the manually indicated landmarks and compared with the results
obtained with the automatically indicated landmarks. To evaluate
the accuracy for patients with incomplete humeri in the scan, each
humerus was cut to 30% length from the top and the automated
landmark indication and muscle measurements were repeated. A
paired t test was performed to investigate whether there was a
statistically significant (P < .05) difference in the results between
the complete and partial (30%) humeri.

Because the scapular SSM and fitting method showed good
accuracy for the prediction of anatomic landmarks in a previous
study25 (mean error on glenoid center point, 1.8 mm), the accu-
racy of the scapular muscle attachment points and its effect on the
muscle measurements were not evaluated in this study.

Application to arthritic joints

To assess the accuracy of the muscle elongation measurements on
arthritic joints, the automated workflow was evaluated for a set of
50 arthritic scapular and humeral models. Because the humeral
models contained only the proximal part of the humerus, the
middle deltoid and posterior deltoid were excluded from the
evaluation. First, the muscle attachment points on all humeral
models were manually indicated by 2 experts (J.P. and K.P.),
reaching consensus, and automatically indicated by fitting the
SSMs and projecting the landmarks, as previously explained.
Then, all bone models were virtually implanted with a reverse
humeral and glenoid implant (DePuy Synthes). Finally, muscle
elongations were measured with the manually indicated landmarks
and with the automatically indicated landmarks, and the results
were compared between the 2 methods.
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Sensitivity analysis

To demonstrate the use of muscle length measurements during
preoperative planning, a sensitivity study was performed on the set
of 40 complete scapular and humeral models. The effect of implant
positioning on muscle elongation was evaluated by subsequently
translating the glenoid baseplate 5 mmmore lateral and the humeral
implant 5 mm more superior. In addition, the effect of implant
orientation was investigated by subsequently rotating the glenoid
baseplate 10� more retroverted and the humeral implant 10� more
anteverted (resulting in 20� of humeral retroversion). For each po-
sition and orientation of the implants, muscle elongations were
measured for the 4 rotator cuff muscles and the 2 deltoid muscles.
Because RSA is more frequently being used with an intact rotator
cuff, no muscles were excluded from the sensitivity analysis.4,18
Results

The interoperator error for the subscapularis, supra-
spinatus, infraspinatus, and teres minor attachment points
on the humerus showed median values of 0.8 mm (inter-
quartile range [IQR], 0.4-1.2 mm), 0.5 mm (IQR, 0.3-0.7
mm), 1.2 mm (IQR, 0.6-2.0 mm), and 1.2 mm (IQR, 0.6-
3.0 mm), respectively (Fig. 6). The deltoid attachment
point, which is derived from the lateral epicondylar point,
resulted in median interobserver variability of 0.1 mm
(IQR, 0.0-0.2 mm).

When the landmarks were automatically indicated on
the complete humeral models using the SSM, median error
values of 1.8 mm (IQR, 1.1-2.9 mm), 1.9 mm (IQR, 1.3-2.7
mm), 2.2 mm (IQR, 1.1-4.0 mm), 3.5 mm (IQR, 1.8-5.0
mm), and 0.8 mm (IQR, 0.6-1.2 mm) were observed for the
muscle attachment points of the subscapularis, supra-
spinatus, infraspinatus, teres minor, and deltoid, respec-
tively. For the partial humeral models, the errors resulted in
Figure 6 Interoperator and statistical shape modeling prediction e
supraspinatus (supraspin), infraspinatus (infraspin), teres minor (min), a
computed for a complete humerus and partial (30%) humerus. )Statist
median values of 1.8 mm (IQR, 1.2-2.8 mm), 1.6 mm (IQR,
1.2-2.3 mm), 2.1 mm (IQR, 1.5-3.3 mm), 3.0 mm (IQR,
2.0-4.9 mm), and 8.6 mm (IQR, 5.3-11.9 mm), respectively.
Only for the deltoid attachment point was a significant (P <
.05) difference found in the results between the complete
and partial (30%) humeri.

By use of the complete humeral models, muscle elon-
gations after RSA implantation were predicted by the SSM
with an error (median) of 0.3 mm (IQR, 0.1-0.4 mm), 0.6
mm (IQR, 0.3-1.0 mm), 0.2 mm (IQR, 0.1-0.6 mm), and
0.4 mm (IQR, 0.1-0.8 mm) for the subscapularis, supra-
spinatus, infraspinatus, and teres minor, respectively (Fig.
7). For the middle and posterior deltoid, the median and
IQR of the errors were �0.1 mm. When the partial humeral
models were used, no significant (P < .05) differences were
observed in the muscle elongation errors, except for those
of the deltoid. The median error values for middle and
posterior deltoid elongation increased to 0.1 mm (IQR, 0.0-
0.2 mm) and 0.8 mm (IQR, 0.5-1.7 mm), respectively.

When the automated workflow was applied to arthritic
shoulder joints, muscle elongations were predicted by the
SSM with an error (median) of 0.5 mm (IQR, 0.2-1 mm),
1.1 mm (IQR, 0.6-1.9 mm), 0.5 mm (IQR, 0.2-1.1 mm),
and 0.6 mm (IQR, 0.3-1.2 mm) for the subscapularis,
supraspinatus, infraspinatus, and teres minor, respectively
(Fig. 8).

As shown by the sensitivity study, muscle elongations
were affected by implant positioning (Table I). With the
initial position of the glenoid and humeral implants, the
subscapularis, infraspinatus, and teres minor showed a
shortening, or negative elongation, compared with the
preoperative situation, with median values of –15 mm, –23
mm, and –26 mm, respectively. The middle deltoid and
posterior deltoid were elongated in all subjects, with a
median value of 19 mm. The supraspinatus showed a
rrors on muscle attachment points of subscapularis (subscap),
nd deltoid. The statistical shape model (ssm) prediction errors are
ically significant (P < .05) difference.



Figure 7 Statistical shape modeling prediction errors on muscle elongations of subscapularis (subscap), supraspinatus (supraspin),
infraspinatus (infraspin), teres minor (min), middle deltoid (mid delt), and posterior deltoid (post delt). The statistical shape model (ssm)
prediction errors are computed for a complete humerus and partial (30%) humerus.
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median of 0 mm of elongation. Translating the glenoid
implant 5 mm more lateral stretched the rotator cuff mus-
cles compared with the default implant position, with a
median value of 4-5 mm. Deltoid elongation only slightly
increased with lateral translation of the glenoid implant.
When the humeral implant was positioned 5 mm more
superior, corresponding to an inferior offset of the humeral
bone, deltoid elongation increased from a median of 19 mm
to 24 mm compared with the initial implant position. Ro-
tator cuff elongations, however, were only minimally
affected by a more superior humeral implant position.
Finally, changing the retroversion of the humeral and gle-
noid implant showed a limited effect on the muscle
elongations.
Figure 8 Statistical shape modeling prediction errors on muscle elong
(subscap), supraspinatus (supraspin), infraspinatus (infraspin), and tere
being out of the scan field of view.
Discussion

Estimates of deltoid and rotator cuff elongation can support
surgeons during preoperative shoulder arthroplasty plan-
ning in selecting an implant design and position resulting in
adequate muscle tension. Therefore, this study presented
and evaluated a fully automated method to accurately
measure deltoid and rotator cuff elongations, thus elimi-
nating the need for time-consuming manual interactions.
Because preoperative shoulder arthroplasty images typi-
cally contain only the proximal humerus, the method was
evaluated for both complete and partial humeri. To evaluate
its use in a clinical setting, the method was additionally
applied to a set of arthritic shoulder joints.
ations for arthritic joints. Results are reported for the subscapularis
s minor (min), with the deltoid attachment point on the humerus



Table I Effect of implant position on muscle elongation measurements

Subscapularis, mm Supraspinatus,
mm

Infraspinatus, mm Teres minor, mm Middle deltoid,
mm

Posterior
deltoid, mm

Initial implant position �15 (�21 to �13) 0 (�8 to 2) �23 (�27 to �21) �26 (�29 to �24) 19 (15 to 23) 19 (16 to 22)
Glenoid implant

positioned þ5
mm lateral

�10 (�17 to �8) 4 (�4 to 6) �19 (�23 to �16) �22 (�25 to �19) 20 (17 to 24) 22 (17 to 24)

Humeral implant
positioned þ5 mm
superior

�15 (�21 to �12) 3 (�5 to 6) �23 (�28 to �21) �27 (�31 to �25) 24 (20 to 28) 24 (20 to 27)

Humeral implant
with �10� of
retroversion

�16 (�22 to �12) �1 (�9 to 3) �22 (�26 to �19) �25 (�28 to �22) 18 (15 to 22) 19 (16 to 22)

Glenoid implant
with þ10� of
retroversion

�15 (�21 to �13) 0 (�8 to 2) �23 (�27 to �21) �26 (�29 to �24) 18 (15 to 23) 19 (16 to 22)

Data are reported as median (interquartile range).
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First, the method was evaluated for automated identifi-
cation of themuscle attachment points in a set of 40 complete
humeral models. The errors for the automatically identified
landmarks were higher than the interoperator errors for all
landmarks. This was partly because of the accuracy of the
SSM landmarks being limited by the 2-mm SSM mesh size.
To clarify, the landmarks on the SSMwere linked to the nodes
of the SSM mesh whereas the operators were allowed to put
landmarks between the nodes. Furthermore, a correlation
was observed between the interobserver errors and the
automatic landmark identification errors. Landmarks that
were indicated less consistently, such as the teres minor and
infraspinatus, showed higher automatic landmark identifi-
cation errors than the other landmarks.

For the partial humeral models, the automatic landmark
identification errors slightly decreased for the subscapularis,
supraspinatus, infraspinatus, and teres minor attachment
points. Because the SSM is fitted to a smaller surface, it better
optimizes its shape toward this small surface, resulting in a
more accurate indication of the landmarks. However, for the
deltoid attachment point, the automatic landmark identifi-
cation errors largely increased when only the proximal hu-
meruswas available. These large errors are a result of the lack
of information related to the distal humerus, which is not
taken into account when fitting the SSM. Because the deltoid
attachment point is defined by the lateral epicondylar point
and the humeral length, the distal shape of the humerus is
important for accurately predicting its position.

The SSM-based landmark identification algorithm per-
forms better than alternative methods reported in the liter-
ature. Pellikaan et al24 investigated the accuracy of a
morphing method to transform the muscle attachment re-
gions between 2 cadaveric legs. They reported morphing
errors with a median > 10 mm for all muscle attachment
regions, which is higher than the median values of 0.8-3.5
mm that we measured on the muscle attachment points.
Kaptein and van der Helm13 evaluated a similar morphing
method on the muscle attachment regions of the shoulder
bones. They obtained a median of 7 mm for morphing er-
rors. Other methods to transform the muscle attachment
points from one bone to another include linear scaling and
nonlinear scaling.17 These methods also were found to
perform less accurately than the SSM-based landmark
identification algorithm presented in our study.17,24

Our results are comparable to those of other SSM-based
landmark identification methods described in the literature.
Salhi et al29 investigated the prediction accuracy of subject-
specific muscle attachment regions using a healthy scapular
and humeral SSM. For the humerus, they reported an
average RMS error between 0.4 and 1.7 mm and a Haus-
dorff distance between 1.6 and 4.8 mm for all muscle
attachment regions. Similarly to our results, the muscles
followed the same descending order of accuracies, going
from the subscapularis to the supraspinatus, infraspinatus,
and teres minor. In contrast to our study, Salhi et al did not
evaluate the prediction accuracy when only 30% of the
humerus was available in the scan.

Next, the presented method was evaluated for measuring
muscle elongations following RSA. When an RSA was
virtually implanted, muscle elongations were predicted with
errors< 1mm for 75% of the subjects. These errors are lower
than the errors on the muscle attachment points. As a result,
the relative changes in muscle lengths between the planned
and preoperative situations can be computedmore accurately
than the exact location of the muscle attachment points.
Hence, the muscle elongation measurements are insensitive
to errors on the muscle attachment points. Because the
impact of implant positioning on muscle elongations is
generally >1 mm, we conclude that the muscle elongation
measurements are sufficiently accurate for use during pre-
operative shoulder arthroplasty planning. For the partial
(30%) humeral models, the errors on rotator cuff and middle
deltoid elongation remained<1 mm for 75% of the subjects.
Only for the posterior deltoid did the error (median)
increase to 0.8mm (IQR, 0.5-1.7mm)when a partial humeral
model was used. When applied to the set of 50 arthritic
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shoulder joints, the automated workflow reported slightly
higher error predictions, with values still<2 mm for 75% of
the subjects. As we believe that these errors are still accept-
able for clinical decision making, muscle elongation mea-
surements can be applied in a clinical setting in which the
scapula and humerus can show signs of bone defect and in
which no completemodel of the humerus needs to be present.

Finally, the sensitivity analysis confirmed the effects of
implant positioning on muscle elongation measurements, in
line with the results of other studies in the literature. As
reported by Roche et al,28 lateralization of the glenoid
component increases the length of the rotator cuff muscles;
this was also seen in our study. L€adermann et al14 observed
approximately 8 mm more elongation for all muscles when
performing a bony increased-offset RSA with a 10-mm
lateral offset instead of a normal RSA. Similarly to our
results, Wright et al37 observed increased deltoid elonga-
tion when using increasing inferior offsets. The fact that
glenoid and humeral implant retroversion had a limited
effect on the muscle elongation measurements can be
explained by the unaltered orientation of the humerus
relative to the scapula. Although retroversion changes the
orientation of the implant in the bone, the orientation of the
humerus relative to the scapula remains the same.

This study has some limitations. First, although the
automated workflow was tested on arthritic joints, the ac-
curacy of the middle and posterior deltoid muscle could not
be assessed because its attachment point on the humerus
was out of the scan field of view. Second, we did not
evaluate the accuracy of the automatically indicated scap-
ular landmarks. Because the scapular SSM and fitting
method showed good accuracy for the prediction of land-
marks and measurements in previous studies,25,26 we did
not re-evaluate this ability for the current muscle attach-
ment points. Moreover, as demonstrated by Salhi et al,29 the
muscle attachment points on the scapula are expected to be
indicated with higher accuracy than the muscle attachment
points on the humerus because of the more distinct
anatomic regions of the scapula. Third, we defined the
muscle attachment points instead of using the complete
muscle attachment regions. Although muscle attachment
regions are a more accurate representation than points, the
muscle attachment points are required to represent the in-
dividual line trajectory of the muscle. This approach is
comparable to approaches in other studies that measured
muscle lengths.28,35 In addition, the exact location of the
muscle attachment point has a limited impact on the muscle
elongation measurements, as demonstrated in this study.
Finally, the quality of the soft tissues was not taken into
account. Therefore, it might be that the preoperatively
selected elongations are not feasible and that the muscles
do not accept these elongations during surgery. Despite this
limitation, measuring muscle elongations during preopera-
tive planning of shoulder arthroplasty is a first step
toward integrating soft tissue information and supporting
surgeons in selecting a suitable implant design and position.
Conclusion
This study presents an automated method for accurately
measuring muscle elongations during preoperative plan-
ning of shoulder arthroplasty. The method was able to
measure rotator cuff and deltoid elongation with an error
< 1 mm for 75% of the subjects. Only the errors on the
posterior deltoid increased when 30% of the complete
humeruswas present in the scan.Muscle elongation errors
for the arthritic joints were <2 mm for 75% of the sub-
jects. As a result, the presented method can be applied in a
clinical setting despite the fact that medical images for
shoulder arthroplasty typically contain only the proximal
humerus and bones can show signs of arthropathy.
Moreover, the sensitivity analysis showed that the mea-
surements are affected by implant positioning and thus
can support surgeons in evaluating and refining their
surgical plan during preoperative planning of shoulder
arthroplasty. Even though the optimal values for muscle
elongation are not yet known, the measurement method
allows an objective comparison of muscle elongations for
different implant designs and positions, as well as patient
anatomies. Furthermore, the method facilitates process-
ing large data sets and investigating the impact of muscle
elongations on postoperative outcomes.
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