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Abstract 8

Space missions would not be possible without an available, reliable, autonomous, 9

and resilient power system. Space-based power systems are different than Earth’s 10

grid in terms of generation sources, needs, structure, and controllability. This re- 11

search paper introduces a groundbreaking approach employing digital twin techno- 12

logy to emulate and enhance the performance of a physical nanogrid plant repres- 13

enting such a space-based power system. The proposed system encompasses three 14

DC converters, a DC source, and a modular battery storage unit feeding a variable 15

load. Rigorous testing across diverse operating points establishes the digital twin’s 16

high-fidelity real-time representation, with root mean square error (RMSE) values 17

consistently below 5%. The principal innovation lies in leveraging this digital twin to 18

fortify system resilience against unforeseen events, beyond the capabilities of existing 19

controllers and autonomy levels. By simulating scenarios that the current system 20

may not be primed for, the digital twin provides operators with the tools to proact- 21

ively respond to disruptions. Importantly, the approach offers an invaluable tool for 22

scenarios where physical access to components is limited. This research introduces 23

a modular battery storage solution as a key augmentation, capable of seamlessly 24

compensating for power shortages at the source end that might arise from the dust 25

effect on the Lunar surface or unexpected faults in the system. The proposed hol- 26

istic approach not only validates the fidelity of the digital twin but also underscores 27

its potential to revolutionize system operation, safeguard against uncertainties, and 28

expedite response strategies in the face of unexpected contingencies. The proposed 29

approach also paves the way for future development. 30

Keywords: Digital Twin, Resilience, Space Power Stations 31
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1. Introduction 32

The advent of intelligent systems followed by the Fourth Industrial Revolution or Industry 33

4.0, made digital twin (DT) platforms a feasible alternative to analyze and evaluate the 34

performance of dynamical systems enabling critical decision-making. To be more specific, 35

the emergence of artificial intelligence (AI) techniques, the Internet of Things (IoT), and 36

cyber-physical systems (CPSs) has a significantly vital role to play in this area Bazmo- 37

hammadi et al., 2022; Ebrahimi, Ullah, Ferdowsi & Barati, 2022. 38

Although twinning originated in NASA’s Apollo program in the 1960s Allen, 2021 and 39

later on appeared in aerospace and aviation sectorsShafto et al., 2012, it quickly found use 40

cases in various fields ranging from manufacturing Qi & Tao, 2018; Yang et al., 2022 to 41

healthcare and remote surgery systems Laaki et al., 2019; Y. Liu et al., 2019. At a larger 42

scale, in Deren et al., 2021, for instance, the authors discuss applications and features of 43

digital twin-based smart cities. To date, numerous DT applications have been deployed 44

in many industries which named DT one of the Top 10 Strategic Technology Trends in 45

2018 by Gartner Garfinkel, 2018. Furthermore, the DT market is expected to increase 46

from USD 3.8 billion in 2019 to USD 35.8 billion by 2025 due to the rising use of new 47

technologies such as IoT and cloud computing Eirinakis et al., 2020. 48

According to the report provided by the US Department of Energy DoE, 2003, modern 49

power grids are one of the most complicated engineering systems which makes the North 50

American power grids the pinnacle of twentieth-century engineering achievement. In 51

addition, increased installation of renewable energy systems along with Inverter-Based 52

Resources (IBR) is making power grids substantially complex Ebrahimi, Ullah & Ferdowsi, 53

2024. This perplexity makes traditional computer simulations unable to provide accurate 54

analysis and evaluation of the systems, especially in situations where model fidelity is 55

important. 56

To build a virtual representation of a physical system (PS), an advanced high-precision 57

modeling platform is required. Various software and tools can be used to develop a 58

DT model of a PS. In Beguery et al., 2019, a Matlab GUI toolbox is utilized to build 59

an MGDT to address some specific customer requests using a real Energy Management 60

System (EMS) algorithm. In a 2019 study Pileggi et al., 2019, python is used to develop 61

a DT model of a battery system to find and detect anomalies for CPS purposes. 62

In addition, each DT model can be developed based on two fundamental principles 63

including physics-based or data-driven. A Physics-based DT model is built based on 64

principal standard assumptions of physics and mathematics. A data-driven DT model, 65

however, is based on statistical techniques to derive an architectural arrangement of a 66

case study model from its data. Each DT fundamental principle has its advantages 67

and disadvantages. To name a few, physics-based models are frequently applied when 68

fundamental principles of case studies are digested. Even though they have been applied 69

for many years, they are restricted led by an insufficient understanding of the underlying 70
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architecture of case studies caused by mathematical constraints. Data-driven models, 71

nevertheless, seem to be more flexible since they rely on ample data available from case 72

studies. They also suffer from a scarcity of a good understanding of fundamental principles 73

for case studies. 74

Eventually, both physics-based and data-driven DT model have their own merits and 75

demerits, and they can be selected based on available knowledge of a case study and 76

the application. In Hong & Apolinario, 2022, the digital twin concept is utilized at 77

the system level. Networked microgrids are represented by neural networks where the 78

generated power of different units such as solar, fuel cell, battery, and diesel generators 79

are predicted. Typhoon Hardware-in-the-Loop (HIL) software is used in Ebrahimi, Safayet 80

Ullah & Ferdowsi, 2022 to build a physics-based DT model of an IEEE 4-bus to enhance 81

the PV system performance via mitigating voltage violation and fluctuation. 82

The beauty of DT models is their ability to mimic the behavior of PS accurately. 83

The PS, however, has a vital role to play in developing the DT model since without the 84

presence of a PS, the DT model is nonsensical. In other words, a DT model should be a 85

virtual replica of an existing system to be claimed as a digital twin. Otherwise, there is no 86

difference between conventional computer simulations where the model is built based on 87

certain assumptions and imaginary actual systems, or IEEE standard systems. In a 2020 88

study H. Pan et al., 2020, a DT model of a power substation system, Cai-Lun station, is 89

built. Although authors in Yuan & Xie, 2023 present an RL-based DT model to address 90

load commitment issues, there is no actual existing microgrid system represented as the 91

PS. In a 2019 study Béguery et al., 2019, the DiSiPl platform is used to develop a DT 92

model to tackle energy management system issues. It lacks, however, the presence of an 93

actual microgrid to build the DT model based on. 94

The same research gap, the lack of PS, is also observed in Li, Cui, Cai, Su & Wang, 95

2023 where authors propose an AI-driven algorithm for digital twinning to address de- 96

mand response issues for microgrids comprised of renewable sources. In M. Pan et al., 97

2023, an RL-driven DT model is developed to schedule batteries for optimum energy man- 98

agement. The paper, however, lacks information about sensors, synchronization, and even 99

the specifications of components within the physical plant. Cheng et al., 2023 presents 100

a digital twinning framework for a microgrid where a physical plant exists; however, the 101

communication between the digital model and the plant is not discussed. Additionally, 102

it is not well discussed to what extent the digitalized microgrid mimics the behavioral 103

dynamics of the physical plant. 104

Another gap found in the digital twinning studies is the lack of model fidelity as- 105

sessment. In other words, the accuracy of DT models with respect to the PS’s behavior 106

has not been well discussed. The fidelity of a DT model can be assessed by applying 107

standard measurement metrics such as Root Mean Square Error (RMSE), Mean Absolute 108

Percentage Error (MAPE), or R-squared error. Ebrahimi, Safayet Ullah et al., 2024. By 109

assessing the output results of the DT and PS via standard measurement metrics, sys- 110
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tems operators can ensure the performance of the DT is close enough to the PS. Thus, 111

validation is fundamental for the appraisal of DT models. This has a vital role to play in 112

case studies where the PS is far away from its control center like space applications. 113

Several studies present DT models with the presence of PS, but they suffer from a lack 114

of fidelity assessment. In Padmawansa et al., 2023, a DT model is developed to predict 115

the required cycle count and stress levels of a battery energy storage system. Neither 116

the DT model is built based on an actual battery system, nor the fidelity of the DT 117

performance is assessed. In another 2023 study Li, Cui, Cai & Su, 2023, AI-driven and 118

a heuristic algorithm are applied to develop a DT model of smart homes connected to 119

renewables. The DT model, however, lacks a fidelity assessment test. In Saad et al., 2020, 120

the implementation of energy cyber-physical systems(ECPSs) utilizing two DT models to 121

cover high-bandwidth and the low bandwidth applications is presented. The DT models, 122

however, are not evaluated with the results of an actual system. In a 2022 study Lopez 123

et al., 2022, a fault identification framework is presented for low-level components of a 124

DT to ensure the dynamic stability of the components. The presented framework consists 125

of a Self Organized Map (SOM) Neural Network to measure the faults within a Real-time 126

model. Like other DT studies, the scarcity of fidelity assessment tests for the DT model 127

is observed in this research work. 128

Pursuing NASA’s universe exploration plans, the Artemis program aims to take hu- 129

mans to the Moon by 2025 and establish a sustainable presence on the lunar surface 130

Artemis, 2022. Unlike terrestrial microgrids (MGs), the design of the non-terrestrial MG 131

system is quite different. Due to the dusty atmosphere of the Moon NASA, 2023, solar 132

panels’ deliverable power can substantially be impacted and reduced. Therefore, a backup 133

source, commonly a battery storage system (BSS) is required to support solar PV. The 134

program aims to land the first woman and next man on the Lunar surface by 2025, to 135

establish sustainable exploration and utilization of the Moon by the end of the decade. 136

Also, this program is expected to pave the way for human exploration of Mars and other 137

destinations in the solar system. A space-based resilient power system is critical for al- 138

most all aspects of future Lunar exploration endeavors, and the design of such a power 139

system requires extensive research. Cost, safety, and flexibility have been always the three 140

main concerns for research in the power system area. Utilization of a digital twin will 141

accelerate research tasks while maintaining a high level of fidelity. 142

In this study, DT is utilized to mimic the actual MG system representing a Lunar- 143

type MG, Fig.1. The prototype for this case study is designed and developed by the 144

power systems Control Advancement and Resilience Enhancement (CARE) team at the 145

University of Louisiana at Lafayette. To address the above-mentioned issues in the DT 146

area, the research team leveraged DT as an effective tool that yields significant benefits in 147

augmenting the control of space-based power systems. Once the DT model is developed, 148

the DT will be undergoing fidelity assessment tests in phase I. In these tests, the output 149

voltage of the DT model is logged via measurement devices and compared with the PS. 150
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Figure 1: The concept of the MGDT system for Lunar MG systems

Root mean square error (RMSE) is a fundamental measurement unit that is calculated and 151

monitored to be consistently below 5 %. After the DT model is successfully validated, 152

the DT model is utilized to perform certain real-time what-if scenarios instead of the 153

PS. The outcomes of the scenarios can substantially help decision-makers have a better 154

understanding of the performance of the PS in real situations. Thus, operators can 155

provide solid solutions during emergencies or for critical decision-making beyond expected 156

situations. The technical contributions of this research study are summarized below. 157

• Development of a High-Fidelity Real-Time Model: This study pioneers the 158

creation of a high-fidelity, real-time model representing an authentic space-based 159

power system. This model stands as a crucial advancement in accurately simulating 160

such systems. 161

• Introduction of Fidelity Assessment for Power System Digital Twins: Sig- 162

nificantly, this research introduces the concept of fidelity assessment for power sys- 163

tem digital twins, emphasizing the necessity for standardized evaluation criteria. 164

This marks a pioneering step towards establishing benchmarks in this field. 165

• Validation of Real-Time Decision Making using Digital Twins: The re- 166

search proposes and validates the concept of real-time decision-making within di- 167

gital twins for power systems. This breakthrough facilitates critical decision-making, 168

particularly in scenarios where physical access to the system is constrained. 169

In this paper, System Description and Modeling are explained in section II along with 170

a detailed description of each control mode including their mathematical formulations. 171

Establishing the Digital Twin Model is discussed in section III. In this section, DT de- 172

velopment is discussed in subsection A, and PS is described in subsection B. Eventually, 173

section IV covers the results and discussion followed by the conclusion section. 174
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2. System Description and Modeling 175

The overview of the MGDT system is shown in Fig. 2. As can be seen, the solar PV 176

system plays a key role in space-based power systems. Due to the dusty atmosphere of 177

the Moon, the battery system will discharge to support the solar PV to meet the demand. 178

In normal operation, since the solar PV system is able to supply the load demand, the 179

battery will be charged through the bi-directional DC-DC converter. 180

Figure 2: The overview of a Lunar MG system

In this case study, the control unit has a vital role to play in accurate system operation 181

due to supplying load demand. The performance of the control during each mode of 182

operation for the PV system and the battery system is illustrated in Fig. 3. 183

According to the flowchart, the total amount of the solar PV system’s available power 184

is calculated in every sample time after measuring voltages and currents. If the available 185

power from the solar PV can meet the load demand, the controller checks the state of 186

charge (SOC) of the Lithium-ion battery. In case the battery is fully charged, the control 187

system will go to mode 0 representing the normal operation. In this mode the battery 188

system is disconnected from the MG and only the solar PV is responsible for supplying 189

the loads. 190

If the SOC is below the predefined value (like 80%), the control system will go to mode 191

1 which is constant current (CC) charging for the battery. When the SOC of the battery 192

reaches 80%, the control system switches to mode 2 and the battery is charged under 193

constant voltage (CV) until it is fully charged. Eventually, mode 3 happens when the 194

solar PV does not have sufficient power to meet the load demand. Thus, the PV system 195

is immediately disconnected from the load bus and the battery is connected to the supply 196

load demand. Each control mode of operation will be explained further in the following 197

sections. 198
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Figure 3: MGDT Flowchart of Control strategy for each Mode

Fig. 4 depicts the Bi-directional buck-boost DC-DC battery converter. In charging 199

modes, the buck side of the converter is activated which includes an inductor, L, with the 200

internal resistor, RL, and capacitor, Cbat. This will happen via S1 and the antiparallel 201

diode of S2. For discharging modes, however, the boost side will be activated and connec- 202

ted to Cdc. To do so, S2 will be triggered and the boosted current will be passed through 203

the antiparallel diode of S1. 204

To continuously meet the load demand, the battery controller should work closely with 205

the Solar PV system. Thus, the control strategy for the battery is comprised of 5 unique 206

modes to have better collaboration with Solar PV. To implement the control strategy 207

for the battery, Model Predictive Control (MPC) is applied to perform operation modes 208

Rajesh et al., 2019. The inductor current is formulated in (1). 209

L
dIL(t)

dt
= Vbat −RLIL(t)−BVdc (1)

Where L and RL represent the inductance and the inductor’s internal resistor. Vbat 210

and IL are the battery voltage and inductor current. B denotes switching states which 211
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Figure 4: Bi-directional buck-boost

indicates S1 for charging modes and 1 - S2 for discharging modes. 212

On the other hand, the dynamic behavior for the capacitor voltage corresponds to 213

the charging or discharging operational mode. Equations (2) and (3) correspond to the 214

charge and discharge modes respectively. 215

Cbat
dVbat(t)

dt
= IL(t)− Ibat (2)

Cdc
dVdc(t)

dt
= (1− S2)IL(t)−

Vdc(t)

RLoad

(3)

Where Cbat and Cdc are buck side and boost side capacitors, respectively. Vdc and Ibat 216

are load bus voltage and the current flowing to the battery. RLoad is the impedance of 217

load which in this case study is fully resistive. 218

To analyze the dynamical behavior via MPC, the Euler forward method is applied 219

to approximate the derivatives of the above-mentioned equations for the Bi-directional 220

buck-boost converterRivera et al., 2016. 221

dX(t)

dt
≃ X(k + 1)−X(k)

Ts

(4)

Where Ts is sample time. Each mode’s dynamic behavior will be discussed in detail 222

along with their equations in the following sections. 223

2.1 Mode 0 - Normal Operation 224

In this mode of operation, solar PV is capable of supplying load demand. Fig. 5 illustrates 225

the block diagram of the current sharing approach applied to control 3 solar PV agents. 226

This method ensures avoiding circulating currents for the three solar PVs mitigating 227
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Figure 5: Current Sharing Control Diagram

the negative impacts of circulating currents Ghanbari & Bhattacharya, 2020. Since the 228

PV system is able to fully supply the load (mode 0), the controller puts the battery in 229

idle mode, Fig. 6. This will isolate the battery from the MG. 230

Figure 6: Configuration of Bi-directional buck-boost Under Normal Operation
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2.2 Mode 1 - Constant Current (CC) Charging 231

The battery in this mode is charged with a controlled and limited current flow. CC 232

charging provides some benefits like fast charging, balancing cell voltage, and safety. This 233

method of charging, however, is commonly used for certain types of batteries, such as 234

lithium-ion batteries, to ensure safe and efficient charging Brenna et al., 2020. 235

Figure 7: Configuration of Bi-directional buck-boost Under Charging Modes

Fig. 7 shows the configuration of the bi-directional buck-boost for this application. 236

Since the direction of the current flow is reversed due to the charging mode, 1 will be 237

updated as: 238

L
dIL(t)

dt
= −Vbat(t)−RLIL(t) + S1Vdc (5)

Where S1 can be either 1 or 0 depending on the switching status. To calculate IL at 239

time k + 1 with sample time Ts, forward Euler approximation is applied to discretize the 240

derivative of the inductor current. So, by applying 4 to 5, (6) is formed. 241

IL(k + 1) =
S1(k)Ts

L
Vdc(k)

+

(
1− RLTs

L

)
IL(k)−

Ts

L
Vbat(k)

(6)

The goal is to minimize the error between the predicted IL at the time k + 1 and the 242

reference current to charge the battery in CC mode. Thus, the cost function is considered 243

as follows: 244

Gcc(k + 1) = |I∗L(k)− IL(k + 1)|

+ λcc|S1(k)− S1(k − 1)|
(7)

10



Where I∗L(k) is the inductor reference current and λcc is a weighting factor for CC 245

charging mode. Unless the battery’s SOC reaches 80%, the battery remains in the CC 246

mode. 247

2.3 Mode 2 - Constant Voltage (CV) Charging 248

To avoid overcharging and ensure desirable performance, durability, and safety of the 249

battery, a resilient integration of charging modes (e.g., CC & CV) is required. Thus, once 250

the SOC of the battery reaches 80%, the battery goes into the CV mode. In this mode, 251

a constant voltage will be held at the battery’s terminal until the SOC reaches 100%. 252

The configuration of the bi-directional buck-boost and direction of the current are the 253

same as in CC mode shown in Fig. 7. For analyzing the dynamics for this mode, the 254

output voltage of the converter and the inductor current are formulated as follows: 255

L
dIL(t)

dt
= −Vbat(t)−RLIL(t) + S1Vdc (8)

Cbat
dVbat(t)

dt
= IL(t)− Ibat(t) (9)

In the next step, the state space representation of (8) and (9),is formed in (11) using 256

(10): 257

Ẋ(t) = AX(t) +BU(t, S1(t)) (10)

Thus, the result is: 258[
dIL(t)
dt

dVbat(t)
dt

]
=

[
−RL

L
−1
L

−1
Cbat

0

][
IL(t)

Vbat(t)

]

+

[
−1
L

0

0 −1
Cbat

][
S1Vdc

Ibat(t)

] (11)

To obtain the predicted value of Vbat at time k + 1 with sample time Ts, the dis- 259

cretization of the state space representation in 10 can be written as follows for a better 260

parameter-varying relevant Toth et al., 2010: 261

X(k + 1) = AdX(k) +BdU(k, S1(k)) (12)

Where Ad = eATs and Bd = A−1(Ad − 1)B in discrete-time arrangement with sample 262

time Ts. Therefore, the discretization of (11) is (13). 263

[
IL(k + 1)
Vbat(k + 1)

]
= e

−RL

L
−1
L

−1
Cbat

0

Ts
[
IL(k)
Vbat(k)

]
+

[−RL

L
−1
L

−1
Cbat

0

]−1

(e

−RL

L
−1
L

−1
Cbat

0

Ts

−1)

[−1
L

0
0 −1

Cbat

] [
S1Vdc

Ibat(k)

]
(13)
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To minimize the difference between the predicted value of Vbat at time k + 1 and the 264

reference battery charging voltage for CV, the cost function is formulated as follows: 265

Gcv(k + 1) = |V ∗
bat(k)− Vbat(k + 1)|

+ λcv|S1(k)− S1(k − 1)|
(14)

Where V ∗
bat(k) is the battery reference charging voltage and λcv is a weighting factor for 266

CV charging mode. The battery is charged with constant voltage with limited current until 267

the SOC reaches 100%. To limit the charging current in the CV mode, the appropriate 268

reference charging voltage is selected. 269

2.4 Mode 3 - Grid Forming (GF) Discharging 270

Since the PV system is unable to maintain the load bus voltage at the desired value 271

and the solar fails to meet the demand, the battery controller disconnects the main grid 272

from the DC load bus and supplies the load in islanding mode. Therefore, the battery 273

discharges to keep the DC load bus at the desired voltage and serve the demand. 274

Figure 8: Configuration of Bi-directional buck-boost Converter Under Discharging Modes

The configuration of the bi-directional buck-boost converter in the GF mode is shown 275

in Fig. 8. In this mode, the battery will form and create the grid in the GF mode. Not 276

only does the battery supply the desired voltage for the DC load bus, but it also delivers 277

the amount of current required for the load through the boost side of the bi-directional 278

buck-boost converter. For analyzing the dynamics in the GF mode, the output voltage 279

of the boost side of the bi-directional buck-boost as well as the inductor current are 280

formulated as follows: 281

L
dIL(t)

dt
= Vbat(t)−RLIL(t)− (1− S2)Vdc(t) (15)
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Cdc
dVdc(t)

dt
= (1− S2)IL(t)−

Vdc(t)

RLoad

(16)

To better analyze the impact of parameter variations, the state space representation 282

10 is applied. Thus, the result is: 283[
dIL(t)
dt

dVdc(t)
dt

]
=

[
−RL

L
−1
L

−1
Cdc

−1
RobsCdc

][
(1− S2)IL(t)

(1− S2)Vdc(t)

]

+

[
1
L

0

0 0

][
Vbat(t)

Ibat(t)

] (17)

To obtain the predicted value of Vdc at time k + 1 with sample time Ts, the discret- 284

ization of the state space representation is formed in 17 using 12 can be formulated as 285

18. 286

[
IL(k + 1)
Vdc(k + 1)

]
= e

−RL

L
−1
L

−1
Cdc

−1
RobsCdc

Ts
[
(1− S2)IL(k)
(1− S2)Vbat(k)

]
+

[−RL

L
−1
L

−1
Cdc

−1
RobsCdc

]−1

(e

−RL

L
−1
L

−1
Cdc

−1
RobsCdc

Ts

− 1)

[
1
L

0
0 0

] [
Vbat(k)
Ibat(k)

]
(18)

One of the goals in this mode is to minimize the error between the predicted IL at 287

the time k + 1 and a reference current in GF mode. This reference current is indeed the 288

current demanded from the observed load at that time. Thus, this reference current can 289

be calculated as: 290

Idem =
Vdc

Robs

(19)

Where Idem is the current demanded by the load and Robs is the amount of observed 291

load in Ω. In this case study, it is assumed that Robs is known through the loads’ switching 292

states. The second goal is to minimize the difference between the prediction of future Vdc 293

at time k + 1 and the reference DC load bus voltage. Therefore, the cost function is 294

determined as follows: 295

Ggf (k + 1) =|V ∗
ref, dc(k)− Vdc(k + 1)|

+ |I∗ref, gf(k)− IL(k + 1)|

+ λgf |S2(k)− S2(k − 1)|

(20)

Where V ∗
ref,dc(k) is the dc load bus reference voltage and λgf is a weighting factor for 296

the GF discharging mode. I∗ref,gf (k) is the battery reference current demanded by the 297

load and can be calculated through Eq. 19. The goal in the GF mode, however, is to keep 298

the DC load bus at the desired voltage, V ∗
ref,dc(k), in addition to supplying the amount of 299

current required at the load side. 300
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3. Establishing the Digital Twin Model 301

A DT testbed is designed and developed by the power systems Control Advancement 302

and Resilience Enhancement (CARE) team at the University of Louisiana at Lafayette 303

illustrated in Fig. 9. The testbed is comprised of the physical microgrid plant and 304

a high-fidelity virtual representation developed on the Typhoon HIL simulator. The 305

characteristics of the DT and the actual system are further described in the following 306

sections. 307

Figure 9: DC microgrid live DT

3.1 Design of MG Digital Twin (DT) 308

The real-time DT model of the DC microgrid is developed on the Typhoon HIL 402 309

environment. According to Fig. 9, three DC-DC converters are working in parallel and 310

connected to a common DC source bus fed by a 48V DC source. The load bus is regulated 311

at 24 V DC. The loads are comprised of three identical 50Ω resistors connected in parallel. 312

The second and third resistive loads are connected through MOSFET switches at 20 and 313

40 seconds during the test, respectively. Since each resistor is 50Ω, the simulation starts 314

with 50Ω, and during the test, the total impedance of the load will reduce down to 25Ω 315

and approximately 16Ω after connecting the second and third resistors. 316

In the case of a power shortage, a Lithium-Ion battery is connected through a bi- 317

directional DC-DC converter to support the grid. The battery voltage level is set to 12V 318

and it will discharge through the boost side of the bi-directional converter to level the 319

battery output voltage up to 24V for supplying the loads. For charging, however, the 320

battery will be energized through the buck side of the bi-directional converter. To do 321

this, the 24V at the load bus is reduced to 12V by a bi-directional DC-DC converter to 322
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charge the battery. Fig. 10 illustrates the DT model of the MG in the Typhoon HIL 323

environment. 324

Figure 10: The DT Model in Typhoon HIL Environment

3.2 The MG Physical System (PS) 325

There are three DC-DC converters working in parallel fed by one DC source providing 326

48V DC to the common DC source bus. Their outputs supply constant 24V DC for the 327

common load bus connected to three resistive loads. Fig. 11 illustrates an overview of 328

the PS Model of the MG developed by the CARE team at the University of Louisiana at 329

Lafayette. 330

For the actual system, IT-M3900C Bidirectional Programmable DC Power Supply is 331

used as a main source since it has the capability of solar emulation. Three SPM-FB- 332

KIT converters with the range of 600V | 2.4kW are utilized to supply the load. Since 333

all three converters have the same ratings, converters contribute equally. Table 1 shows 334

rated configurations of different components implemented in the actual MG system. 335

4. Tests and Results 336

The performance of the actual system and its DT model is evaluated in two phases. Phase 337

I aims to ensure the DT model is a high-fidelity virtual replica of the system. Since the 338

DT model is comprised of two components including PV and battery systems, Fig. 10, 339

each component’s behavior should be evaluated and compared to its actual part for a 340
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Figure 11: The Actual System at the University of Louisiana at Lafayette

Table 1: Configuration of the actual microgrid system

Position Component Parameter Value Unit
6*Source 3*DC Source I Power +/-12 kW

Voltage 10-1500 V
Current -720 1020 A

3*DC Sources
II, III Power 25 W

Voltage 25 V
Current 1 A

5*Converter 3* Converters
I, II, III, IV Power 2.4 kW

Voltage 600 V
Switching Frequency 50 kHZ

2*Input Capacitor C 2*480 µF
RC,in 0.1 Ω

8*Filter 4*buck L 9 mH
RL,in 0.1 Ω

C 1100 µF
RC,in 0.1 Ω

4*boost L 15 mH
RL,in 0.1 Ω

C 2200 µF
RC,in 0.1 Ω

5*Load 3*Resistive Load R1 50 Ω
R2 50 Ω
R3 50 Ω

2*MOSFET Voltage 50 V
Current 5 A

more accurate fidelity check. Moreover, having a validated DT model can substantially 341

help with critical decision-making in the face of any unforeseen conditions especially if the 342

physical system is on the Moon which is far away from its main control center on Earth. 343

Once the fidelity of the DT model is verified, the DT model can be used instead of the 344
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actual system to apply different tests in a safer environment. Thus, the goal of phase II is 345

to test different features of the physical system and its control system under 2 scenarios. 346

4.1 Phase I - Assessment Tests 347

To achieve the goal of phase I, the fidelity of the DT model is evaluated under two 348

assessment tests including normal and emergency operations. In the first assessment test, 349

the performance of both DT and PS is evaluated under normal operation (Mode 0). The 350

second assessment test evaluates the performance of the DT and PS under the emergency 351

operation (Mode 3). The simulation starts with one 50Ω resistive load and then the 352

second and third loads are added to the system after 20 and 40 seconds respectively as 353

shown in Fig. 10), respectively. 354

In addition to the change of load, the DT and PS systems are tested under 3 different 355

voltage configurations. These configurations vary for assessment test I and test II since 356

their circuit models are different. The reason behind this test is to evaluate and compare 357

the performance of the controller under different operating points. As mentioned previ- 358

ously, the main gap in the DT area is how to evaluate the fidelity of a DT model. Thus, 359

the assessment of the DT model in this study is not limited to only change of load. 360

4.1.1 Assessment Test I - Normal Operation 361

The first assessment test evaluates the performance of the DT and PS under normal 362

operation. Both DT and PS are evaluated under three voltage configurations including 363

10-5 V, 24-12 V, and 48-24 V. In these voltage configurations, the first number represents 364

the value of the generation bus and the second one is the rated voltage at the load bus. 365

Fig. 12 depicts collected real-time data of PS and DT output voltages in 48-24 V 366

configuration from the human-machine interface (HMI). According to the Fig. 12, the 367

DT output voltage follows closely the pattern of the PS. It is worth mentioning that the 368

current sharing is performed using averaging-based distributed control. At t =20 Sec and 369

t=40 Sec, the second and third loads are connected in parallel to the first load. The 370

calculated RMSE and MAPE for this test are 2% and 0.2%, respectively which meets the 371

5% IEEE standard Castellani et al., 2020; S. Liu et al., 2023. Moreover, the captured 372

output voltages from the oscilloscope for DT and PS are shown in Fig. 13. 373

Distributed currents in DT and PS as well as the total demand are all shown in Fig. 374

14. Once the second and third resistive loads are connected, the demand current at the 375

load bus goes up. Therefore, the total current provided increases to approximately 1 A 376

and 1.5 A after the second and third loads are connected. 377

The currents for each buck agent are illustrated in Fig. 15, Fig. 16, and Fig. 17. 378

According to the figures, the DT model follows closely the physical testbed. 379

As discussed earlier, the evaluation test is conducted under two other operation points 380

including 10-5 V and 24-12 V. Table 2 shows the RMSE and MAPE calculated for all 381

17



Figure 12: DT model and PS voltage comparison from the HMI in assessment test I

Figure 13: DT model and PS voltage comparison from the oscilloscope in assessment test I

voltage configurations during the assessment test I. According to Table 2, all calculated 382

RMSE and MAPE for the entire assessment test I are equal to or less than 5% meeting 383

IEEE standards Castellani et al., 2020; S. Liu et al., 2023. 384

Table 2: RMSE and MAPE calculation in assessment test I

Voltage Config. (V) 2*RMSE (%) 2*MAPE (%)
Source Bus Load Bus

10 5 2.1 0.2
24 12 3.4 0.2
48 24 2.3 0.2
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Figure 14: DT model and PS all currents comparison in assessment test I

Figure 15: DT model and PS agent buck 1 current comparison in assessment test I

4.1.2 Assessment Test II - Emergency Operation 385

The second assessment test evaluates the performance of the DT and PS under emergency 386

operation where a battery storage system supports the microgrid under a power shortage 387

and voltage drop scenario.The battery system includes a boost converter controlled with 388

the MPC method. The battery is expected to respond quickly to unexpected conditions 389

where the PV system is not able to fully meet the load demand. 390

In the emergency operation test, the PV system is disconnected from the DC bus 391

and the controller provides the load in the islanding mode. Unlike the assessment test 392

I, the battery starts serving the R1 = 50 Ω load at the beginning. Then, R2 = 50 Ω 393

and R3 = 50 Ω loads are added in parallel at t=20 Sec and t=40 Sec, respectively. The 394
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Figure 16: DT model and PS agent buck 2 current comparison in assessment test I

Figure 17: DT model and PS agent buck 3 current comparison in assessment test I

DT and PS performances are assessed under three voltage configurations of 4-8 V, 8-16 395

V, and 12-24 V. Same as assessment test I, the first number represents the value of the 396

DC source bus and the second one is the value of the DC load bus increased by one 397

DC-DC boost converters. The rated voltage for each battery cell is 4V in our real-time 398

testing environment. Thus, it enables system’s operator to connect the required number 399

of battery cells according to the load demand. This reflects an advantage of using DT for 400

running what-if scenarios before making a decision in the physical plant. 401

Fig. 18 illustrates collected real-time voltage data coming from PS and DT systems 402

in 12-24 V configuration. As can be seen, the DT output voltage chases nearly the 403

pattern of the PS. At t=20 Sec and t=40 Sec, the second and third loads are connected 404

in parallel to the first load. The calculated RMSE and MAPE for this test are 4% and 405
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0.2%, respectively meeting the IEEE standards Castellani et al., 2020; S. Liu et al., 2023. 406

Furthermore, the captured output voltages from the oscilloscope for DT and PS in the 407

test assessment II are illustrated in 19. 408

Figure 18: DT model and PS voltage comparison from HMI in assessment test II

Figure 19: DT model and PS voltage comparison from the oscilloscope in assessment test II

The currents from the DT model and PS are all illustrated in Fig. 20. The figure 409

shows how the controllers respond to the change of load and also how DT follows the 410

testbed in real-time. 411

The SOC of the battery during the discharging mode can be seen in Fig. 21. Due to 412

the increase in the discharging current, the SOC of the battery decreases faster. According 413

to the figure, the slope of battery SOC is sharpened once the second load is added at t=20 414

Sec. The same story is true once the third load is connected at t=40 Sec. 415
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Figure 20: DT model and PS current comparison in assessment test II

Figure 21: The battery SOC during discharging in assessment test II

To better evaluate the DT model, three different voltage configurations are tested to 416

check the fidelity of the DT model with respect to the PS. The voltage configurations 417

are 4-8 V and 8-16 V. Table 3 presents the RMSE and MAPE calculated for all voltage 418

configurations during the assessment test II. 419

4.2 Phase II - Performance Tests 420

Once the fidelity of the DT model is verified, the DT can be used instead of the PS to 421

apply emergency tests since the DT mimics the similar behavior of the PS. In addition, 422

analyzing the outcomes of what-if scenario tests can help identify areas that may need 423

improvements. Therefore, by creating solid plans for each outcome, the PS can be better 424
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Table 3: RMSE and MAPE calculation in assessment test II

Voltage Config. (V) 2*RMSE (%) 2*MAPE (%)
Source Bus Load Bus

4 8 4.7 0.5
8 16 5.1 0.5
12 24 5.4 0.5

prepared to handle certain unexpected situations that may arise in the future. Thus, the 425

DT has a vital role to play in enhancing the operation of the PS model, especially in 426

applications where the PS is far away from the control center like a Lunar power system. 427

To enhance the planning and operation of the PS model, it is essential to apply some 428

tests on the DT model required for emergency response. Therefore, the goal of phase II 429

is to analyze and assess the performance of the PS using its DT model instead, under 2 430

scenarios to mitigate the effect of any unforeseen issues on the PS model happening on 431

the Moon. Scenario I aims to evaluate the performance of the control unit switching from 432

normal operation mode to islanding mode due to the incapability of solar PV to meet the 433

load demand (Modes 0 & 3). 434

The battery system must be always ready to support the PV system during power 435

shortage scenarios (e.g., dust impact on the Lunar surface). Thus, scenario II tests the 436

battery charging system which starts working once the PV system has enough power to 437

serve loads. A collaborative battery control is designed where a current sharing and an 438

MPC-based controller are involved. The battery starts charging with the CC mode. After 439

the SOC of the battery reaches a predefined value, the charging mode is switched to the 440

CV. Once the SOC reaches 100 %, the system continues working under normal operation. 441

4.2.1 Scenario I - Emergency Support Discharging 442

The first scenario evaluates the performance of the DT under unforeseen emergency condi- 443

tions. In this scenario, the solar PV system starts serving the loads. Due to a disturbance, 444

it is assumed that the solar power is no longer able to meet the load. At this moment, the 445

battery controller enables the battery discharge mode. The reason for the PV system’s 446

power shortage can be either dust on solar panels due to the dusty atmosphere on the 447

Moon or any unexpected issues during the operation. 448

Fig. 22 illustrates voltages at the solar, battery and load side. According to the 449

figure, after roughly 60 seconds while all loads are connected, the voltage of the PV 450

system suddenly drops. Thus, the MPS-based battery controller, promptly disconnects 451

the PV system from the DC load bus and enables the battery’s discharge mode to keep 452

the voltage at the load bus regulated. 453

The currents for the PV , load, and battery are shown in Fig. 23. From t=0 to t=60 454

Sec, the PV supplies all the demand. In this scenario, however, the power of the PV system 455
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Figure 22: Voltage waveforms in emergency support discharging scenario I

is dropped due to unforeseen issues. Then, the PV system is immediately disconnected 456

from the DC load bus and the battery is connected to meet the load demand. Thus, the 457

current of the battery system jumps from zero to roughly 1.5 A to serve the loads. 458

Figure 23: Current waveform in emergency support discharging scenario I

Fig. 24 depicts the SOC of the battery during scenario I, the emergency support 459

test. As shown, the SOC stays at (100 %) while the PV system is serving the loads. 460

After approximately 60 seconds, the battery starts discharging to meet the load demand. 461

Therefore, the SOC of the battery decreases since the battery is discharging. 462
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Figure 24: Battery SOC in emergency support discharging scenario I

4.2.2 Scenario II - Emergency Support Charging 463

The battery modules are expected to be stood by for emergency situations. Therefore, 464

scenario II evaluates the battery charging mechanism, which is activated when the PV 465

system generates sufficient power to support loads and there is a certain amount of excess 466

power. If the SOC of the battery is under a predefined value which in this test is set to 467

78 %, the battery goes to the CC-based charging mode. In case the SOC is equal to or 468

greater than 78 %, the battery is charged under CV charging mode until the SOC reaches 469

100%. After that, the battery system is disconnected from the MG, and the solar PV 470

system will fully supply the load in normal operation (mode 0). 471

Fig. 25 shows the voltages at the solar, battery, and load side. As can be seen, 472

the battery starts charging under CC mode controlled by MPC for approximately five 473

minutes. Once the battery SOC reaches 78%, the charging mode is moved from CC to 474

CV. The battery stays in the charging mode under the CV mode until the SOC reaches 475

100% (after about 8 minutes and 20 seconds). Eventually, the battery is disconnected 476

and the PV stays as the only source serving the loads. During all charging modes and 477

switching back to normal operation, the voltage of the load bus remains steady at 24 V. 478

This is because of a collaboration between the current sharing technique and the MPC 479

control on the battery side. 480

The currents at the load side as well as battery and solar PV are all shown in Fig. 481

26. Since the SOC of the battery is less than 78%, the battery control starts with the CC 482

mode. In this mode the battery is charged with a constant current of 1 A. This charging 483

current is provided by three DC-DC buck converters connected to the PV system. Since 484

the three buck converters are identical, each buck agent, therefore, is responsible for 485

one-third of the charging current as well as one-third of the loads demanded current. 486

Once the SOC reaches 78%, the charging mode is changed to CV. In this charging 487
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Figure 25: Voltage waveforms in emergency support charging scenario II

mode, the MPC regulates the battery’s voltage at 12 V. As the SOC goes up, the charging 488

current decreases. Therefore, the currents provided by the buck converters reduce as 489

well. After the battery is fully charged, the battery is immediately disconnected from 490

the DC load bus and the PV system continues serving the loads. It is worth noting that 491

during both CC and CV charging modes, the loads keep receiving a constant current 492

of approximately 1.5 A which shows a good collaboration between the current sharing 493

technique and the battery MPC controller. 494

Figure 26: Current waveform in emergency support charging scenario II

Fig. 27 depicts the SOC of the battery during the scenario II emergency support 495
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charging test. According to the figure, the SOC is 60% at the beginning of the test. 496

Thus, the MPC starts charging the battery under the CC mode for about five minutes. 497

Once the SOC reaches the predefined value (78%), the battery goes to the CV charging 498

mode. This charging mode takes approximately 500 seconds until the battery is fully 499

charged. 500

Figure 27: Battery SOC in emergency support charging scenario II

5. Conclusion 501

Utilizing digital twin technology for a nanogrid plant, our system demonstrates high- 502

fidelity real-time representation with low root mean square error values. The digital twin’s 503

innovation lies in its ability to simulate scenarios beyond existing controllers, fortifying 504

system resilience against unforeseen events. This approach, particularly valuable where 505

physical access is limited, empowers operators to proactively respond to disruptions. The 506

integration of a modular battery storage solution enhances the system’s capability to 507

address challenges such as the dust effect on the Lunar surface or unexpected faults. 508

Overall, our holistic approach not only validates space-based power system resilience but 509

also lays the foundation for transformative advancements in handling uncertainties during 510

space missions. 511
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