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Abstract  

In this chapter, we delve into the sophisticated realm of multivariate statistical methods, focusing on 
Principal Component Analysis (PCA) and Projection to Latent Structures (PLS), as pivotal tools for 
unraveling the complexity of process data analytics. By anchoring these statistical techniques within the 
framework of polyethylene manufacturing processes, we aim to illuminate their exceptional utility and 
novelty in addressing the multifaceted challenges inherent in process optimization and quality control. 

The discourse begins by introducing PCA, not merely as a statistical tool, but as a fundamental 
cornerstone for the analytical examination of process variables. Through a meticulously designed 
workshop, we demonstrate the application of PCA in dissecting the intricate web of variables influencing 
the quality and conversion rates of Low-Density Polyethylene (LDPE) production in a two-zone tubular 
reactor. The integration of Aspen ProMV as a practical tool for PCA applications exemplifies the 
seamless bridge between statistical theory and industrial application, emphasizing the method's 
accessibility and relevance to both academia and industry. 

Transitioning to PLS, the chapter articulates its differentiation from PCA by its ability to simultaneously 
handle datasets comprising both process variables (X) and product quality variables (Y), offering a 
holistic view of the manufacturing process. Through pragmatic workshops, we showcase PLS's 
robustness in application to challenges such as melt index prediction and causal analysis in High-Density 
Polyethylene (HDPE) manufacturing, underscoring its adaptability to complex industrial datasets, 
including those with measurement time lags. 

The exploration extends to the nuanced application of these multivariate statistical methods to batch 
polymer processes. Here, we introduce a novel batch-wise unfolding approach via multiway PCA and 
PLS, expanding the frontier of statistical applications in process data analytics. 

This chapter transcends the conventional boundaries of statistical applications, highlighting the 
transformative impact of PCA and PLS in the domain of process data analytics. It aspires to foster a 
deeper understanding and appreciation of these statistical methods, encouraging their broader 
adoption and adaptation in optimizing manufacturing processes and enhancing product quality. This 
contribution not only reaffirms the critical role of advanced statistical techniques in the scientific 
community but also underscores their practical significance in improving industrial operations and 
outcomes. 

 

This is a preprint version of a chapter from our book - Integrated Process Modeling, Advanced Control 
and Data Analytics for Optimizing Polyolefin Manufacturing. Please cite the original work if referenced 
[31,32].  

 

9.1 Introduction to Principal Component Analysis (PCA) 

This Chapter 9 focuses on the use of multivariate statistics. Sections 9.1 introduces an important 
multivariate statistics tool in process data analytics, namely, principal component analysis (PCA). Section 



9.2 presents a hands-on workshop on the application of PCA for analyzing the process variables that 
affect quality and conversion of LDPE product from a two-zone tubular reactor. We introduce the use of 
the software tool, Aspen ProMV, for multivariate statistics applications, available to universities at low 
cost. Section 9.3 introduces the projection to latent structures or partial least squares (PLS). A key 
difference between PCA and PLS is that PCA involves only datasets of process variables (X) or deals with 
the X-space; PLS involves datasets of both process variables (X) and product quality variables (Y), or 
deals with both X-space and Y-space. Section 9.4 presents two hands-on workshops of applying PLS to 
the LDPE problem of Section 9.2, and to the melt index prediction and causal analysis of a HDPE 
manufacturing process. Section 9.5 introduces PLS for process data analytics with measurement time 
lags and includes a hands-on workshop of PLS for a HDPE process for the melt index prediction and 
causal analysis, including the effect of time lags on melt index measurements. Section 9.6 covers the 
process data analytics for batch polymer processes and presents a hands-on workshop to demonstrate 
the multiway PCA and PLS methodology, particularly the batch-wise unfolding approach, for data 
analytics. Section 9.7 gives the bibliography and suggested further reading 

Beginning in late 1980 to early 1990, chemical engineers have been paying an increasing attention to the 
emerging topics of artificial intelligence, neural computing, multivariate statistics, machine learning and 
big data analytics, and their applications to bioprocessing and chemical engineering [1 to 5]. MacGregor 
and others have demonstrated the significant applications of multivariate statistics and big data 
analytics to optimizing the manufacturing of LDPE, HDPE, Nylon 6 and other polymers [6 to 10]. 
Multivariate statistical analysis [11 to 13] and its implementation using languages such as Python, R or 
software such as Aspen ProMV, SAS, JMP, etc. find a growing number of applications to polymer 
manufacturing. These include: (1) data quality deviation analysis; (2) unit yield analysis; (3) production 
capacity degradation analysis; (4) offline production optimization (discovery and optimization of key 
variables); (5) online process monitoring and troubleshooting; and (6) batch process variable analysis. 

This section introduces the principal component analysis (PCA), following the multivariate statistical 
analysis textbooks of Johnson and Wichern [11], and Rencher and Christensen [12], and the excellent 
online book of Dunn [13], which is continually updated. The online reader is allowed “to freely 
download, share, adapt, commercialize and attribute” some of the book materials, as long as the reader 
acknowledges that “Portions of this work are the copyright of Kevin Dunn”. That is exactly what we wish 
to acknowledge here, as we shall use some of the explanations and figures from reference [13] below. 

Both textbooks [11,12] include a chapter of matrix algebra relevant to multivariate statistical analysis. 
Therefore, we have included an Appendix A, Matrix Algebra in Multivariate Data Analysis and Model- 
Predictive Control Using MATLAB and Python at the end of this book. This appendix also includes the 
basic implementation of the relevant matrix operations and principal component analysis in both 
MATLAB and in Python.  

9.1.1 Introduction to Principal Components  

We follow [14] to illustrate the concept of principal components. Figure 9.1 shows a 3D image of some 

process data. When projecting the same data onto a 2D plane in Figure 9.2, we are unable to observe 

the same 3D relationship. However, we can observe sufficient characteristics of the original 3D image in 

two dimensions if we can identify two linear combinations of process variables x, y and z in order to 

capture most of the variations in these three process variables. See Figure 9.3. 



 

Figure 9.1 The original 3D image of process data. Used with perssion from Aspen Technology, Inc. 

 

Figure 9.2 Losing the characteristics of the original 3D image when projecting onto the x-y plane. Used 

with perssion from Aspen Technology, Inc. 

 

Figure 9.3 Retaining the characteristics of the original 3D image when displaying on the two-dimensional 

plane of latent variables LV1 and LV2 (or principal components 1 and 2). Used with perssion from Aspen 

Technology, Inc. 

 

In Figure 9.3, we see the characteristics of the original 3D image on a two-dimensional plane of two 

linear combinations (LV1 and LV2) of the process variables (x, y and z): 

                                      LV1 = 0.1658 x + 0.6120 y + 0.7733 z                                               (9.1a) 



                                      LV2 = -0.9652 x + 0.2615 y                                                                 (9.1b) 

We call these linear combinations the latent variables or principal components of the process variables.                

Principal component analysis (PCA) is a data transformation method that rotates data such that the 

principal axis of the data is in the direction of maximum variation. See Figure 9.4. We follow the 

interpretation of [15] here. The first latent variable or first principal component of the process data or 

observations given by Eq. (9.1a) represents the linear combination of the original process variables 

whose sample variance (see Appendix A, Section A.1.6) is greatest among all possible linear 

combinations. The second latent variable or second principal component represents the linear 

combination of the original process variables that accounts for a maximum proportion of the remaining 

variance, subject to being uncorrelated with the first principal component. We can define subsequent 

principal components similarly.  

 

Figure 9.4 An illustration of the principal component that shows the direction of                                              

maximum variation of the process data 

We can view the rotated data on the new principal axes (components). We call the coordinates of the 

data in this new coordinate system as principal component scores. They are essentially the projection of 

the data onto the principal axes. As seen in Figure 9.4, the principal components are essentially vectors 

in the original variable space, and these vectors are called principal component loadings. We quantify 

both the principal component scores and loadings, and their relationship to the original process data 

matrix in the following section. 

9.1.2 Data Preprocessing: Mean-Centered and Scaled Process Data Matrix X, Principal Component 

Score Matrix T, and Principal Component Loading Matrix P  

We follow [13] for the development of the PCA model. Let us consider a J x K process data matrix X, with 

K columns of process variables xk (k=1,2 ,…, K), and with each variable xk having J observations or 

measured values, x1k, x2k, x3k, …xJk (or xjk, j = 1, 2,…, J).    In Appendix A, Section A.1.7, we introduce the 

standardized data matrix, or mean-centered and scaled data matrix Xs, and the correlation coefficient 

matrix R from the process data matrix X.  

To correctly carry out PCA, we first preprocess the data. Specifically, we start with a data 

standardization step to convert the process data matrix X to a standardized data matrix Xs that is mean-

centered and scaled by standard deviation [11,13]. For convenience in eliminating the letter “s” from a 

mean-centered and scaled data matrix Xs, we assume in the following discussion that our process data 

matrix X has already gone through a standardization procedure described in Appendix A, Sections A.1.5 



to A.1.7.  As we demonstrate in Appendix A, it only takes a single command using Matlab [zscore(X)] or 

Python [stats.zscore()], to standardize a process data matrix X. 

9.1.3 Development of PCA Model 

We write the standardized data matrix X as a matrix of K process variable vectors: 

                                                    X = [x1  x2 ……..xK] =   [

𝑥11 ⋯ 𝑥1𝑘

⋮ ⋱ ⋮
𝑥𝑗1 ⋯ 𝑥𝑗𝑘

] (9.2)                                                                               

In this matrix, the k-th process variable vector xK is a (J x 1) column vector, [x1k, x2k, x3k, …xJk ]’, where J is 

the number of samples or measurements. The transpose of xK, or xk’, is a (1 x J) observation vector. 

Figure 9.5 illustrates the projection of the vector xk onto the first principal component vector p1. The 

score value tk,1 for this observation vector is the distance from the origin along the principal component 

loading vector, p1, to the point where we find the perpendicular projection onto p1 [13]. 

                                                           

Figure 9.5 The projection of the kth process variable vector xk onto the first principal                               

component loading vector p1. tk,1 is the score value of xk on p1. 

We can write from geometry that: (1) the cosine of an angle in a right-angled triangle is the ratio of the 

adjacent side to the hypotenuse; (2) the cosine of the defines the dot product of two vectors. See Eqs. 

(9.3) and (9.4):                                     

cos θ = (adjacent length)/(hypotenuse) = tk,1 / ‖ xk ‖  (9.3)                                           

cos θ = xk’ p1 / ‖ xk ‖ ‖ p1 ‖                                          (9.4) 

where ‖ · ‖ represents the length of the enclosed vector, and the length of the principal component 

loading vector, ‖ p1 ‖ is 1.0.  Therefore, we find:                                                    

                               tk,1 = xk’ p1         = xk,1 p1,1 + xk,2 p2,1 + …+ xk,j pj,1 …. + xk,J pJ,1                            (9.5)                

Likewise, we write  

                                                 tk,2 = xk’ p2                                                                             

= xk,1 p1,2 + xk,2 p2,2 + …+ xk,j pj,2 …. + xk,J pJ,2                                                 (9.6) 



Generalizing Eq. (9.5) and (9.6), we write the principal component score vector tk resulting from 

projecting the process data vector xk onto A principal component loading vectors, expressed by the (K x 

A) loading matrix P: 

                                                                 tk’ = xk’ P                                                          (9.7)                                                                                    

(1 x A) = (1 x K) (K x A) 

Lastly, we can represent the projection of the entire process data matrix X in terms of a principal 

component score matrix T and a principal component loading matrix P: 

        T = X P                                                            (9.8)                                                                                                                                              

(J x A) = (J x K)(K x A)  

where J is the number of samples or measurements, A is the number of principal components, and K is 

the number of process variables. 

9.1.4 Prediction Errors from PCA Model 

Figure 9.6 illustrates the projection of the original data vector xk onto the first principal component 

vector p1. The best estimate of xk is a vector 𝒙̂𝒌,𝟏along the first principal component loading vector p1 

where the original vector is projected. We call this estimate of the data vector, 𝒙̂𝒌,𝟏. We note the 

distance along the first principal component loading vector p1 is the principal component score tk,1. 

Based on vector geometry, we represent the error between xk and 𝒙̂𝒌,𝟏as an error vector ek,1. 

          

Figure 9.6 The projection of the kth process variable vector xk onto the first principal component vector 

p1, indicating an estimate of the data vector 𝒙̂𝒌,𝟏, together with an error vector ek,1.  tk,1 is the score 

value of xk on p1. 

 We write the prediction vector as: 

𝒙̂𝒌,𝟏
′ = tk,1 p’1                                                                      (9.9) 

 (1 X K)  = (1 x 1)(1 x K) 

and the corresponding prediction error vector is: 

e’k,1    = x’k  -  𝒙̂𝒌,𝟏
′        (9.10) 

(1 x K) = (1 x K) – (1 x K)                                                                                                                                                                                   



Adding the second principal component vector p2 , we generalize the prediction vector from Eq. (9.9) as: 

𝒙̂𝒌,𝟐
′ = tk,1 p’1 +   tk,2 p’2      (9.11)                                 

(1 x K) = (1 x K) + (1 x K)                                                                                                                                                                                  

where tk,1   and tk,2 are the score values of xk,2 on p1 and p2, respectively.                                                             

Extending Eq. (9.11) to A principal component vectors, we write the projector vector of the original data 

vector xk onto the A principal component loading vectors [p1 p2 ……pA] or principal component loading 

matrix P, with tk being the score vector: 

𝒙̂𝒌,𝑨
′ = [tk,1  tk,2…, tk,A ]P’ = t’k P’      (9.12) 

(1 x A) = (1 x A) (A x K) 

We generalize Eq. (9.12) to represent the entire data prediction matrix 𝑿̂ in terms of the score matrix T 

and the principal component loading matrix P: 

𝑿̂= T P’         (9.13) 

(J x K ) = (J x A) (A x K) 

We define the residual vector ek,A for the k-th process variable using A principal components as the 

difference between the actual and predicted observations: 

e’k, A = x’k  - 𝒙̂𝒌,𝑨
′  =  x’k  - t’k P’     (9.14) 

(1 x A) = (1 x A) – (1 x A) 

Referring to Figure 9.7, we define the row residual or the squared prediction error (SPE) for k-th process 

variable as: 

    SPEk =  ( e’k, A · ek, A)1/2  

             = [ (xk,1 – x̂k,1
′ )2 + (xk,2 – x̂k,2

′ )2+………+ (xk,A – x̂k,A
′ )2] 1/2  (9.15)                                                                                            

The corresponding vector representation of all SPEk (k= 1,2 …K) for all K process variables is 

                                                                      SPE = [ SPE1 SPE2…, SPEk ]’                                                         (9.16)                                                                                                           

We write Eq. (9.14) as a prediction error or residual matrix E for all K process variables, J observations 

per variable, and A principal component loading vectors [p1 p2 ……pA] or principal component loading 

matrix P as follows: 

E  =  X – 𝑿̂   =  X – T P’    or     X =  T P’ + E    (9.17) 

Figure 9.7 illustrates the relationship between E, X, 𝑿̂, and SPE. 



 

Figure 9.7 An illustration of the relationships among the prediction error matrix E, process variable 

matrix X, predicted process variable matrix 𝑿̂, and squared prediction error matrix SPE. 

In Figure 9.7, each row of E contains the row residual or the prediction error for j-th observation (j= 1,2, 

…J) for all K process variables.  

Figure 9.8 shows a similar plot, focusing on the column residual, or the prediction error for each column 

that represents the k-th process variable (k= 1,2, ...K) in the residual matrix E [13].  

 

Figure 9.8 An illustration of the relationships among the prediction error matrix E, process variable 

matrix X, predicted process variable matrix 𝑿̂, and column or the prediction error for k-th process 

variable (column) 

Each column of E contains the prediction error for one variable. Referring to the discussion of least 

squares model analysis on pages 165 to 168 of [13], we can find the R2 value for the k-th process variable 

(column) as: 

𝑅𝑘
2  =  𝑅𝑋,𝑘

2 = 1 −
𝑉𝑎𝑟(𝑥𝑘 − 𝒙̂𝒌)

𝑉𝑎𝑟(𝑥𝑘 )
   = 

𝑉𝑎𝑟(𝑒𝑘  )

𝑉𝑎𝑟(𝑥𝑘 )
    (9.18) 

The 𝑅𝑘
2 value for each process variable will increase with every principal component that is added to the 

model. The minimum value is 0.0 when there is no principal component and 𝒙̂𝒌 = 0. The maximum value 

is 1.0 when we have added the maximum number of principal components with 𝑥𝑘  =  𝒙̂𝒌 and 𝑒𝑘  = 0. 

We can extend the preceding row residual and column residual concepts to the whole process data matrix 

X and calculate the R2 value of the entire matrix [13]. This value is the ratio of the variance of X that we can 

explain with the PCA model over the ratio of variance initially present in X. 

R2 =  1 −
𝑉𝑎𝑟(𝑿− 𝑿̂)

𝑉𝑎𝑟(𝑋)
   =1-  

𝑉𝑎𝑟(𝐸)

𝑉𝑎𝑟(𝑋)
     (9.19)           

By using ML or Python (see Appendix A), or Aspen Technology’s software Aspen ProMV, we can evaluate 

the R2 value and identify the number of principal components needed to adequately explain the data 



variability in X. We have demonstrated this aspect in Appendix A and will illustrate this aspect in our 

hands-on workshop WS9.1, in which Aspen ProMV shows the R2 value as R2 for different number of 

principal components. 

Lastly, page 380 of Dunn [13] explains the concept of determining the number of principal components 

to use in a model based on cross-validation (CV), originally proposed by Wold [20]. We follow Dunn’s 

exposition below.  

The general idea is to divide the process data matrix X into 𝐺 groups of rows. These rows should be 

selected randomly but are often selected in order: row 1 goes in group 1, row 2 goes in group 2, and so 

on. We can collect the rows belonging to the first group into a new matrix called X(1), and leave behind 

all the other rows from all other groups, which we will call group X(−1). So in general, for the 𝑔-th group, 

we can split matrix X into X(𝑔) and X(−𝑔) .  Wold’s cross-validation procedure asks to build the PCA model 

on the data in X(−1) using 𝐴 components. Then use data in X(1) as new, testing data. In other words, we 

preprocess the X(1) rows, calculate their score values, T(1) = X(1)P, calculate their predicted values, X̂︀(1) = 

T(1)P′ , and their residuals, E(1) = X(1) − X̂︀(1). We repeat this process, building the model on X(−2) and testing 

it with X(2), to eventually obtain E(2). After repeating this on 𝐺 groups, we gather up E1, E2, . . . , E𝐺 and 

assemble a type of residual matrix, E𝐴,CV, where the 𝐴 represents the number of components used in 

each of the 𝐺 PCA models. The CV subscript indicates that this is not the usual error matrix, E. From this, 

we can calculate a type of 𝑅2 value. We do not call this 𝑅2, but it follows the same definition for an 𝑅2 

value. We will call it 𝑄2𝐴 instead, where 𝐴 is the number of components used to fit the 𝐺 models. 

Q2𝐴 = 1 − Var(E𝐴, CV)/ Var(X)     (9.20) 

Essentially, Q2𝐴 is a measure of how well the process variables will be predicted with new data 

calculated by cross validation. In our hands-on workshop WS9.1, Aspen ProMV shows the Q2 value as Q2 

for different number of principal components with cross validation. 

9.1.5 Hotelling’s T2 value from PCA Model 

In Figure 9.6, we illustrate the score value tk,1   of process variable vector xk on the first principal 

component p1 . Let tk,a (k=1,2…K; a=1,2,….A)  be the score value of kth process variable xk on the a-th 

principal component, and sa (a= 1,2,…A) be the variance of the a-th principal component. Then, the 

Hotelling’s T2    value for the k-th process variable is: 

T2 = Ʃ (tk,a/sa)2       (9.21) 

T2 value is a positive, scalar number that summarizes all the score values. It represents the distance from 

the center of the hyperplane of process variables to the projection of the sample onto the hyperplane. 

For samples that are very close to the sample mean gives a T2 value of zero [15]. 

Figure 9.9 illustrates the concept of Hotelling’s T2 value for an example with two principal components 

(A=2): 

                                                                        T2 = 
𝑡1

2

𝑆1
2  +   

𝑡2
2

𝑆2
2                                         (9.22) 



 

Figure 9.9 An illustration of the concept of Hotelling’s T2 value in a two-latent-variable                                     

or a two-principal-component space, t2 versus t1 

In the figure, the equation for T2, Eq. (9.21), is that of an ellipse. T2 expresses how far an observation is 

from the center of the model in the plane. All points on the ellipse have the same T2 value. 

We note that references [11,15], among others, have presented the detailed development, showing that 

the variances of principal components sa (a= 1,2,…A) are actually the eigenvalues of the correlation 

coefficient matrix R, which is introduced in Appendix A, Section A.1.7, and Eq. (A.24), based on the 

standardized data matrix Xs. Additionally, the eigenvectors of R correspond to principal component 

loading vectors pa (a= 1,2 …A). Extracting principal components as the eigenvectors of R is equivalent to 

calculating the principal components from the original variables after each has been standardized to 

have zero mean and unit variance [13], as we discussed in Appendix A, Sections A.1.5 to A.1.7. 

In Appendix B of this book, code B.8 and Table B.1 at the end give the Python implementation of the 

PCA algorithm, together with a list of common parameters and their suggested values. 

9.2 Workshop 9.1: PCA of the Process Variables Affecting the Quality and Conversion of LDPE Product 

from a Two-Zone Tubular Reactor 

We demonstrate the development of a PCA model for analyzing the quality and conversion of a two-

zone tubular reactor for producing low-density polyethylene (LDPE). The problem comes from 

references [6,18], and the process data for LDPE are available in [19]. We use Aspen Technology’s 

multivariate statistical analysis software, Aspen ProMV, for this workshop. The LDPE production process 

is similar to the process defined by Sharma & Liu. 

 Figure 9.10 shows a schematic diagram of the two-zone reactor, and Table 9.1 defines the 14 process 

variables (X) and 5 product quality variables (Y). 



 

            Figure 9.10 A schematic diagram of a two-zone tubular reactor for producing LDPE 

Table 9.1 Process and quality variables for workshop 9.1 [18] 

*The outlet temperature of the coolant in two zones is fixed. 

Step 1. Start Aspen ProMV. Select new projects. See Figure 9.11. 



 

Figure 9.11 Choose New project in Aspen ProMV. 

Step 2. Load the process data file and save the project file. 

Click on Add/Edit Data and Import from File, LDPE.xls. Choose Process Variables only. See Figures 9.12. 

Figure 9.13 displays a portion of the imported process variable data. By clicking OK twice, we see the 

Standard Data Specification. See Figure 9.14. We then click OK  and see the observation summary of 

Figure 9.15. Highlight the observation ID column to include all observations and the Include observations 

button turns “green” to indicate that we have included all observation data. See Figure 9.16.  Click OK. 

Save the project as WS9.1_PCA-X.pmvx. See Figure 9.17. 

 

Figure 9.12 Import process data from file, LDPE.xls, and choose process variable worksheet only 



 

Figure 9.13 A display of imported process variable data 

 

Figure 9.14 Specify block type for process variables, X 

 



Figure 9.15 A display of observation summary 

 

Figure 9.16 Highlight all observations to include them in the model development 

 

Figure 9.17 Saving the Aspen ProMV project file as WS9.1_PCA-X.pmvx. 

Step 3. Build a PCA model for process variables X. 

After saving the project file, we see the New Model dialog. We click on the Blocks/Variables name, 

“Process Variables”, to display the 14 process variables. Both the Block name and Variable names are in 

green. See Figure 9.18. In the figure, “MC” and “UV” represent the preprocessing of data to make them 

Mean-Centered with Unit Variance Scaling, as we discuss in Appendix A, Sections A.1.5 and A.1.7 for 

standard data matrix. “Custom” in the figure refers to Custom Scaling, that is, the variables will be 

multiplied by this custom value after we have applied data centering and scaling. 

We then click OK, and fill in the model name, WS9.1_PCA-X.pmvx. See Figure 9.19. Select Model -> 

Active Model ->Auto Fit -> See Figure 9.20. Figure 9.21 shows the resulting R2 and Q2 values, Eqs. (9.18) 

to (9.20), versus the number of principal components. We can right-mouse-click on this plot and select 

“Create Table” to see a table of R2 and Q2 values in the plot, as seen on the right of Figure 9.21. 



 

Figure 9.18 Process variables (X) for developing a PCA model on X 

 

Figure 9.19 Filling in model name, WS9.1_PCA-X.pmvx. 

 

Figure 9.20 Auto-fitting the PCA model with the number of principal components (A) equal to half of the 

number of process variables (N=14), A = 14/2 = 7. 

 



 

Figure 9.21 R2 and Q2 values versus the number of principal components. 

Figure 9.21 shows the cumulative R2 and Q2 values for each model component. The R2 of the final 

component is the total amount of the variability in the dataset that the model explains, and the Q2 

value of the final component is a measure of how well the dataset is predicted by unseen data in cross 

validation. If the R2 and Q2 values are low, it could mean that there is significant noise in the data, 

existence of significant outliers, or not enough information in the data to fit an acceptable model.  The 

figure indicates that increasing the number of principal components or latent variables, increses the R2 

value, as explained previously in Section 9.1.4. With 7 principal components, an R2 value of 0.9149 says 

that the PCA model can explain 91.49% of the variability of the dataset for process variables (X). 

Likewise, with cross validation, a Q2 vale of 0.8406 says the model can explain 84.07% of the variability 

of the dataset for process variables. 

Task 4. Generating PCA plots and their interpretations. 

We follow the Aspen ProMV online help section on Interpreting Plots to demonstrate some useful plots 

and their interpretations. 

(1) Model summary (R2 and Q2) plots for a selected maximum number of principal components 

Choose the # button in the middle of the top of the screen, and fill in a maximum number of 4 principal 

components, we get a R2-Q2 plot of Figure 9.22. 



 

Figure 9.22 R2-Q2 plot with a maximum number of 4 principal components 

(2) Variable summary plot 

We follow the path: Analyze -> Model -> Variable summary ->Block: Choose X-space, and Component: 

Choose 7, and see Figure 9.23. We also right-mouse-click on this figure and select “Create Table” to see 

a table of R2 and Q2 values in the figure, as seen on the right of Figure 9.23. This figure shows the total 

R2 and Q2 of each X variable in a PCA model. As explained previously with Figure 9.21, if there are many 

variables and a few variables are not predicted well, this may mean there is no information in the 

dataset that can well explain these variables, not enough variation in the variables, too much noise, or 

significant outliers. 

 

Figure 9.23 Variable summary plot in the X-space in a PCA model 

(3) “Components by variable” plot 



We show Figure 9.24 by following the path: Analyze -> Model -> Components by variable ->Block: 

choose process variables, and Variable: choose Tin (displayed in Figure 9.10, inlet temperature of the 

reaction mixture). This figure shows the R2 and Q2 values for all of the components for a specific X or Y 

variable. In this case, it is the X variable, inlet temperature, Tin. 

 

Figure 9.24  R2 and Q2 values for all components for a specific X or Y variable  

(4) T1-T2 score plot and P1-P2 loading plot 

We discussed in Section 9.1.4 of the score matrix T and the loading matrix P. In Appendix A, Section B.4, 

we demonstrate the use of ML to generate these matrices. By choosing T1-T2 and P1-P2 buttons on the 

left side pane, we generate the score plot and loading plot of Figure 9.25. These figures plot the score 

and loading values of the second principal component, T[2] and P[2], versus those of the first principal 

component, T[1] and P[1].  

The scores are the latent variables, which are the weighted averages of the original process variables, 

X’s. The score plot enables us to find clusters (such as in the middle of the left score plot in Figure 9.25) 

and outliers (such as observation 54). On the score plot, the inner dashed ellipse represents 95% 

confidence limit, while the outer solid ellipse represents 99% confidence limit. Observations that fall 

outside the 95% or 99% confidence intervals may be outliers; however, 5% and 1% of the observations 

are expected to naturally fall outside of the 95% and 99% confidence intervals, respectively. This plot 

shows the scores for a PCA model where there are both data clustering and a possible outlier. 

The loadings are the model variables that explain the relationship between the X variables in PCA (or X 

and Y variables in the case of PLS discussed in Sections 9.3 and 9.4) and the latent variables (scores). In 

the right loading plot of Figure 9.25, variables that are close to the center of the plot are not significant 

for explaining the variation in the plotted components. By contrast, variables that are far from the 

center are important for explaining the variation in the dataset. Variables that are close together on the 

loading plot are correlated and variables that lie on the opposite sides of the plot are negatively 

correlated. 



  

                                   Figure 9.25 T[2] vs T{1} score plot and P[2] vs P[1] loading plot 

(5) Hotelling’s T2 plot 

Select the Hot’s T2 button on the left side pane. We see the Hotelling’s T2 plot of Figure 9.26. This plot 

measures the deviation of an observation from the origin, that is, from the average operating point. 

Note the two horizontal lines labelled 0.99 and 0.95 for 99% and 95% confidence limits. We see 

observation #54 lie above the 95% confidence limit. This is acceptable, as there are generally on average 

5 out 100 observations lying outside the 95% confidence limit. 

 

Figure 9.26 The Hotelling’s T2 plot 

(6) Row residual or squared prediction error SPE-X plot 



We discussed the SPE in Eqs. (9.15) and (9.16) and in Figure 9.7. Choosing SPE-X button on the left side 

pane gives the SPE-X plot of Figure 9.27. In the plot, we see that observation 54 has the largest SPE 

value. 

 

Figure 9.27 The SPE-X plot 

(7) Variable importance to projection (VIP) plot  

Choosing VIP button on the left side pane gives the VIP plot of Figure 9.28. The VIP plot gives a 

quantitative metric of the relative importance of a variable to a PCA model. A rule of thumb is that 

Variables with a VIP value close to or greater than 1 are important. Referring to Figure 9.10 and Table 

9.1 for the definitions of process variables, we see that Tout1, Tmax2, Tcin1, and Tcin2 are four most important 

process variables in the PCA model. 

 

 

Figure 9.28 Variable importance plot. 

(8) Contribution plots 

When a single observation is selected on a score plot or Hotelling’s T2 plot, the contribution plot shows 
the difference between that observation and the average observation. Following the path: Analyze -> 
Contributions ->This opens the contribution plot window.  In this window, we specify analysis between 



our apparent outlier, observation 54, and the average observation using the specifications shown in 
Figure 9.29, left.  These inputs yield the contribution plot on the right side of Figure 9.29. We see that z2 
(the axial reactor length at the maximum temperature of the reaction mixture in zone 2, Tmax2, Figure 
9.10) is higher than the average, and Tmax2 is lower than the average. 

 

Figure 9.29 Point-to-average contribution point. 

This concludes workshop WS9.1_PCA-X, and we save the file as WS9.1_PCA-X.pmvx. 

9.3 Partial Least Squares or Projection to Latent Structures (PLS) 

9.3.1 Introduction to PLS 

When applying data analytics to chemical processes, we often deal with not only process variables and 

their measurements, but also focus on quality or productivity variables. Let X be a JxK process variable 

matrix with K columns of process variables (k=1 to K), and J rows of measurements per variable (j=1 to 

K), and Y be a JxM process quality variable matrix with M columns of quality variables (m =1 to M), and J 

rows of measurements per variable (j = 1 to J). 

As discussed in Section 9.1.1, PCA rotates the process data such that the principal axis of the data 

represents the direction of maximum variation. The projection of the data in the new coordinate system 

of A principal components is called the principal components or latent variable scores, which are 

represented by a JxA score matrix T, where J represents the rows of measurements per variable, and A 

denotes the number of principal components. Additionally, the principal components are vectors in the 

original variable space, and we call these vectors principal component or latent variable loadings, which 

are represented by a (KxA) principal loading matrix P, where K represents the number of process 

variables and A is the number of principal components. 

Since PCA only uses X-data to find the principal component scores, T, these components explain 

variation in X-data, and not necessarily the most predictive of Y-data. In this section, we wish to use 

both X-data and Y-data simultaneously to identify the latent variables that explain the variation in X and 

are predictive of Y.     

In Figure 9.30, we decompose the standardized J x K process variable matrix X and J x M product quality 

matrix Y into their principal component loading vectors (pa and ca, a = 1,2 …A), and principal component 



score vectors (ta and ua ; a = 1, 2, …A). Alternatively, we can express the entire process variable matrix X 

in terms of a principal component loading matrix P, a principal component score matrix T, and a 

prediction error or residual matrix E, as seen previously in Eq. (9.17). Likewise, we represent the entire 

product quality matrix Y in terms of a principal component loading matrix C, a principal component 

score matrix U, and a prediction error or residual error matrix F. See Eq. (9.23). 

X     =  T P’ + E   = 𝑿̂ + E      (9.17) 

(J x K) = (J x A) (A x K) 

Y     = U C’ + F    = 𝒀̂ + F      (9.23) 

(J x M) = (J x A) (A x M) 

 

Figure 9.30 An illustration of partial least squares (PLS) regression of both process variable matrix X and 

product quality matrix Y, their principal component loading matrices P and C, and score matrices T and 

U, together with the weight matrix W’ for relating the score matrix T with process variable matrix X [13]. 

We can estimate the X-scores (i.e., principal component score vectors ta’s or principal component score 

matrix T) as linear combinations of the original process variable vectors xk (k=1,2 …K) with the 

coefficients, “weights”, w 

t ja= Ʃ x jk wka or T = X W                        (9.24)                         

9.3.2 Nonlinear Iterative Partial Least Squares (NIPALS) Algorithm 

We follow [13,16,17] to show how to compute the principal components sequentially and to handle 

missing data, with reference to the steps involved in Figure 9.31 [13]. 



 

Figure 9.31 An illustration of the steps involved in computing the principal components by the NIPALS 

algorithm [13].  

Step 1. See the number or the numbered arrow direction in Figure 9.31 for the numbered step.  Begin 

with the J x K process variable matrix X and J x M process quality matrix Y. Xa and Ya are both 

preprocessed versions of the raw data when the number of principal components a equal to 1.  

Select a column ya within the quality matrix Y as our initial estimate for a score vector ua.   

Regress a data column xa within data matrix X onto a score vector ua within score matrix U. Store 

the regressed slope coefficients in the weight vector wa. Large weight coefficients reflect that 

columns in Xa are strongly correlated with ua. We do this regression as follows: 

wa= (1/ ua’ua) Xa’ ua      (9.25)   

Step 2. Normalize the weight vector to unit length.           

wa = wa/ (wa’wa)1/2      (9.26) 

Step 3. Regress every row in Xa onto the weight vector wa. Store the regressed slope coefficients in the 

score vector ta. Repeat doing this for all J rows of observations: 

ta= (1/ wa’wa) Xa’ wa       (9.27)                                                       

Step 4. Regress every column in Ya onto the vector ta. Store the regressed slope coefficient in the loading 

vector ca. Repeat doing this for all M columns of quality variables: 

ca= (1/ ca’ca) Ya’ ca      (9.28)                                                       

 Step 5. Regress each of the J rows in quality matrix Ya onto to the weight vector ca. Large weight 

coefficients indicate rows in Ya are strongly correlated with ca. 

ua= (1/ ca’ca) Ya’ ca      (9.29) 



The NIPLAS algorithm then continues with a procedure called “deflation” to remove variability already 

explained in Xa and Ya. This involve two steps. 

Deflation Step 1. Calculate a loading vector for the X space. 

We calculate a loading vector pa using the X-space scores, following Eqs. (9.7) - (9.8): 

pa= (1/ ta’ta) xa’ ta      (9.30) 

Here, the score vector ta is normalized. This loading vector pa contains the regression slope of every 

column in Xa onto the score vector ta.  In this regression, the score vector ta is the x-variable, the column 

from Xa is the y-variable. 

Deflation Step 2. Remove the predicted variability from X and Y. 

Using the score vector ta and the loading vector pa, we follow Eq. (9.19) to calculate the predicted value 

of Xa, denoted by 𝑿̂𝒂: 

𝑿̂𝒂= ta p’a       (9.31)   

We then remove this best prediction 𝑿̂𝒂 from the Xa, that is, we remove the variability already explained 

well from the original data matrix Xa: 

Ea = Xa – 𝑿̂𝒂 = Xa - ta p’a       (9.32)                                                    

We define the remaining data matrix as Xa+1: 

Xa+1= Ea        (9.33) 

In the same way, we remove the variability from the quality data matrix Y, using the score vector ta and 

the leading vector ca. 

𝒀̂𝒂 = ta c’a       (9.34) 

Fa =  Ya – 𝒀̂𝒂 = Ya - ta c’a      (9.35) 

Ya+1= Fa        (9.36) 

The NIPALS algorithm repeats all over again using the deflated matrices for the subsequent iterations. 

In Appendix B of this book, code B.5 and Table B.1 at the end give the Python implementation of the PLS 

algorithm, together with a list of common parameters and their suggested values. 

9.4 Hands-on Workshops of PLS of LDPE and HDPE Processes 

9.4.1 Workshop 9.2: PLS of Process and Quality Variables Affecting the Quality and Conversion of LDPE 

Product from a Two-Zone Tubular Reactor 

The procedure to carry out this workshop is similar to  WS9.1_PCA-X in Section 9.2. We only highlight 

the changes to the previous workshop when considering both X and Y spaces (i.e., process and quality 

variables). 



We follow Figure 9.11 to start a new project, and follow Figure 9.12 to import data from file, LDPE.xls, 

but to choose both process variables and product quality variables. We change Figure 9.14 to Figure 

9.32. 

 

Figure 9.32 Specify block types for process variables, X, and product quality variables, Y. 

After importing the data file, LDPE.xls, we note that the original reference [18] for the LPDE data 

indicates that some observations, such as observation IDs from 51 to 54, reflect a gradual increasing 

level of impurities in the feed ethylene to both zones of the tubular reactor, and they progressively 

move outside the acceptable region. Additionally, the values for observation IDs from 51 to 54 do not 

change for most of the 15 process variables. See Figure 9.33, in which the data plot on the right results 

from our highlighting process variable 3 on the left. Next, we see an observation summary in Figure 9.34 

(similar to Figire 9.15), in which we delete observations 51 to 54. 

 

Figure 9.33 A display of observed values for process variable 3. 



 

Figure 9.34 Delete observations 51 to 54 

We save the project file as WS9.2_PLS-XY.pmvx. In the following, we demonstrate the PLS model plots 

for the quality variable or Y-space, focusing on those new plots that we did not illustrate in Section 9.2, 

Workshop 9.1 with the PCA model.  

(1) PLS model for the Y-space 

We follow the path: Model -> Active Model ->Auto Fit (follow Figure 9.20), and see the resulting model 

of Figure 9.35, displaying the R2 and Q2 values, Eq. (9.19) and (9.20), versus the number of principal 

components. As demonstrated in Figure 9.21, we can right-mouse-click on the R2-Q2 plot and select 

“Create Table” to see a table of R2 and Q2 values in the plot. An R2 value of 0.9654 indicates that the 

PLS model for Y-space will explain 96.54% of the variability of the dataset for product quality variables 

with 6 principal components. A Q2 value of 0.9474 says that with cross validation, the model can explain 

94.74% of the variability of the dataset for product quality variables. 

 

Figure 9.35 R2 and Q2 values of PLS for Y-space with six principal components resulting from auto fit 

Following Figure 9.19 and choosing the # button on the top of the screen and filling in a maximum 

number of 7 principal components, we get a R2-Q2 plot of Figure 9.36. It appears that adding one 

principal component increases the R2 value from 0.9654 to 0.9712, and Q2 values from 0.9473 to 

0.9566. We will use 7 principal components in the example below. 



 

Figure 9.36 R2 and Q2 values of PLS for Y-space with seven principal components 

(2) Model variable summary for the Y-space 

Next, we follow the path: Analyze ->Model -> Variable Summary -> Choose Block: y-space, and 

Component: 7. We see in Figure 9.37 that except for Mw (or MWW) (weight-average molecular weight), 

the PLS model for Y-space predicts CONV, Mn (or MWN), LCB and SCB reliability with R2 values above 

0.9842. 

 

Figure 9.37 R2 and Q2 values of PLS for Y-space with seven principal components 

(3) T1-T2 score plot and W*C[1] vs W*C[2] loading plot 

The T1-T2 score plot used to identify clusters and outliers, previously shown in Figure 9.25, applies to 

both PCA model for the X-space and PLS model for the X and Y spaces. For the PLS model, it is best to 

use the W*C[1] vs W*C[2] loading plot, because it also explains the relationship between the X and Y 

variables. 



By choosing W*,c1-W*,c2 button on the left side pane, we generate the preferred PLS loading plot on 

the right side of Figure 9.38. In the plot, we see 5 quality variables or Y variables in red, and 14 process 

variables or X variables in black. Referring to the variable definitions in Table 9.1, Section 9.2, we see 

that the quality variable SCB in red is positively correlated with process variables Fi1 and Tmax1; quality 

variables Mw, CONV and LCB in red are negatively correlated with process variables Fi2, Tout2 and 

Tmax2 in black; and quality variable Mn in red is also negatively correlated with process variables z1 and 

Tcin2 in black. 

  

Figure 9.38 T[2] vs T[1] score plot and W*C[1] vs W*C[2] loading plot  

(4) Loading bi-plot 

A loading bi-plot super-imposes the loadings and scores, such as Figure 9.38 (left and right) for easier 

interpretation of the relationship between the variables and observations. Following the path, Analyze -

> Loading bi-plot ->Worksets: training, Block: X-space; X-axis: component 1; Y-axis: component 2, we 

generate a loading bi-plot of Figure 9.39. 

 



Figure 9.39 Loading bi-plot 

(4) Obs vs pred plot 

By choosing obs vs pred on the left-side pane and specifying the following: worksets- training; 

observation - 1; block - product quality variable; variable- Mn; component:7; raw units, we generate the 

Obs vs pred plot of Figure 9.41. The root-mean-squared-error (RMSE) of 35.5144 is only 0.013% of the 

average observed value of 27400.  

 

Figure 9.41 Obs. Vs Pred. plot of product quality variable, Mn (number-average molecular weight) 

This concludes workshop WS9.2_PLS-XY, and we save the file as WS9.2_PLS-XY.pmvx. 

9.4.2. Workshop 9.3 - Polymer Melt Index Prediction and Causal Analysis Using PLS  
 
The objective of this workshop is to demonstrate the application of PLS model for predicting the MI and 
causal analysis of a HDPE manufacturing process. We consider an industrial slurry HDPE process with 
two reactors in parallel with the model details as defined by Sharma and Liu [28,43,44], using plant data 
from LG Petrochemicals in South Korea [21]. See Figure 9.42.

 

Figure 9.42 Process simulation flowsheet of an industrial parallel slurry HDPE process 



We convert a steady-state simulation model based on Aspen Plus to a dynamic (time-dependent) 
simulation model using Aspen Plus Dynamics. The resulting dynamic simulation model has similar 
independent variables as explained before. Both steady-state and dynamic simulation models are 
developed from first principles such as phase-equilibrium calculations and mass and energy balances. 
Therefore, they are scientifically consistent models. 

Park et. al. [21] correlate the MI data by considering the independent variables shown in Table 9.2. The 
dataset consists of 5000 observations and 9 main independent process variables and 1 dependent 
variable, MI, as the quality target. We first make sure the data are in Excel format and the process 
variable (X) and (Y) data are in different sheets within HDPE_XY Data.xlsx. 

Table 9.2 Process and quality variables of the parallel slurry HDPE process 

Process and quality variables Description 

C2 Ethylene feed flow rate 

H2 Hydrogen feed flow rate 

CAT Catalyst feed flow rate 

HX Hexane solvent feed flow rate  

C3 Comonomer feed flow rate 

T Temperature of the reactor 

P Pressure in the reactor 

H2/C2 Feed concentration ratio in the reactor of ethylene to 
hydrogen 

C3/C4 Feed concentration ratio of Propylene to Butylene monomer 

MI (quality variable) Melt Index of polymer 

 

We open a new project in Aspen ProMV. Following Figure 9.27 in Workshop 9.2, we import both process 
(X) and quality (Y) variable datasets, HDPE_XY Data.xlsx, into Aspen ProMV. On the data manager, we 
choose the X block and highlight all “Obs ID” for X vailables to “Include” all X obsrvations (see Figure 
9.43). Clicking on OK in “Observaton Summaey” leads to the “New Model” screen, and choosing the X 
block generates the details of 9 process variables, including their mean, standard deviation, min/max 
value, etc. (see Figure 9.44). Likewise, choosing the Y block shows the details of the single quality 
vailable, MI (see Figre 9.45). We then name the new model as WS9.3_PLS-XY.pmvx. 



 

Figue 9.43 Highlighting all X variable Obs ID in “Observation Summary” to include all observations 

 

Figure 9.44 Process variable details in the new model. 

 

Figure 9.45 Quality variable details in the new model. 

(1) PLS Model for the Y-space 



We follow the path: Model ->Active Model -> Auto Fit (follow Figure 9.20), and see the R2 and Q2 values 
of the resulting model in Figure 9.46. The figure shows that with four principal components, an R2 value 
of 0.9534 says that the PLS model can explain 95.34% of the variability of the product quality variable, 
the melt index (MI); a Q2 value of 0.9533 means that with cross validation, the PLS model can explain 
95.33% of the data variability. 

 

Figure 9.46 R2 and Q2 values of PLS for Y-space with four principal components resulting from auto fit. 

(2) Obs vs Pred plot 

Following Figure 9.41, we generate a Obs. Vs Pred plot in Figure 9.47. The root-mean-squared-error 

(RMSEE) is 1.08266.  

 

Figure 9.47 The Obs vs pred plot with 4 principal components 

(3) Loading bi-plot and VIP plot 

Following Figure 9.39, we show a loading bi-plot, super-imposes the T[2] vs T[1] score plot and W*c[1] 
vs W*c[2] plot in Figure 9.48. 



 

Figure 9.48 Loading bi-plot 

We see that from the scores, T[2] vs T[1], process variables CAT and H2/C2 in black are both outside the 

99% confidence limit, and are potentially outliers. Additionally, quality variable, MI Plant, in red is 

positively correlated with process variables H2, H2/C2 and CAT in black (since they lie nearer to each 

other). We can confirm this strong correlation by selecting the VIP button on the left side pane to 

generate a variable importance to projection plot, VIP, in Figure 9.49. 

 

Figure 9.49 Variable importance to projection, VIP plot 

 (4) Hotelling’s T2 plot 

Following Figure 9.26, we show the Hotelling’s T2 plot in Figure 9.50, and want to demonstrate new tools 
to identify the cause of a selected outlier in our dataset. We right-click within the plot to show the menu 
to display observation number. We click on “Display Point Tooltips”, and then put the mouse on one of 
the outliers. We see in Figure 9.51 the observation number as 2697. 



 

Figure 9.50 The Hotelling’s plot and the menu to display observation number., “Display Point Tooltips”. 
The data points within the red circle represent potential outliers outside the 95% confidence limit. 

 

Figure 9.51 Displaying data number 2697 for an outlier located on the far right, top data point 

How do we identify the cause of data number 2697 as an outlier? We use the contribution plot below. 

(4) Contribution plot 

We follow the path: Analyze -> Contributions -> Specify according to Figure 9.52 -> Contribution plot of 
Figure 9.53. 



 

Figure 9.52 Specifying a contribution plot from average to data point 2697. 

 

Figure 9.53 Contribution plot indicating temperature of data pint 2697 being much lower than the 
average value, causing an outlier in the Hotelling’s T2 plot 

Next, we start a new project, import the data file, HDPX_XY_Data.xlsx, again. We then follow Figures 
9.15-9.16, and Figure 9.34, to remove observation IDs 2412 to 2415, and 2695 to 2698 (potential 
outliers highlighted within the red circle in Figure 9.50), and save the resulting model file as WS9.3-
1.PLS-XY.pmvx. Following the path: Model -> Active Model -> Auto Fit, we generate the model resulting 
from removing observation IDs 2412 to 2415, and 2695 to 2698. Figure 9.54 shows the corresponding 
R2-Q2 plot and the Obs vs Pred plot. 

 

Figure 9.54 The R2-Q2 plot and Obs vs Pred Plot after removing potential outliers. 



Comparing Figures 9.47 and 9.54, we find the change of R2 from 0.953395 to 0.9534, and RMSE from 

1.08266 to 1.08267 quite insignificant. Therefore, we can stay with the original model. This concludes 

workshop WS9.2_PLS-XY, and we save the file as WS9.2_PLS-XY.pmvx. 

9.5.  Workshop 9.4 - Polymer Melt Index Prediction and Causal Analysis with Measurement Time Lags 
Using PLS  

9.5.1 Introduction to PLS with Measurement Time Lags 

In many chemical processes, there is some lag between the time when the quality variable like MI at the 
process outlet is measured and the process variable measurements. The output in a dynamic process is 
related to the past process variable inputs and past outputs as well. To handle the autocorrelation data, 
we mimic the concept of auto-regressive moving average exogenous (ARMAX) time series models by 
forming the data matrix with previous observation in each observation vector. The time series model 
which relates quality (dependent) variable y at present time to past quality variable y’s and process 
(independent) variable x’s. 

The model equation is represented below: 

yt = 𝛽1𝑦𝑡−1 +  𝛽2𝑦𝑡−2 + ⋯ + 𝛾1𝑥𝑡−1 + 𝛾2𝑥𝑡−2 + 𝑒𝑡   (9.37) 

This eventually means that we need to use a lagged value of the quality variable to account for the time 
lags. Thus, we consider the autocorrelation in the data in ProMV by introduction of the lag of variable 
order. This time series modeling technique is also referred as PLS with observation time lags. When 
applied the technique to batch processes with time lags, Chen and Liu [21] refer the method as batch 
dynamic partial least squares (BDPLS). 

When a quality (Y) variable in a PLS model contains measurement time lags, we introduce a lagged 
quality variable to the Y block to which it belongs. Following Aspen ProMV online help, we show in 
Figure 9.55 an example of a Y data block with a single quality variable that is lagged three time units. In 
the figure, we add three lagged quality variables. The resulting quality data block with lags (called LagsY 
block) now has three more variables due to time lags, but three fewer observations. We define a lagged 
variable with the original name with the suffix _L#, where # represents the lag value for that particular 
value. 

 

Figure 9.55 An illustration of a single quality variable that is lagged three time units.  

In the following, we demonstrate how to apply PLS with observation time lags using Aspen ProMV. 

9.5.2 Workshop 9.4 - Application of Aspen ProMV to Polymer Melt Index Prediction and Causal 
Analysis with Measurement Time Lags Using PLS  
 



We use the same industrial HDPE process in Workshop 9.3 in Section 9.4.2, and the same industrial 
dataset, HDPE_XY_Data.xlsx. 

We load the data using the same procedure. In this case we introduce a lag of order 1 in both the input 
process variables and the process output MI, so that the MI at the current time is function of the 
historical value of process variables and past MI value. 

We follow the steps from Figures 9.12 to 9.18, but import both process and quality variable data (X and 
Y spaces) as in Figure 9.32, and save the file as WS9.4_PLS-X and LagsY.pmvx. In the New Model screen, 
we pay attention to the “Lags” button. See Figure 9.56. 

 

Figure 9.56 The “Lags” button in the New Model screen 

Referring to Figure 9.57, we choose quality variable, Plant MI, specify a lag of 1 time unit, and use the 
arrow key to move the data to the LagsY block on the right.  We then save the model file as WS9.4_PLS-
X and LagsY.pmvx.   

 

 

Figure 9.57 Specifying a lag of one time-unit for the quality variable, MI Plant.                                                           
The new variable is named MI Plant_L1. 

We build a PLS model following the path: Model ->Active Model ->Auto Fit (Figure 9.20) and see the 
resulting PLS model with time lag in Figure 9.58. An R2 value of 0.9938 says that the PLS model with 
time lag can explain 99.38% of the variability of the quality variable, Plant MI (melt index); a Q2 value of 
0.9938 says that with cross validation, the model can explain 99.38% of the data variability. From Figure 
9.46, we see that the corresponding R2 and Q2 values without time lag are 0.9534 and 0.9533, 



respectively. This comparison shows that by introducing the time lag, both R2 and Q2 values increases 
significantly when compared to those values without time lag. 

 

 
Figure 9.58 R2 and Q2 values of PLS for Y-space with time lag with four                                                                       

principal components resulting from auto fit. 
 
Following Figures 9.41 and 9.47, we generate an Obs vs Pred plot in Figure 9.59. It is significant to note 
that by adding a time lag, the PLS model significantly lowers the RMSEE value from 1.08266 without 
time lag (Figure9.47) to 0.393567 with time lag (Figure 9.59). 
 
Figure 9.60 shows a VIP plot for the PLS model with time lag. By comparing this plot with the 
corresponding VIP plot without time lag, Figure 9.49, we see that the lagged quality variable, Plant MI, 
becomes the most important variable for the PLS model with time lag. 

 
Figure 9.59 The Obs vs Pred plot with 4 principal components and with time lag 

 

Thus, we can actually use the data from PLS model and separately plot the results with the actual plant 
data. Figure 9.60 demonstrates that predictions from a PLS model with measurement time lag compare 
well with the time-dependent plant MI data.  



  

Figure 9.60. Development of a soft sensor of MI based on Causal PLS model  

This concludes our workshop 9.4, and we save the resulting simulation file as WS9.4_PLS-X and 
LagsY.pmvx. 
9.6. Multiway PCA and PLS for Batch Processes 
 
9.6.1 Batch-Wise Unfolding and Observation-Wise Unfolding Approaches to Multiway PLS 

Our discussion of data analytics in the preceding sections has been mostly for continuous processes. For 
data analytics of batch processes, we require a different approach. Industrial batch process data with 
multiple batches have a three-dimensional structure with the three data dimensions, namely, process 
variables, time, and number of batches. Nomikos and Macgregor [22] explained those three data 
dimensions as an example of a multiway approach to multivariate data analytics, and they specifically 
demonstrated two approaches when applied to PCA or PLS.  

The first approach is the batch-wise unfolding (BWU) approach that extracts the batch trajectory 
observations horizontally in a time-wise manner, as illustrated in Figure 9.61. Each batch becomes a 
single row of data. In the figure, we have a three-way array of trajectory data (X) of i = 1 to I (number of 
batches), j = 1 to J (number of process variables), and k = 1 to K (time step of data observation). We also 
append an initial condition matrix Z and a product quality matrix Y at time k =0 (beginning time) an k=K 
(ending time), respectively. In BWU, the data are unfolded into a two-way array X (I × J by K), where the 
rows of the unfolded matrix represent the batches. Each batch becomes a single row of data in the 
model.  

We develop PLS models based on the unfolded data matrices. The BWU principal component score 
predicts the final state of each batch based on all the time history of that batch to the current time. The 
resulting principal component scores show differences among batches. The BWU approach is useful to 
predicting the final product quality, monitoring, control and optimization of batch processes. 



 

Figure 9.61 An illustration of batch-wide unfolding (BWU) of the 3-way (I x J x K) array of trajectory data 
(X) of i = 1 to I (number of batches), j = 1 to J (number of process variables), and                                                                        

k = 1 to K (time step of data observation). 

Refer to our discussion of PLS in Section 9.3.1, particularly Eqs. (9.17), (9.23) and (9.24), and to Figure 9.30. 
We show in Figure 9.62 an extension of the PLS structural digram to batch-wise unfolding. In the figure, Z 
is the initial condition vector, X is the process data matrix, Y is the quality data matrix, T is the principal 
component score matrix, VT is the initial condition vector, W is the weight matrix, and CT is the principal 
component loading matrix. Based on Figure 9.30 and Eq. (9.24), we write the principal component score 

matrix T and the predicted product quality matrix  𝒀̂ as:  

T = X W       (9.24) 

𝒀̂ = T CT = [X W ]CT  =  X [WCT] =  X β   (9.24a)                                                

where β is the regression coefficient matrix of PLS. We have a row of coefficients for each Y variable. These 
coefficients show the relative importance of the X’s to each individual Y variable. 

 

Figure 9.62 PLS of batch-wise unfolded data. 

The second approach is the observation-wide unfolding (OWU) approach where the process data for 
each batch are stacked on top of one another, following the way we typically read batch data. The 
analysis will summarize the instantaneous condition of each batch using the measured values at the 
current time. The study by Nguyen et al. [30] compares the two batch folding techniques BWU and OWU 



for analysis of foaming in a fermentation process.  Figure 9.63 illustrates the OWU approach, which is 
useful to reducing the dimension of data collected from batches. 

 

Figure 9.63 An illustration of observation-wise unfolding (OWU of of the 3-way (I x J x K) array of 
trajectory data (X) of i = 1 to I (number of batches), j = 1 to J (number of process variables), and                                                                        

k = 1 to K (time step of data observation). 

9.6.2 Workshop 9.5 - Application of Aspen ProMV to Batch-Wise Unfolding (BWU) Approach to 
Multiway PCA of Batch Polymerization Data  
 
We consider a polymer batch dataset (polymer.xls) provided by Dunn [19] consisting of ten process 
variables X (j = 1 to 10) in 55 batches (j = 1 to 55). Within each batch, we have 100 time steps of data 
observations (k = 1 to 100). We use PCA along with BWU analysis to identify the abnormal/bad batches 
using Aspen Pro MV. 
 
We first load polymer.xls as follows. Start Aspen ProMV and select “New Project”. Within the Data 
Manager, we choose “Batch Blocks”, and then click on “Import Batch Block” to upload polymer.xls into 
the software. Figure 9.64 shows part of the imported data with 10 process variables in different batches. 
 

 
 

Figure 9.64 A part of the imported batch polymerization dataset. 
 
We then choose the batch number column (column1) and click on “Observation IDs” button on the left 
side pane to designate column 1 to contain Observation IDs. For batch dataset, one “observation” 
represents a batch. Referring to Figure 9.65, we can explain how the three-way database is displayed. 



First, we see that the column to the left of the Observation ID (i.e., batch number) goes from 2 to 5501 
(currently displaying columns 2 to 3, 100 to 103, and 5498 to 5501 in the figure), which represents a 
total of 5500 time steps of data observations, with each observation ID or each batch number containing 
100 time steps (that is k = 1 to 100) from 2 to 101 for batch 1, 102 to 201 for batch 2, 202 to 301 for 
batch 3, …., and 5402 to 5501 for batch 55.  
 
Next, we see column 1 (ObsIDs), Batch Number, varies from 1 to 55 (that is, i = 1 to 55). Lastly, we see 
Columns 2 to 11 for X1 to X10, representing 10 process variables (that is, j = 1 to 10). 
 

 
                                    

 Figure 9.65 A display of parts of the unfolded dataset 
 
 
On the same window screen of Figures 9.64-9.65, we click on OK, and then choose “No” to align the 
batch trajectory. See Figure 9.66. We then see the “View/Edit Batch Block” screen, and we highlight 
column 1 and see the time-dependent change of variable X1 over the 100 time steps within batch 1. See 
Figure 9.67. We click on “Save”. 
 

 
Figure 9.66 Option to align the batch trajectory 

 



 
Figure 9.67 A display of the time-dependent changes of variable X1 for 100 time steps in batch 1 

 

 
Figure 9.68 A summary of imported dataset 

 
We click on OK on the screen of Figure 9.68 and see the Observation Summary (as illustrated previously 
in Figure 9.15) and then click on OK. We save the resulting file as WS9.5_PCA_BWU-X.pmvx. 

 
Following Figures 9.20, we develop a PCA model of the batch-wide unfolded dataset with 10 principal 
components (A = 10). Figure 9.69 shows the resulting R2 and Q2 values versus the number of principal 
components. We note that both R2 and Q2 increase with an increase in the number of principal 
components. Should we choose to use auto-fitting tool following Figure 9.20, the number of principal 
components (A) is equal to half of the total number of process variables (j= 1 to 10), that is, A = 5. The 
corresponding R2 and Q2 values are 0.7049 and 0.6096, respectively. 
 

 
Figure 9.69 R2 and Q2 values versus the number of principal components 

 



Following Figure 9.25, we show in Figure 9.70 the score plot, T[2] vs T[1], for the case with 5 principal 
components. In the plot, we use the button highlighted by an arrow on the top ribbon to select points 
located close to the 95% confidence limit (dashed ellipse), batch 51; points located between 95% and 
99% confidence limits (dashed and solid ellipses), batches 50,52,53 and 55; and point outside the 99% 
confidence limit, batch 54. These batches represent the apparent outliers or abnormal batches among 
the 55 batches (i = 1 to 55). 

 
Figure 9.70 Score plot, T[2] vs T[1] 

 
We confirm batches 50 to 55 being abnormal by following Figure 9.26 to draw the Hostelling’s T2 plot in 
Figure 9.71. Significantly, this plot shows another abnormal batch 49 that is not apparent in Figure 9.70. 
 

 

Figure 9.71 The Hostelling T2 plot 

Following Figure 9.27, we show in Figure 9.72 the squared prediction error SPE-X plot, which reveals 
that batch 51 has the largest SPE-X. 



 

Figure 9.73 The SPE-X plot 

We conclude this workshop by finding out what happens when applying the observation-wide unfolding 
(OWU) approach to the same polymer dataset. We first load polymer.xls as follows. Start Aspen ProMV 
and select “New Project”. To use OWU on the same dataset, we need to import batch data using 
“Standard Blocks”  within the Data Manager, not “Batch Block” (see Figure 9.14 shown previously). Since 
the dataset (polymer.xls) contains 55 batches with each batch containing 100 time steps, following  the 
same procedure as in the BWU approach will lead to the error of having “duplicate Observation IDs” 
(see Figure 9.73). We need to do some manipulations of the dataset to prevent the error. We use the 
Pandas package in Python (see Appendix 9.1) to delete the “Batch Number” column in the Excel sheet 
and add an index column from one to 5500 observation instances. This column serves as “Observation 
IDs” for data import by “Standard Blocks”.  We save the Excel file after data manipulation as 
Polymer_OWU_No duplicate ObsIDs.xls. 

 

 

Figure 9.73 Error of having duplicate Observations IDs 

We use the Pandas package in Python (see Appendix 9.1) to delete the “Batch Number” column in the 

dataset Excel sheet and add an index column from one to 5500 observation instances. This column 

serves as “Observation IDs” for the “Standard Blocks” data import. The file after data manipulation is 

saved as, Polymer_OWU_No duplicate ObsIDs.xls.  

We now follow Figures 9.11 to 21 to develop a PCA model using standard blocks with the modified 

dataset, Polymer_OWU_No duplicate ObsIDs.xls. Figure 9.74 shows part of the imported dataset, and 



we do not see the error of having duplicated observation IDs. We save the resulting PCA model as 

WS9.5_OWS_PCA-X.pmvx. Figure 9.74 shows the resulting R2 and Q2 versus the number of principal 

components, and Figure 9.75 gives the corresponding score and loading plots. It is unfortunate that the 

score plot of Figure 9.75 (left) shows no interpretable trends and no observable outliers with the OWU 

approach.This is in contrast to the outliers (batches 50 to 55) depicted in the score plot of Figure 9.70 

resulting from applying the BWU approach. The loading plot on the right of Fgure 9.75 shows some 

variabes located closely together that are correlated, and some variables that lie on the opposite sides 

of the plot that are negatively correlated. 

 

Figure 9.75 R2 and Q2 value versus the number of principal component 

 

Figure 9.76 T[2] vs T[1] score plot and P[2] vs P[1] loading plot 

We conclude that the batch-wise unfolding (BWU) approach is more effective than observation-wise 
unfolding (OWU) for batch data analytics. 

9.7   Implementation of Multivariate Statistics Models 

Should the reader wish to extract the equations and coefficients from of developed PCA and PLS models 
from Aspen ProMV to implement elsewhere, follow the path: Model -> Export Model ->Model List -
>Model 1 -> Included in Export -> Training, Batch, Monitoring and Alignment Data -> Excel, e.g., 
WS9.2_PLS-XY_WS9.2_PLS-XY.xlsx. Figure 9.76 shows an information summary of the model. 



 

Figure 9.76 An information summary of the exported model 

For the example, we see the following Excel folders of the exported model: 

 

The various sub-folders in the exported Excel model are as follows. 

(1) Scores (T) and loadings (P): See Eqs. (9.8) and (9.17); Figures 9.25 and 9.38. 

(2) Weights (W): See Eq. (9.24). 

(3) Weights (WStar; W*): See Figure 9.38. 

(4) Regression coefficients β_Conv, β_Mn, β_Mw, β_LCB and β_SCB: Eq. (9.38) 

(5) Y-Weights: See Figure 9.77 below. 

 

Figure 9.77 Weights for Y-space. 

If you do not have Aspen ProMV for outlier or anomaly detection, consider using Python that we 
introduce in Appendix B, Introduction to Python for Chemical Engineers, and refer to Section 10.1.3, 
Suggested Resources to Get Started with Machine Learning. Adopt the open-source Scikit-Learn PLS 



library for model building and getting the model coefficients: 
https://scikitlearn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html 

Additionally, In Section 10.2.3 and Table 10.5 of Chapter 10, we introduce additional machine learnng-
based methods for outlier or anomaly detection, which can be implemented by Python. Two of the 
popular methods are Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Section 
10.2.3.d) and Gaussian mixture model (GMM) (Section 10.2.3.e). 

Most of the multivariate statistical models in this chapter and machine learning models in Chapters 10 
and 11 use historical data. For online implementation, we need a real-time plant historian, such as 
Aspen InfoPlus.21 and Aspen Process Explorer, to demonstrate online model deployment. For example, 
Aspen Technology, Inc. has several software tools, such as Aspen Process PulseTM and Aspen ScramblerTM 
to enable the monitoring, controlling, and optimizing processes with real-time visibility of all types of 
process and spectral data. Interested readers may refer to Sharmin et al. [27] about a PCA-based fault 
detection scheme for an industrial high-pressure polyethylene reactor using Aspen Process Explorer. 

 
9.8. Conclusion and Suggested Resources for Further Studies 
 
In this chapter, we have showcased the utility of latent variable models like PCA and PLS for causal 
analysis to identify correct correlations between input and outputs for polymer process application. We 
identify the Dynamic PCA and PLS model utility in dynamic time series process data by considering the 
measurement lags. We also demonstrate the methodology for batch-wise unfolding (BWU) and 
observation-wise unfolding OWU) analyses of batch data. 
 
For further studies, we recommend references [24] to [26] in the bibliogrphy below. We discuss a 
number of topics together with their relevant references below. 
 
Gracia-Munoz et. al. [24] discussed the issue of time allignment in batch proesses. Specifically, in many 
batch processes, batches can be of different time durations within certain phases or across the entire 
batch evoluation. A search of Aspen ProMV online help gives the details and examples of alignment 
tools and their implementation in batch processes. 
 
Park et. al. [21] and Han et. al. [25] presented interesting case studies of applying PLS and machine 
learning tools (support vector macines and artificial neural networks) to modeling the melt index of 
high-density polyethylene (HDPE), styrene-acrylontrille (SAN) and polypropylene (PP) processes 
operating in Korea. 
 
Chen and Lu [26] integrated auto-regressive moving average (ARMAX) exogenous time series model 
with PCA model, and called it dynamic PCA (DPCA) that involves the use of time lags which we discussed 
in Sections 9.5.1 and 9.5.2. They also combined three-way observation-wise unfolding PLS (Section 
9.6.1) with time-lagged windows, and called it batch dynamic PLS (BDPLS). They applied both methods 
to industrial batch polymerization datasets. One of the future idea is to combine the multivariate 
statistics with science and process knowledge in hybrid methodology for process improvement as shown 
Sharma & Liu [29,45].  
 
This chapter is published with Wiley publication in the book Integrated Process Modeling, Advanced 
Control and Data Analytics for Optimizing Polyolefin Manufacturing by Liu & Sharma. 
[31,32,33,34,35,36,37,38,39,40,41,42] 

https://scikitlearn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
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