
Yamato Journal of Cloud Computing: Advances, Systems and Applications
 (2015) 4:4
DOI 10.1186/s13677-015-0028-6
RESEARCH Open Access
Automatic verification technology of software
patches for user virtual environments on
IaaS cloud
Yoji Yamato
Abstract

We propose here a technique for automatic verification of software patches for user virtual environments on
Infrastructure as a Service (IaaS) Cloud to reduce the cost of verifying patches. IaaS services have been spreading
rapidly, and many users can customize virtual machines on IaaS Cloud like their own private servers. However, users
must install and verify software patches of the OS or middleware installed on virtual machines by themselves. This
task increases the user’s operation costs. Our proposed method replicates user virtual environments, extracts verification
test cases for user virtual environments from a test case database (DB), distributes patches to virtual machines in the
replicated environments, and executes the test cases automatically on the replicated environments. To reduce test cases
creation efforts, we propose an idea of two-tier abstraction which groups software to software groups and function
groups and selects test cases belonging to each group. We applied the proposed method on OpenStack using Jenkins
and confirmed its feasibility. We evaluated the effectiveness of test case creation efforts and the automatic verification
performance of environment replications, test cases extractions, and test case executions.

Keywords: OpenStack; Cloud Computing; IaaS; Managed service; Automatic verification; Automatic patch distribution;
Jenkins
Introduction
Infrastructure as a Service (IaaS) cloud computing has
advanced recently, and users can use virtual resources
such as virtual machines, virtual networks, virtual
routers, virtual storage, and virtual load balancers on
demand from IaaS service providers (for example,
Rackspace public cloud [1]). Users can install OS and
middleware such as DBMS, Web servers, application
servers, and mail servers to virtual machines by themselves
and can customize virtual machines as if they were their
own private servers.
Software vendors periodically issue software patches

for OS and middleware deployed on virtual machines in
order to protect them from security vulnerabilities or
provide additional functions. In most cases of IaaS virtual
machines, users manually select and install these patches
to their virtual machines. Because there is a risk of system
failure when these patches are distributed, most service
Correspondence: yamato.yoji@lab.ntt.co.jp
NTT Software Innovation Center, NTT Corporation, 3-9-11 Midori-cho,
Musashino-shi 180-8585, Japan

© 2015 Yamato; licensee Springer. This is an O
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
providers state in a contract that the application of
patches is the user’s responsibility. Therefore, users need
to distribute patches to their virtual machines and verify
the health of their systems by themselves. This task
increases users’ virtual machine operation costs.
If service providers distributed patches and verified the

health of user systems after distributing the patches, the
users’ operation costs would decrease. With existing
shared hosting services, only service providers configure
OS or middleware. Meanwhile, in the case of IaaS cloud
computing, users can customize virtual machine OS or
middleware. Therefore, it would take a lot of effort for
service providers to verify distributed patches because
the environment and configuration of each user’s virtual
machine are different. Thus, no service provider currently
verifies patch normality after a patch distribution to user
virtual machines.
In this paper, we propose automatic verification

technology of software patches for various user virtual
environments on the IaaS Cloud to reduce users’ costs of
verifying patches. The service model is such that users pay
pen Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

mailto:yamato.yoji@lab.ntt.co.jp
http://creativecommons.org/licenses/by/4.0

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 2 of 14
optional service fees for patch verifications to providers.
Because it typically takes more than a day’s effort for a
user to verify a patch (for example, the paper [2] evaluates
regression test efforts for each release, and most regression
tests take more than a day), we believe that some fees
would most likely be acceptable to a user who would like to
reduce his/her operational cost especially in software patch
verification.
Our proposed method replicates user virtual environ-

ments, extracts verification test cases for user virtual envi-
ronments from a test case database (DB), distributes
patches to virtual machines on the replicated environments,
and executes those test cases automatically on the repli-
cated environments. To reduce test cases creation efforts,
we propose an idea of two-tier abstraction which groups
software to software groups and function groups and selects
test cases belonging to each group. We implemented the
proposed method on OpenStack [3] using Jenkins and con-
firmed the feasibility of automatic selection and execution
of test cases based on user virtual environments. Using the
implementation, we evaluated the effectiveness of test case
creation efforts by the idea of two-tier abstraction. We also
evaluated the automatic verification performance.
The rest of this paper is organized as follows. In Section

Problems with existing technologies, we introduce IaaS
platforms such as OpenStack, review existing automatic
test tools, and clarify problems of virtual machine patch
verification for service providers. In Section Proposal of
automatic verification technology of virtual machines
patches, we propose automatic software patch verification
technology for user virtual machines and describe a design
to solve the problems of existing methods. In Section
Evaluation of automatic verification technology of virtual
machines patches, we explain how we implemented
the proposed method, confirmed its feasibility, and evalu-
ated test case creation costs and automatic verification
performance. We compare our work to other related work
in Section Related work and summarize the paper in
Section Conclusion.

Problems with existing technologies
Outline of IaaS platforms
According to the definition of the National Institute of
Standards and Technology (NIST) [4], cloud service models
can be divided into SaaS (Software as a Service), PaaS
(Platform as a Service), and IaaS (Infrastructure as a
Service). Virtual machines’ OS and middleware of SaaS and
PaaS are managed by service providers. When the providers
verify software patches for OS or middleware, they only
repeat the same regression tests because there are only pre-
known configuration settings, and verification efforts are
minimal. However, IaaS provides hardware computer
resources for the CPU or Disk via networks. Therefore, OS
and middleware of virtual machines can be customized by
users, and users need to apply patches by themselves. This
paper targets patches for virtual machines on IaaS cloud.
OpenStack [3], CloudStack [5], and Amazon Web

Services [6] are major IaaS platforms. The basic idea
of our proposed method is independent from the IaaS
platform. For the first step, however, we implement a proto-
type of the proposed method on OpenStack (see Section
Evaluation of automatic verification technology of virtual
machines patches). Therefore, we use OpenStack as an ex-
ample of an IaaS platform in this section. Note that func-
tions of OpenStack are similar to other IaaS platforms such
as CloudStack and Amazon Web Services. For example,
our method uses Heat [7], which is a template deployment
technology of OpenStack; Amazon Web Services
have a similar deployment function called Amazon
CloudFormation [8].
OpenStack is composed of plural function blocks.

Some function blocks provide coordinate functions such
as authentication, orchestration and monitoring of other
function blocks. And other function blocks provide
management functions of logical/virtual resources. Figure 1
shows a diagram of OpenStack function blocks. Neutron
manages virtual networks. OVS (Open Virtual Switch) [9]
and other software switches can be used as virtual switches,
and Neutron controls to create these virtual switches or
virtual routers. Nova manages virtual machines. KVM
(Kernel based Virtual Machine) [10], Xen [11], and others
can be used as hypervisors, and Nova controls to create
virtual machines on these hypervisors. OpenStack provides
two storage management function blocks: Cinder for block
storage and Swift for object storage. Both types of storage
are used for retaining data. Glance manages image files for
virtual machines. Heat orchestrates these function blocks
and provisions multiple virtual resources according to a
template text file. Keystone is a function block that enables
single sign-on authentication among other OpenStack
function blocks. The functions of OpenStack are used
through REST (Representational State Transfer) APIs.
There is also a Web GUI called Horizon that uses
the functions of OpenStack. Ceilometer is a monitoring
function of virtual resource usage.
Major versions of OpenStack are released once every

six months; the latest version is called Juno.

Problems with existing verification technologies
Regarding Linux patches, distributors such as RedHat
confirm function degradation when they release a patch
or upgraded version, and users can adopt a stable software
version provided by distributors. However, distributors only
confirm functions of OS and do not check middleware
behavior on Linux. Therefore, users need to verify middle-
ware behavior on Linux to check whether a Linux patch
affects it. It is also said that distributors do not check the
performance of each patch, so system performance

Figure 1 OpenStack function blocks.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 3 of 14
degradation checks are necessary after patch distributions.
For example, to check the transaction performance of a
Web three-tier model, it is better to run a TPC-C
(Transaction Processing Performance Council benchmark)
test on a user virtual environment.
Some tools enable automatic tests, for example, Jenkins

[12] and Selenium [13]. Jenkins is a tool to support
Continuous Integration and is useful not only for building
software but also for executing regression test cases for soft-
ware that is changed during the software life cycle. Selenium
is a tool to enable automatic Web tests; it captures actions
of Web browsers and repeats captured Web actions or
conducts Web actions described by Selenium IDE scripts.
However, the objectives of these tools are recurrent

executions of the same regression test cases. There are two
problems with IaaS virtual machine patch verifications.
i) Service providers cannot execute different test cases for

multiple user virtual environments with different configura-
tions. For example, we consider the case in which user A in-
stalled a Windows 2012 server and MySQL 5.1 to a virtual
machine, and user B installed a Windows 2012 server and
Apache 2.1 to a virtual machine. In this case, the same patch
for the Windows 2012 server is distributed to both virtual
machines, but the verification test cases should be different
in order to confirm the health of each user’s system.
ii) Preparing automatic test cases for each user environ-

ment beforehand is not realistic because service providers
would have to make extensive preparations. A め method
to enable effective regression tests for Cloud platform
development using Jenkins and Selenium was reported [2].
However, the paper [2] targeted IaaS platform development,
and regression tests of user virtual machines deployed on
an IaaS platform are out of scope. The paper [2] also
describes that three to five times of the amount of work are
needed for automatic test case creations using Jenkins and
Selenium compared with manual regression test executions.
Proposal of automatic verification technology of
virtual machines patches
We propose technology for automatically verifying soft-
ware patches for user virtual environments on IaaS cloud
to reduce users’ patch verification costs. In Automatic
verification steps, we explain the automatic verification
steps. The figure shows OpenStack, but OpenStack is not a
precondition of the proposed method. In Test case extrac-
tion method, we explain the process of selecting automatic
test cases, which is a core process of the verification steps.

Automatic verification steps
Our proposed system is composed of automatic verification
functions (hereinafter, AVFs), Jenkins, a test case DB, and
an IaaS controller such as OpenStack. Figure 2 shows the
processing steps of automatic verification when a software
patch is released.
Service providers manage a customer DB in which each

user’s policy of patch verification such as whether a user
would like to verify a released patch or not. For example,
we consider a case in which a patch was issued for a
Windows 2012 server. Service providers extract users who
would like to verify the Windows 2012 patch for their
virtual machines from the customer DB. The automatic
verification steps when a patch is released from a software
vendor are as follows.

1. Operators specify a patch and a user tenant
(logical space for each user where virtual resources
are deployed) to which a patch is distributed to
AVFs. A user is extracted from the customer DB.
A tenant is a logical space for each user where
virtual resources such as virtual machines,
virtual routers, and volumes are deployed.

We assume both use cases of a manual verification
start or automatic verification start. AVFs provide

Figure 2 Steps of automatic verification of virtual machine patches.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 4 of 14
not only the GUI but also the API to start
verifications. When verifications are handled for
many users, a provider prepares a script program
that extracts verification target users from a
customer DB, manages released patches to be
verified, schedules orders of each user tenant
verification, and calls the AVF API to start verifications.

2. AVFs replicate a user virtual environment. First,
AVFs request the IaaS controller to extract a
template of a user tenant of virtual resources. A
template is a JSON text file with virtual resource
structure information and is used by OpenStack
Heat or Amazon CloudFormation to provision
virtual resources in one batch process. Note that the
current OpenStack Heat cannot extract a template
from a user tenant directly; we use complementary
technology to Heat [14] for OpenStack tenant
replication cases.
Second, AVFs request the IaaS controller to deploy
an extracted template with the target tenant ID;
then the IaaS controller provisions virtual resources
of the user tenant on the specified tenant. When
volumes are replicated, volumes data such as
installed software are extracted as a RAW image file;
then the image file data are copied to a volume on
the specified replicated tenant. Replicated virtual
resources are deployed on tenants managed by
service providers so as not to charge users.
Our technology main targets are users who do not
have sufficient skills in using OpenStack, or
sufficient resources for verifications. Therefore,
we extract a template from an actual user
environment in this step. However, there are some
users who can utilize OpenStack Heat templates
sufficiently. If these users would like to verify
patches by themselves, our technology does not
support them, but if they would like to use our
automatic verifications, AVFs skip a process of
template extraction and receive their own templates
to build test tenants, then we can help them to
verify patches based on their templates.

3. AVFs acquire environmental data of installed
software. Specifically, the data of the software that is
installed on each virtual machine is acquired from
replicated virtual environments.

4. AVFs select test cases for patch verifications from
the test case DB. Test cases are executed after patch
distributions to virtual machines, but some test
cases may need to set verification data before
distributing patches. To select test cases, virtual
resources structure template information (step 2),
and software environmental data (step 3) are
used. This is a core step of automatic verification;
thus, we explain it in detail in Test case extraction
method.

5. AVFs distribute a specified patch to replicated virtual
machines. Existing patch distribution methods
corresponding to virtual machine software can be used.
Here, we explain an example of windows update
case. As a prerequisite, cygwin module is installed
on a windows virtual machine and patches are
stored in a server which can be accessed from a

Table 1 Example of software relation

Function group Software group Software

OS Windows Windows Server 2012

OS Windows Windows 8.1

OS RHEL RHEL 7.0

OS RHEL RHEL 6.1

DB Oracle Oracle 11g

DB Oracle Oracle 10g

DB MySQL MySQL 5.0

DB MySQL MySQL 4.0

Web Apache Apache 2.1

Web Apache Apache 2.2

Web IIS IIS 8.0

Web IIS IIS 8.5

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 5 of 14
windows virtual machine. Firstly, AVFs login to the
windows virtual machine by SSH. AVFs copy
patches to the windows virtual machine by scp
command. AVFs apply these patches to the windows
virtual machine by wusa (Windows Update
StandAlone) command. AVFs confirm validity of
patches application by event logs through powershell
Get-WinEvent command. Finally, AVFs reboot the
Windows vitual machine by shutdown command.
Note that all virtual machines on a replicated
environment are supplied with a patch in this step.
This is because gaps in software versions between
virtual machines may cause unexpected behavior.
For example, software versions of DBMS need to be
the same in high-availability clusters of DB servers.

6. AVFs execute test cases selected in Step 4 for
replicated virtual environments with distributed
patches.
There are three kinds of test case confirmation
targets after applying a patch; one is a confirmation
of normal functioning, one is a data normality
confirmation, and the other is a confirmation of
performance. In the data normality confirmation test
cases, data to be confirmed need to be prepared
before patch distribution; therefore, AVFs set sample
data to virtual resources between Steps 4 and 5. For
example, to confirm a Japanese web page expression,
a test case needs to set a Japanese sample html
before the patch and check whether html characters
are garbled after the patch.
Both remote tests and local tests are executed based
on extracted test cases. For example, in local tests to
check performance, performance test tools are
deployed on virtual machines and are started using
SSH login from AVFs. Note that SSH login ID and
password are acquired from customer DB data.
Although a patch is distributed only to virtual
machines, verification test cases are executed for all
virtual resources in a replicated user tenant. In a
case where virtual machines with web servers are
under one virtual load balancer, web server
verifications after patch distributions need to be
tested via the virtual load balancer.
We use an existing tool, Jenkins, to execute test cases
selected from the test case DB. Jenkins is installed on
a server in which AVFs also work. The AVFs request
Jenkins to execute extracted test cases, and then
Jenkins executes test cases and gathers results.

7. AVFs collect the results of test cases for each user
environment using Jenkins functions. Collected data
are sent to operators or reported to users. Users can
judge patch adoptions to actual user tenants based
on reports. If users agree to automatic patch
distributions beforehand, AVFs distribute patches
to virtual machines on actual user tenants when all
test case results on replicated user environments
are positive.

8. Operators may retain replicated environments to
skip step 2 in the next verification when there are
sufficient physical resources for virtual resource
deployment. Otherwise, operators may delete
replicated virtual resources after patch verification if
they do not have a lot of physical resources. By
deleting virtual resources on which patch verification
is already completed, operators can verify patches
implemented on other user virtual environments
using the same physical resources. Because OpenStack
Heat provides a stack-delete API, operators can delete
virtual resources directly by one OpenStack API call.
Note that AVFs do not have to provide deleting
functions of virtual resources.

Test case extraction method
In this subsection, we explain in detail step 4 of test case
selection, which is a core step of our proposal.
The test case DB retains two types of information. One

is software relation information. The relations between
software and the software group, which is a concept
grouping different versions of software, and the function
group, which is a concept grouping same functions soft-
ware, are stored. The other is test case information of test
cases themselves that can be executed by Jenkins as well
as attribute information of the test cases.
Table 1 shows an example of software relation informa-

tion. We consider a case where a function group is the
DB, and the software groups include Oracle, MySQL, and
Postgre SQL. Each software group contains specific kinds
of software; for example, the Oracle software group
includes Oracle 10 g and 11 g. Function groups can
be defined by operators, for example, the OS, DB, mail
server, web server, and application server.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 6 of 14
Table 2 shows an example of test case information.
The test case DB stores a test case itself and its attribute
data. A test case class is information that indicates the
test case is intended for which software, which software
group, or which function group. A target subject is
information on whether the verification target is a
function, data, or performance. A test site is information
on whether the test is executed remotely or locally.
For example, DB table CRUD (Create, Read, Update,

Delete) is a test case of CRUD operations using SQL
and can be commonly used for the DB function group
because all relational DBs have SQL CRUD functions.
Also, the DB table CRUD target is to confirm a function;
thus, the target subject is “function.” In another example,
a test case of a registered Japanese character garbling
check is a test case of the DB function group, and data to
be checked are data registered before patch distribution;
thus the target subject is “data.” If the target subject is
“data,” AVFs need to prepare and insert confirmation data
before patch distribution. In another example, a TPC-C
test measures the performance of a transaction, so
the target subject is “performance”. In another example,
table data CRUD by phpMyAdmin is a test case for the
MySQL software group, and the target subject is “function”
because phpMyAdmin is a Web GUI access tool only for
MySQL.
Figure 3 shows an entity-relationship diagram of the

test case DB. The function group is a bundle of software
groups that relates function group test cases. The software
group is a bundle of software that relates software group
test cases. Software relates software test cases.
Service providers prepare these data and test cases in

the test case DB before patch verifications. Next, we explain
the procedure for selecting test cases for each user environ-
ment using software relation data and test case attribute
data when a new patch is released.
AVFs extract software information of the OS and

middleware that user virtual machines use from the
step 3 environmental information of the replicated
user tenant. From the information in the list of installed
software, AVFs search what software group the software
belongs to and what function group the software group
belongs to.
AVFs select test cases using this software relation

information. Specifically, AVFs select corresponding
function group test cases, corresponding software group test
Table 2 Example of test case information

Function group Software group Software Test case

DB Table CRUD

DB Japanese character g

DB TPC-C benchmark tes

DB MySQL Access by phpMyAdm
cases, and corresponding software test cases respectively
for each installed software.
Although the test case DB can retain software test

case data, the test case creation and preparation costs
for service providers are too high for each software.
Therefore, it is better for service providers to prepare
as many upper-tier (function group or software
group) test cases as possible. This means that service
providers do not have to prepare software test cases
in practical use. By abstracting software to software
groups and function groups in our proposed idea, service
providers can verify virtual machine patches by preparing
only a small number of test cases. We call this idea
“two-tier abstraction of software and test cases”.
Here, we clarify the division of roles in test case

creation. Service providers prepare OS and middleware
functions and performance regression test cases for patch
verifications. Because service providers cannot create
application-specific test cases, users need to create them if
application-specific tests are needed. AVFs also provide a
user interface to register users’ application-specific tests to
the test case DB. Thus, not only OS or middleware tests
but also application-specific tests can be executed on
replicated user environments if users create and register
their test cases.
We have implemented AVFs GUI/API interfaces of

verification start and test case registration. By releasing
GUI to users, users can register their application-specific
test cases. A user registers a test case and its attribute
data to a test case DB via GUI. Registered test cases
need to be invoked by Jenkins. And registered attribute
data need to have information of for which tenant and
for which virtual machines. For user registrations, we
add two additional columns of exclusive tenant ID and
virtual machine ID to a test case table. By setting exclusive
tenant ID, registered test is only used on the specified
tenant. By setting virtual machine ID, AVFs can dis-
tinguish which virtual machine in the tenant is tested
by the test case.
After user test case registration, the verification is

preceded as follows. In Step 1, a user or an operator
starts to verify by specifying a tenant ID. In Step 4,
AVFs extract not only test cases corresponding to
software information but also registered user test
cases corresponding to the specified tenant ID and
AVFs executed them in Step 5.
Test case class Target subject Test site

DB function group function remote

arbling check DB function group data remote

t DB function group performance local

in MySQL software group function remote

Figure 3 Entity-relationship diagram of test case DB.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 7 of 14
We also explain supplemental information of test case
preparations and upgrades. Regarding to test case prepa-
rations, some free test cases of open source software can
be re-used for our system such as PostgreSQL regression
tests. And regarding to test cases upgrades, we think fre-
quent upgrades are not needed because our tests are regres-
sion tests. We need to upgrade test cases when software
major version upgrade is released. But major middleware
such as MySQL or Apache major version upgrade is less
than once a year, then upgrade efforts are not so much.

Evaluation of automatic verification technology of
virtual machines patches
In this section, we describe how we implemented the
proposed method and confirmed the feasibility of
automatic verification for virtual machine patches. We
also discuss test case creation costs and performance
using implemented functions.

Implementation of automatic verification functions
We implemented AVFs of Figure 2 on OpenStack
Folsom. Folsom is the name of the previous (not the
latest) OpenStack version. AVFs were implemented on
OS Ubuntu 12.04, Tomcat 6.0, and Jenkins 1.532.2 by
Python 2.7.3. The implemented Python code was less
than 10 K lines.
We confirmed the expected behavior of the AVFs using

the environments described in subsection Performance
evaluation of automatic verification. Specifically, we con-
firmed that verification test cases were selected differently
based on each installed middleware when the same OS
patch was distributed to one virtual machine with
MySQL and another virtual machine with Postgre SQL.

Evaluation of test case preparation costs for automatic
verification
Our method is expected to reduce the number of prepared
test cases by two-tier abstraction of installed software and
test cases. Currently, providers need to prepare and exe-
cute regression test cases on each patch for their services.
For example, about 300 regression test cases are executed
for a production hosting service that is mainly used for
mail and web functions [15].
In this subsection, we explain how our method is

able to execute appropriate regression test cases when
each virtual machine has different software. We also
confirm that abstracting software to a software group
or function group was able to reduce the number of
prepared test cases.

Test case evaluation conditions
Patch type: CentOS 6 periodic patches.
User numbers with virtual machines of CentOS 6: 12

users.
User environment configuration:

– Each user tenant has two virtual machines, two
volumes, two virtual Layer-2 networks, and one
virtual router. Two virtual machines have the same
DBMS software.

– The virtual machines of each tenant respectively
used MySQL 4.1, MySQL 5.1, MySQL 5.5, MySQL
5.6, PostgreSQL 8.4, PostgreSQL 9.1, PostgreSQL
9.2, PostgreSQL 9.3, Oracle 11.1, Oracle 11.2, Oracle
12.1.0.1, and Oracle 12.1.0.2. To represent different
software, the 12 users used different versions or
different vendor DBMS in this experiment.

Number of verification test cases after patch distributions:

– DB function group test cases: 10. For example, a test
case of CRUD by SQL, which can be commonly
used for all relational DBs.

– Each software group test case: 5. The MySQL,
Postgre SQL, and Oracle software groups each have
5 test cases. For example, phpMyAdmin CRUD

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 8 of 14
check is a test case of the MySQL software group.
(In this test, a sample data is inserted, referred,
updated and deleted through phpMyAdmin)

– Each software test case: 0. We do not prepare test
cases for specific types of software.

An outline of test case evaluation conditions is given
in Table 3.

Evaluation of test cases preparation results
Using the implemented function, we executed automatic
verification test cases after applying CentOS 6 patches
for 12 user virtual machines.
In the results, 15 test cases were executed for each user

virtual machine, and total of 180 test cases were executed
automatically. Only 25 test cases were prepared by service
providers, but our proposed idea of software group and
function group abstraction was able to effectively select
test cases based on user environments. Although, auto-
matic test cases preparations of Jenkins took about three
times the amount of work of normal manual test cases
executions [2], but it was more effective than executing
each user and each software test case manually.

Performance evaluation of automatic verification
The implemented AVFs of virtual machine patches repli-
cate virtual resources by using OpenStack Heat, distribute
patches to virtual machines, and execute selected test cases.
We evaluated the performance of the total processing time
and each section processing time with changing the
concurrent processing number when CentOS 6 patches
were distributed.
Note that when we verify a large number of virtual

machines, we need to schedule order of verifications to
keep concurrent processing number of verifications within
a certain number. Keeping the concurrent processing
number is for reducing negative impact on the actual user
environments. Our previous work in cloud platform devel-
opment [16] showed that more than three concurrent
volume replications of OpenStack greatly affected storage.

Measurement conditions
Processing steps of automatic verification to be measured:

Case 1: template and image extraction, template
deployment, tester resource preparation such as
Table 3 Outline of test case evaluation conditions

User numbers 12

User tenant configuration 2 virtual machines, 2

Each virtual machine installed software MySQL 4.1, MySQL 5
PostgreSQL 9.3, Orac

Test cases 10 for DB function, 5
Internet connection settings, environment information
acquisition, patch distribution, test case execution,
virtual resource deletion.
Case 2: environment information acquisition, patch
distribution, test case execution. (We consider the case
where service providers replicate virtual resources
beforehand and do not delete them after verifications)
Case 3: template extraction, template deployment
except for volumes, tester resource preparation such as
Internet connection settings, environment information
acquisition, patch distribution, test case execution,
virtual resource deletion except for volumes. (We consider
the case where service providers replicate only volumes
beforehand and do not delete them after verifications)

User tenant configuration:

Tenant pattern A
– Each user tenant has two virtual machines, two

volumes, two virtual Layer-2 networks, and one
virtual router. The structure of virtual resources is
shown in Figure 4(a).

– Each virtual machine’s specifications are: one CPU
with one Core, 1-GB RAM, and one attached volume
with a size of 10 GB, and the installed OS is CentOS 6.

– Either MySQL 5.6 or Postgre SQL 9.3 is installed on
each volume for virtual machine DBMS software.

Tenant pattern B
– Each user tenant has two virtual machines, two

volumes, one virtual Layer-2 network, one virtual
router, and one virtual load balancer. The structure
of virtual resources is shown in Figure 4(b).

– Each virtual machine’s specifications are: one CPU
with one Core, 1-GB RAM, and one attached
volume with a size of 10 GB; the installed OS
is CentOS 6.

– Either Apache 2.4 or nginx 1.6 is installed on each
volume, and http requests are load-balanced to two
virtual machines by a virtual load balancer.

Selected number of test cases: 15.

– 10 for the DB function group and 5 for the MySQL
software group or Postgre SQL software group.

– 10 for the Web server function group and 5 for the
Apache software group or nginx software group.
volumes, 2 virtual Layer 2 networks, 1 virtual router.

.1, MySQL 5.5, MySQL 5.6, PostgreSQL 8.4, PostgreSQL 9.1, PostgreSQL 9.2,
le 11.1, Oracle 11.2, Oracle 12.1.0.1, Oracle 12.1.0.2.

for MySQL group, 5 for PostgreSQL group, 5 for Oracle group.

(a) (b)

Figure 4 Tenant structure of virtual resources. (a) Pattern A. (b) Pattern B.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 9 of 14
Concurrent processing numbers:

– 1, 3, 5, 10, 20

1, 3, 5 for tenant pattern A measurement and 1, 3 for
tenant pattern B measurement. We only measured perfor-
mances with 10 and 20 concurrent processing for Case 3 &
pattern A to confirm the effectiveness of Case 3. Automatic
verifications are started by a command line interface,
and concurrent processing is managed by a simple script
program in this performance measurement.
An outline of the performance measurement conditions

is presented in Table 4.

Performance measurement environment
Figure 5 shows the performance measurement environ-
ment. Maintenance servers such as syslog, or backup
servers and redundant modules such as heartbeat have been
omitted. Meanwhile there are many servers for OpenStack
virtual resources, the main server of this measurement is an
automatic verification server. These servers are connected
with Gigabit Ethernet.
In detail, Figure 5 shows the physical and virtual

servers and the modules in each server. For example, in
the OpenStack API server case, this server is a virtual
Table 4 Outline of performance measurement conditions

Processing step cases Case 1 template and image extraction,
template deployment, tester resources
preparation, environment info acquisition,
patch distribution, test cases execution,
virtual resources deletion.

Case 2
informa
patch d
test cas

User tenant patterns Pattern A 2 virtual machines, 2 volumes,
2 virtual Layer 2 networks, 1 virtual router.

Pattern
2 volum
2 netwo
1 virtua

Selected tests 10 for DB function, 5 for MySQL group,
5 for PostgreSQL group.

10 for W
5 for Ap
nginx g

Concurrent processing
number

1 3
server, it is in both the Internet segment and the Control
segment, and its modules are a Cinder scheduler,
Cinder API, nova-api, keystone, glance-registry, and
nova-scheduler. Two servers are used for redundancy.
Other servers are the proposed automatic verification
server, a user terminal and an operator terminal, Glance
application servers for image upload, NFS storage for
images, template servers for tenant replication, a DB for
OpenStack and test cases, OpenStack servers for virtual
resources, iSCSI storage for the data of these servers, and
load balancers for load balancing.
Table 5 lists the specifications and usage for each

server. For example, in the DB case (6th row), the
hardware is HP ProLiant BL460c G1, the server is a
physical server, the name is DB, the main usage is
OpenStack and Test case DB, the CPU is a Quad-Core
Intel Xeon 1600 MHz*2 and the number of cores is 8,
RAM is 24 GB, the assigned HDD is 72 GB, and there are
four NICs (Network Interface Cards).

Performance measurement results
Figure 6 (a) shows each processing time of automatic
verification of Case 1 & tenant pattern A, and Figure 6
(b) shows each processing time of Case 1 & tenant
pattern B. In Figure 6 graphs, average execution times
environment
tion acquisition,
istribution,
es execution.

Case 3 template extraction, template
deployment except for volumes, tester
resources preparation, environment info
acquisition, patch distribution, test cases
execution, virtual resources deletion
except for volumes.

B 2 virtual machines,
es, 1 virtual Layer
rk, 1 virtual router,
l load balancer.

eb server function,
ache group, 5 for
roup.

5 10 20

Figure 5 Performance measurement environment.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 10 of 14
of concurrent processing are showed. In all cases of
concurrent processing (1, 3, and 5), the template and
image extraction and template deployment take a lot
of time while a patch distribution and test case executions
take only 4–5 minutes. It is clear that OpenStack tenant
replication processing becomes a bottleneck. Comparing
results of tenant pattern A and B, the processing time of
pattern B became rather longer because a virtual load
balancer resource creation needs much computer resource
compared to other virtual resources in OpenStack but
processing time characteristics were similar to pattern A.
If it takes a lot of time to extract and deploy templates,

the total processing time becomes very long, and service
providers cannot distribute the released patches quickly.
Therefore, our idea to complete the replications of
user environments before patch verifications timing
(all virtual resource replications in Case 2 and only
volume replications in Case 3) is thought to be an effective
countermeasure to this.
Figure 6 (c) shows each processing times for Case 2 &

tenant pattern A, and Figure 6 (d) shows each processing
times for Case 2 & tenant pattern B. In Case 2, we skip
step 2 (tenant replication) and step 8 (replicated virtual
resource deletion). In this case, because the OpenStack
load is light, the AVFs can verify multiple user environ-
ments in parallel, and it takes only 4–5 minutes for total
processing even with 5 concurrent processing.
Figure 6 (e) shows each processing times for Case 3 &

tenant pattern A, and Figure 6 (f) shows each processing
times for Case 3 & tenant pattern B. In Case 3, we skip
volume replications and volume deletions. In this case,
AVFs can verify multiple user environments in parallel,
and it takes about 85 minutes for total processing even
with 20 concurrent processing. Because each tenant has
two virtual machines in this test, the results mean about
670 virtual machines (2*20*24*60/85 = 677) can be verified
in one day.
These experiments indicate that the Case 3 method is

appropriate for many virtual machine verifications
because the Case 1 method takes a lot of time to verify,
and the Case 2 method needs twice as many servers and
twice as much storage for replicated virtual resources.
The Case 3 method is advantageous in that it reduces

the cost of keeping virtual resources except for volumes
compared to the Case 2 method. User volumes are
generally separated into a system volume that stores
OS or middleware and a data volume that stores user data.
We can reduce replication costs by only replicating system

Table 5 Specifications and usage of each server

Hardware Physical
or VM

Name Main usage CPU RAM (GB) HDD NIC

model name core logical
(GB)

HP ProLiantBL460c G6 physical KVM host Quad-Core Intel
Xeon 2533 MHz×2

8 48 300 4

VM OpenStack API server OpenStack stateless
process such as API

assign: 4 assign: 8 assign: 60

VM Template server template management
for tenant replication

assign: 4 assign: 8 assign: 60

HP ProLiantBL460c G6 physical KVM host Quad-Core Intel
Xeon 2533 MHz×2

8 48 300 4

VM Glance application
server

receive requests related
to glance

assign: 8 assign: 32 assign: 150

HP ProLiantBL460c G1 physical DB OpenStack & Test case DB Quad-Core Intel
Xeon 1600 MHz×2

8 24 72 4

HP ProLiantBL460c G1 physical OpenStack-Network used for OpenStack
logicalnetwork resources

Quad-Core Intel
Xeon 1600 MHz×2

8 18 72 6

HP ProLiantBL460c G1 physical OpenStack-Volume used for OpenStacklogical
volume resources

Quad-Core Intel
Xeon 1600 MHz×2

8 18 72 6

HP ProLiantBL460c G1 physical OpenStack-Hypervisor used for OpenStack VM
resources

Quad-Core Intel
Xeon 1600 MHz×2

8 24 72 4

IBM HS21 physical Automatic verification
server

proposed automatic
verification server

Xeon E5160 3.0GHz×1 2 2 72 1

IBM HS21 physical DMZ-Load Balancer Load Balancer for
Internet access

Xeon E5160 3.0GHz×1 2 2 72 1

IBM HS21 physical Internal-Load Balancer Load Balancer for
Internal access

Xeon E5160
3.0GHz×1

2 2 72 1

IBM HS21 physical KVM host Xeon E5160
3.0GHz×1

2 2 72 1

VM User VM VM for user terminal assign: 1 assign: 1 assign: 20

VM Operator VM VM for operator terminal assign: 1 assign: 1 assign: 20

EMC VNX5300 physical iSCSI storage iSCSI storage for user
volume

500

EMC VNX5300 physical NFS storage NFS storage for Image 500

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 11 of 14
volumes because a patch mainly affects the OS or middle-
ware of system volumes. Of course, a verification of user
data volume is needed in few cases such as a patch
converts data format. For these cases, providers receive
requests from users to replicate not only system volumes
but also data volumes.
The Case 3 method has a risk of gaps between the

actual user volumes and the replicated user volumes.
Therefore, when we launch this option verification
service, we will replicate user system volumes about
once a month and will send patch verification results
with the replicated date information to users. (We also
plan to set SLA of verification period that IaaS providers
verify patches within a certain period).
The storage cost in Case 3 for keeping replica user

system volumes is not high compared to the cost of
keeping all IaaS resources such as the CPU, RAM, and a
global IP address for virtual machines or virtual routers,
because virtual resources except for volumes are only
created during about 85 minutes verifications even with
20 concurrent processing. For example, based on service
fees of cloudn [17] which is an NTT IaaS cloud service,
the additional equipment cost for verifications is about
several USD/(virtual machine*month). We believe this cost
can be recovered by an option service fee of automatic
patch verification.
If we need to verify more than 670 virtual machines

within a day, we need to build a new AZ (Availability Zone)
to verify virtual machines in parallel with existing AZs.
Note that hypervisors or storage are not shared in different
AZs, parallel verifications can be executed in different AZs.

Related work
Other types of open source IaaS software in addition to
OpenStack [3] are OpenNebula [18], Ecalyptus [19], and
CloudStack [5]. OpenNebula is a virtual infrastructure

Figure 6 Results of measuring performance of each processing time. (a) Case 1 & tenant pattern A. (b) Case 1 & tenant pattern B. (c) Case 2
& tenant pattern A. (d) Case 2 & tenant pattern B. (e) Case 3 & tenant pattern A. (f) Case 3 & tenant pattern B.

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 12 of 14
manager of IaaS function blocks. OpenNebula manages
virtual machines, storage, and networks of companies
and virtualizes system resources to provide Cloud ser-
vices. Eucalyptus is characterized by its interoperability
with Amazon EC2; moreover, Xen, KVM, or many
hypervisors can be used on Eucalyptus. CloudStack
functions are similar to OpenStack and Amazon Web
Services. CloudStack is developed mainly by Citrix, and
many organizations have adopted it because of its usability
and degree of completeness. We also contribute to
the development of OpenStack itself. Some bug fixes
of OpenStack are our contributions.
Amazon CloudFormation [8] and OpenStack Heat [7]
are major template deployment technologies on the
IaaS Cloud. However, there are no works using these
template deployment technologies for automatic patch
verifications of virtual machines. We use Heat to replicate
user virtual environments to verify patches in the
background of users’ actual usage. Heat cannot extract a
template from an existing tenant, so we use the technique
of [14] for template extraction.
Some tools enable automatic tests, for example,

Jenkins [12] and Selenium [13]. However, these tools are
aimed at executing automatic regression tests during the

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 13 of 14
software development life cycle, and there is no tool to
extract test cases dynamically based on each user environ-
ment. Our proposed method can conduct different verifi-
cation test cases for different user environments. The
work of [2] enables effective regression tests for Cloud
platform development using Jenkins, and it explains that
three times the effort is needed for automatic test case
preparations with Jenkins compared with executing
normal test cases. Our proposed two-tier abstraction of
software installed on each virtual machine can reduce test
case preparation costs.
CASTE [20] is a cloud-based automatic software test

environment. It provides automatic test execution using
a concentrated DB with testing environments and test
scripts. CASTE requires a lot of test scripts beforehand.
Our proposed method can reduce the number of pre-
pared test cases by the two-tier abstraction idea. The
method proposed by Willmor and Embury is intended
to generate automatic test cases of DB [21]. It needs the
specifications of pre-conditions and post-conditions
for each DB test case. However, collecting user system
specifications is impossible for IaaS virtual machine
users. Our approach is to restrict the verification targets
to OS or middleware patch normality to reduce users’
operation costs.

Conclusion
In this paper, we proposed a technique for automatic
verification of software patches for user virtual environ-
ments on IaaS Cloud to reduce users’ costs of verifying
patches. Our proposed method replicates user virtual
environments, extracts verification test cases for user
virtual environments from a test case DB, distributes
patches to virtual machines on the replicated environments,
and conducts those test cases automatically on the repli-
cated environments. We implemented our method on
OpenStack using Jenkins and evaluated the feasibility of its
functions, the effectiveness of reducing test case preparation
costs, and the performance of automatic verification.
We confirmed the automatic selection and conduction

of verification test cases on user virtual environments by
the implemented AVFs. We confirmed the effectiveness
of test case preparations by a service provider because
our method abstracts software of user virtual machines
to software groups and function groups and selects the
corresponding verification test cases of each tier. In our
evaluation, only 25 test cases were prepared for DB
middleware, but 15 test cases were executed respectively
for 12 user virtual machines with different kinds of DB
middleware (total of 180 test cases were executed).
Performance measurements showed that automatic
verification of virtual environment replications, patch
distributions, and execution of test cases took more
than 60 minutes with 1 concurrent processing. However,
those processes took about 85 minutes when we replicated
user volumes beforehand even with 20 concurrent
processing. The automatic verifications are executed on
replicated environments, because it is preferable to run
them in the background of a user’s actual usage.
In the future, we will implement AVFs of software

patches not only for OpenStack but also for other IaaS
platforms such as CloudStack and Amazon Web Services.
We will also increase the number of test cases for actual
use cases of IaaS virtual machines. Then, we will cooperate
with IaaS Cloud service providers or VPS (Virtual Private
Server) [22] hosting providers to provide managed services
in which service providers distribute software patches to
user virtual machines using our AVFs.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
YY carried out the automatic verification technology studies,
implementations, evaluations and drafted the paper. YY has read and
approved the final manuscript.

Authors’ information
Yoji Yamato received his B. S., M. S. degrees in physics and Ph.D. degrees in
general systems studies from University of Tokyo, Japan in 2000, 2002 and
2009, respectively. He joined NTT Corporation, Japan in 2002. Currently he is
a senior research engineer of NTT Software Innovation Center. There, he has
been engaged in developmental research of Cloud computing platform,
Peer-to-Peer computing and Service Delivery Platform. Dr. Yamato is a
member of IEEE and IEICE.

Acknowledgements
We thank Kenichi Sato and Hiroshi Sakai who are managers of this
development.

Received: 6 December 2014 Accepted: 21 January 2015

References
1. Rackspace public cloud powered by OpenStack web site, http://www.

rackspace.com/cloud/.
2. Yamato Y, Shigematsu N, Miura N (2014) Evaluation of agile software

development method for carrier cloud service platform development. IEICE
Trans Inf Syst E97-D(No.11):2959–2962

3. OpenStack web site. http://www.openstack.org/.
4. Mell P and Grance T. “The NIST Definition of Cloud Computing,” National

Institute of Standards and Technology, SP 800-145, Sep. 2011.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

5. CloudStack web site. http://cloudstack.apache.org/.
6. Amazon Elastic Compute Cloud web site. http://aws.amazon.com/ec2.
7. OpenStack Heat web site. https://wiki.openstack.org/wiki/Heat.
8. Amazon CloudFormation web site. http://aws.amazon.com/cloudformation/.
9. Pfaff B, Pettit J, Koponen T, Amidon K, Casado M, Shenker S (2009)

Extending Networking into the Virtualization Layer. In: Proceedings of 8th
ACM Workshop on Hot Topics inNetworks (HotNets-VIII)

10. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual
machine monitor. In: OLS’07: The 2007 Ottawa Linux Symposium.,
pp 225–230

11. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A (2003) Xen and the art of virtualization. In: Proceedings of the
19th ACM symposium on Operating Systems Principles (SOSP’03).,
pp 164–177

12. Jenkins web site. http://jenkins-ci.org/.
13. Selenium web site. http://www.seleniumhq.org/.
14. Yamato Y, Muroi M, Tanaka K and Uchimura M, “Development of Template

Management Technology for Easy Deployment of Virtual Resources on

http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/
http://www.openstack.org/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://cloudstack.apache.org/
http://aws.amazon.com/ec2
https://wiki.openstack.org/wiki/Heat
http://aws.amazon.com/cloudformation/
http://jenkins-ci.org/
http://www.seleniumhq.org/

Yamato Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:4 Page 14 of 14
OpenStack,” Springer J Cloud Comput, DOI: 10.1186/s13677-014-0007-3,
July 2014.

15. Yamato Y, Naganuma S, Uenoyama M, Kato M, Parmer M, Olsen B (2012)
Development of low user impact and low cost server migration technology
for shared hosting services. IEICE Trans Commun J95-B(No.4):547–555,
in Japanese

16. Yamato Y, Nishizawa Y, Muroi M, Tanaka K (2015) Development of resource
management server for carrier IaaS services based on OpenStack. J Inf
Process 23(1):58–66

17. cloudn web site. http://www.ntt.com/cloudn_e/.
18. Milojicic D, Llorente IM, Montero RS (2011) OpenNebula: A Cloud

Management Tool. IEEE Internet Comput 15(2):11–14
19. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,

Zagorodnov D (2008) The Eucalyptus Open-source Cloud-computing
System. In: Proceedings of Cloud Computing and Its Applications

20. Peng F, Deng B, Qi C (2011) CASTE: a Cloud-Based Automatic Soft’ware Test
Environment”, World Academy of Science, Engineering & Technology.
Issue 71:1502–1505

21. Willmor D, Embury SM (2006) An intensional approach to the specification
of test cases for database applications. In: Proceedings of the 28the
interanational conference on Software engineering., pp 102–111, ACM

22. Kamp P-H, Watson RNM (2000) Jails: Confining the Omnipotent root.
In: Proceedings of the 2nd International SANE Conference
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.ntt.com/cloudn_e/

	Abstract
	Introduction
	Problems with existing technologies
	Outline of IaaS platforms
	Problems with existing verification technologies

	Proposal of automatic verification technology of virtual machines patches
	Automatic verification steps
	Test case extraction method

	Evaluation of automatic verification technology of virtual machines patches
	Implementation of automatic verification functions
	Evaluation of test case preparation costs for automatic verification
	Test case evaluation conditions
	Evaluation of test cases preparation results

	Performance evaluation of automatic verification
	Measurement conditions
	Performance measurement environment
	Performance measurement results

	Related work
	Conclusion
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	References

