
Strategic Investments for Enhancing Power System Resilience through Zonal Microgrids

Samuel Yanksona, Kouhyar Sheidaa, Farzad Ferdowsia, Terrence Chambersb, Shahab Mehraeenc

aElectrical & Computer Engineering Dept., University of Louisiana at Lafayette, Lafayette, 70503, LA, USA
b Mechanical Engineering Dept., University of Louisiana at Lafayette, Lafayette, 70503, LA, USA

cDivision of Electrical Computer Engineering, Louisiana State University, Baton Rouge, 70803, LA, USA

Abstract

The existing power system is confronted with a myriad of challenges and encompassing issues such as ageing infrastructure, dy-
namic shifts in energy demand patterns and disturbances induced by climate change. Given the pivotal role played by the power
sector in contemporary society by providing essential services and supporting economic activities, ensuring the resilience of power
systems is a top priority for governments, utilities and other stakeholders like consumers. The extant power grid characterized by
its aging components, requires a complete overhaul to enhance its resilience in the wake of increasing weather-induced power dis-
ruptions attributed to climate change. However, outright replacement of the existing is presently deemed economically impractical,
entailing significant costs and negative social impacts. Instead, a more pragmatic strategy to augment the overall system resilience
involves identifying and reinforcing critical sectors of the grid at a reasonable cost and with reasonable disruptions. This paper
explores the concept of smart investment as a strategic framework to enhance power system resilience. We propose a vulnerability
assessment framework, where N-1 contingency criteria are used to identify the most vulnerable lines to help determine the critical
areas to be prioritized for resilience improvement investments. After identification of the critical areas, a resilience enhancement
strategy which involves partitioning of the existing distribution network in zonal microgrids and optimally sizing and placing DERs
in the individual microgrids is implemented. A real-life existing distribution network is used as a case study for the proposed frame-
work to prove its effectiveness. OpenDSS a power system distribution network simulator is paired with MATLAB in implementing
the proposed strategies which resulted in a significant improvement in the resilience of the systems, measured in terms of unserved
loads.
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1. Introduction

The importance of the power system to modern society can-
not be overstated, it provides a critical infrastructure that sup-
ports various sectors, including transportation, healthcare, com-
munication, and industry. However, power systems are vul-
nerable to a multitude of threats and challenges, such as ex-
treme weather events, cyberattacks, and ageing infrastructure.
Weather-related power outages are on the rise in the United
States and the rest of the world as a result of climate change and
global warming. In 2021, more than 40% of Americans lived
in counties hit by weather-related disasters [1]. In Louisiana,
lightning, storms, and floods are three main sources of pertur-
bations in the power grid, leading to an average outage dura-
tion of about 20 hours in a year affecting about 500,000 peo-
ple annually [2]. Recent weather-related power outages include
Hurricane Ida in 2021 which caused large-scale blackouts in
Louisiana and seven other states resulting in 1.2 million con-
sumers without power [3], the Texas freeze in 2021 with ap-
proximately 10 million people in Texas going several days with-
out power [4], 1.5 million customers in Puerto Rico were left
without electricity for up to 120 days due to Hurricane Maria in
2017 [5] and the 2019 California power shutoffs to preempt the
spread of wildfires that affect about 2.5 million consumers [6].
Apart from the inconvenience and financial losses suffered by

consumers as a result of these weather-related outages, an enor-
mous amount of money is spent in relation to the reconstruction
of these power grids. It is estimated that between $18 billion
and $70 billion are spent annually to bring the respective power
grids back into operation in the United States [5]. For example,
up to $65 billion was spent on reconstruction in the aftermath
of Hurricane Sandy in 2012 which resulted in over 8 million
users without power [7] and the state of Texas spent approx-
imately $130 billion following the Texas freeze [4]. Accord-
ing to the National Oceanic and Atmospheric Administration
(NOAA), 22 weather-related disasters cost the United States
$95 billion in 2020 which was a new record in terms of the num-
ber of disasters and imposed cost to the nation’s economy [2].
The United States government in 2022 introduced the Inflation
Reduction Act (IRA) which is considered the most significant
climate legislation in United States history. The IRA’s $370
billion in climate and clean energy investments could help cut
U.S. greenhouse emissions roughly 40% by 2030 [8]. As part
of the broader goal, the Department of Energy has an initia-
tive to build a better grid to support resilience, reliability, and
decarbonization [9].

Power system resilience has been a topic of interest recently
due to the surge of climate-related natural disasters with their
effects on power systems and the introduction of IRA has added
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to that interest the need for efficient ways of investing in the ex-
isting grid to enhance its resilience. The existing power grid is
outdated and has some parts that are outworn making it less re-
silient but a total replacement is not feasible due to prohibitively
high economic constraints, disruptions to social and economic
activities, and time limitations. A more pragmatic option is to
target areas within the power grid that are critical to the en-
hancement of resilience and investment. Critical components
are those whose failure or loss could lead to system-wide fail-
ure [10]. In the context of resilience enhancement, we refer to
the components that, when disrupted, could have a high nega-
tive impact on the service. Identifying critical components of
a power system and investing to reinforce them to make them
more efficient and eliminate the impact of losing them is very
essential in bolstering the overall system resilience. This ap-
proach of targeted investments is less cost intensive with no
disruption to the daily lives of consumers and no major time
constraints. The first step of this approach of targeted invest-
ment is the identification of critical components like lines and
nodes within a power system.

Different methods and approaches have been explored in the
literature to identify critical components of power networks,
among these methods is the use of cascading failure models to
identify critical parts of power networks. In [10] different types
of threats are modelled to identify critical nodes whose failure is
likely to have effects on the whole system. Lines and branches
that are likely to propagate cascading failures are identified in
[11] by using fault chain models. Optimization algorithms are
used together with cascading failure modelling to identify criti-
cal nodes in [12] and [13]. Studies in[10] - [13] only determine
the criticality of the components based on the destructiveness
caused by those components without considering the cost or im-
pact of the effects. [14] and [15] include the cost of cascading
failure modelling to detect critical components but no remedies
are proposed to deal with the resulting failure.

Another methodology implemented in identifying critical
components is the use of graph theory where power networks
are represented in the form of graphs or complex networks con-
sisting of nodes and links and different metrics of centrality
used to identify critical components. In [16], [17] and [18]
the between centrality metric was used to determine critical
transmission lines and nodes within a complex power network.
Closeness, another complex network centrality-based metric
was employed in [19] to propose methods of identifying critical
lines and weak nodes. [20] also uses Markov criticality to iden-
tify critical links or lines in complex power networks. More
than one centrality metric of complex networks can be com-
bined to detect critical components, for instance, three metrics
of degree, between, and net-ability were used to evaluate crit-
ical nodes and lines of power systems in [21]. The geodesic
vulnerability index which measures how susceptible a complex
network is to cascading failures based on geodesic distances be-
tween nodes is used in [22] and [23] to identify critical nodes
and branches. The approaches presented in [16] - [23] are im-
plemented on theoretical test feeders and therefore do not ac-
curately capture the complexities of real-world power systems.
Furthermore, although the proposed methods are effective in

detecting critical components of power systems they do not of-
fer targeted solutions for improving the resilience in the event
of losing those critical components.

Other approaches to identify critical components of power
systems include the use of Monte-Carlo techniques [24], [25],
and [26]. Machine learning algorithms have also been explored
in the identification of critical components. In [27], improved
agglomerative hierarchical clustering is used to identify critical
lines in smart grids by considering the topological and electri-
cal properties of the lines. Another clustering algorithm, affin-
ity propagation clustering, is applied in detecting critical lines
that can cause cascading failures. [28] uses a combined random
forest and classification and regression algorithms to perform
vulnerability analysis in detecting critical components during
a cascading failure simulation. The identification of critical
components within a power system network can also be formu-
lated as an optimization problem. In [29] the Non-dominated
Sorting Genetic Algorithm II is used to solve a multi-objective
problem to identify critical components that could enhance re-
silience. The objective functions are maximizing a resilience
metric and minimizing the number of components that affect
resilience. [30] also proposes an optimization-based model that
identifies the most critical components of power grids based on
the economic loss incurred as a result of a disruption caused by
a critical component. The methods of critical component iden-
tification discussed so far do not factor in the impacts caused
by the loss or failure of those components on consumers and
power grid operators.

Identification of the critical components is only the first step
toward improving resilience. It serves as a guide for the appro-
priate planning and strategies for a more targeted cost-aware
investment. Many resilience enhancement strategies and mea-
sures have been explored in the literature centred around physi-
cal hardening and robustness. The main objective of grid hard-
ening is to reduce the physical impact caused by catastrophic
events by improving the robustness and resistance of the grid
to those external shocks [31]. Some of the grid hardening mea-
sures proposed in [31] [32] to boost resilience include the use of
underground feeder lines, elevating substations, and the use of
more robust materials for poles and structures. [33] proposes a
hardening framework for resilience enhancement by retrofitting
substations based on the identification of critical substation
components. With the evolution of traditional grid systems
to cyber-physical systems, [34] proposes a strategy to harden
both power and communication lines by building an alternative
routing model between the power system and communication
nodes. A combination of hardening measures and demand-side
solutions like underground cables, energy storage units, and
home battery inverters are proposed in [35] to improve distri-
bution system resilience against a natural disaster. [32] - [35]
do not consider the impact on consumers and/or service compa-
nies before and after the hardening measures. Furthermore, grid
hardening measures, at the larger scale, are generally not cost-
effective [32]. Another strategy for improving the resilience of
power systems is the implementation of demand-side programs
like demand response management. [36], [37] and [38] discuss
different forms of demand response programs where coordina-

2



tion between the demand side and grids with DERs are used to
enhance the resilience. However, the proposed frameworks are
only designed for emergency situations with no considerations
for normal grid operations. The case studies for the proposed
methodologies are all theoretical test cases and make their re-
sults less applicable to real-world situations.

The integration of distributed energy resources (DERs) and
microgrids also offer significant resilience benefits. The rapid
increase in the penetration of DERs globally makes them a good
alternative energy source in the absence of traditional bulk-
power systems [39]. The possibility of forming microgrids with
DERs that could be operated in grid-tied or off-grid modes as a
response to disturbances in the main grid presents microgrids as
a viable resilience enhancement strategy. Microgrids improve
resilience by either serving a portion of a distribution system or
splitting the whole distribution system into multiple microgrids
[40]. In [41] the capabilities of microgrids to improve resilience
are categorized into; converting existing power systems into mi-
crogrids, deployment of dynamic microgrids, networked micro-
grids and multiple-microgrids. A key aspect of power system
resilience is a rapid restoration of service and microgrids are
capable of that while maintaining the system’s stability [42].
[43] proposes a quick service restoration scheme with micro-
grids and transportable energy storage. [44] proposes a rapid
restoration framework in the form of switch control of micro-
grids and loads. [45] and [46] discuss using microgrids for
post-disaster restoration by serving critical loads. Converting
existing power systems into a microgrid is another effective way
of resilience improvement [41]. Different methodologies have
been used to split or convert power systems into microgrids to
help with serving loads in the aftermath of catastrophic events.
[47] and [48] propose frameworks that solve optimization prob-
lems to divide power networks into separate microgrids. In [47]
the objective of the proposed framework is to maximize island-
ing success probability and minimize the interaction between
the individual microgrids. [48] shows an accurate methodol-
ogy to formulate mixed-integer programs for splitting existing
networks into islands. Graph theory methods are also used in
the partitioning of distribution systems into microgrids, for in-
stance, [49] incorporates the graph theory into microgrids with
protective zones and [50] uses structural and hierarchical model
to partition distribution networks. However, the microgrid par-
titioning frameworks proposed in [47] - [50] do not factor in
the cost analysis of DERs in the formation of the microgrids.
Furthermore, the composition and nature of loads are not taken
into account and only theoretical test cases were used.

Although extensive work has been done in the literature on
criticality identification and resilience improvement, there is
still a missing link between them. [51] [52] and [29] dis-
cuss power system resilience and critical components; how-
ever, they are limited to identifying the elements that affect re-
silience without proposing resilience-enhancing solutions and
cost analysis. To establish a link between critical components
and resilience, it is important to point out the impact of a fail-
ure of these components and assess their impact on the system
and consumers to serve as a guide for investments. So far, the
techniques for criticality assessment do not use the impact of

critical components as a metric to identify them. In this paper,
the authors introduce a methodology for assessing the impacts
of losing power lines within a real-world distribution system
and use it as a metric for identifying lines critical to resilience
enhancement for targeted investments. The methodology uses
the N-1 contingency criteria to perform an impact analysis of
losing feeder lines in power distribution systems to determine
critical lines for investments towards a more resilient network.
Generally, in N-K contingency criteria, the impact of the simul-
taneous failure of K components out of N total components in
a power grid is examined to help identify critical components
for the systems reliability, security, and robustness [53], [54],
[55] and [56]. Most of the power outages caused by natural dis-
asters come from damages to power lines [27], [57], therefore
the critical component of concern in this paper are lines within
distribution networks. To understand the true impact of losing
each line, N-1 criteria were used for the impact assessment of a
power distribution network.

Fig. 1. Criticality assessment approaches

To bridge the research gap between resilience and critical
components identification, this paper is introducing a frame-
work that performs impact assessment to identify critical lines
of an existing distribution system with N-1 contingency analy-
sis on a real-world feeder to determine areas of the system that
can improve resilience if investments are channelled there. To
the best of the authors’ knowledge, most of the existing studies
on resilience enhancement and critical components identifica-
tion lack cost and impact analysis. The current studies do not
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offer effective responses after identifying critical components.
In fact, existing methods are mainly focused on DERs and mi-
crogrids operation in emergencies, and are mostly tested on the-
oretical or simplified systems. This paper presents a framework
that takes into consideration the negative impacts of weather-
related power outages to make smart investment decisions to-
ward a resilience strategy that is compatible with the normal
operation of the distribution system as well as emergencies. The
main technical contributions of this study include:

1. Conducting criticality assessment through the N-1 contin-
gency tests to quantify the impacts on the grid’s resilience
to provide targeted cost-aware investment options.

2. The use of resilience hubs as a tool to minimize the im-
pacts of natural disasters and enhance the resilience of dis-
tribution systems and a bi-level optimization used to deter-
mine the optimal sizing and placement of DERs with the
hubs.

3. Validating an impact-driven resilience enhancement
framework in both normal and emergency operation
modes.

The tools introduced can serve as a guide to operators and
decision-makers on where and how to invest in their existing
distribution systems to enhance energy resilience in the face of
increasing weather-related threats.

The rest of the paper is organized as follows. Section 2 fur-
ther discusses energy system resilience and introduces resilient
metrics applied in our case, Section 3 discusses vulnerability as-
sessment for power systems broadly and the vulnerability met-
ric we are introducing. In section 4 the methodology used in
identifying the most vulnerable areas in a distribution network
is presented and applied to our case study. Simulations and re-
sults are presented in section 5. Finally, section 6 concludes the
paper.

2. Energy System Resilience Metric

Energy system resilience is a multifaceted concept consisting
of anticipation, avoidance, adaptation, and recovery [58]. An-
ticipation of a disruptive event helps avoid the disruption in the
operation of an energy system and this is known as the ’safe-to-
fail’ strategy. Adaptation involves adjusting to abnormal con-
ditions caused by these disruptive events by putting in place
protection and energy management systems. A resilient energy
system should also demonstrate the ability to quickly recover
and restore its operation to normal pre-disaster status. An en-
ergy system goes through four states during HILP events, the
original stable state, the disrupted state, the recovery state, and
the stable recovered state. Anticipation and avoidance are con-
sidered in the original stable state, Adaptation is evaluated in
the disrupted state and the recovery of the system is determined
in the recovery state. Fig. 2 depicts the generic resilience curve
showing the various states.

The level of a power system’s resilience should be quan-
tifiable and measurable, the tool or criteria to measure the re-
silience level is known as the resilience metric (RM) [59]. Re-
silience metrics provide a numerical basis to monitor changes

Fig. 2. Resilience curve showing the different states of a system after a disrup-
tion. Adopted from [58][41]

or show that a system’s resilience has improved [60]. Just as
the definition for resilience, there is no consistent basis for re-
silience measurement. However, in recent years researchers
have come up with metrics and introduced different criteria
to assess resilience by focusing on the development of for-
mal methods and metrics to evaluate proposed grid resilience
frameworks and investments. Resilience metrics are gener-
ally grouped into two main categories: attribute-based and
performance-based metrics. Attribute-based resilience metrics
are more qualitative and serve as a baseline for understanding
the system’s current resilience in comparison to other systems.
Robustness, adaptability, and recoverability are some examples
of attribute-based metrics. Performance-based metrics on the
other hand are quantitative and determine how resilient a sys-
tem is, they describe the system output in the event of disrup-
tions. [60].

A conceptual framework for the classification of resilience
metrics is proposed in [61]. At the top level, the metrics are di-
vided into performance-based and non-performance-based met-
rics. The performance-based metrics are determined by the sys-
tem performance like supplied load and the non-performance-
based metrics are metrics of criteria of the status of an effective
system and are determined by factors that affect a system be-
fore, during, and after a disaster. At the lowest level metrics
like power, duration and frequency are used evaluate the per-
formance of the resilience of a system.

Due to the novelty of these resilience metrics in power sys-
tems most of them are not widely applied and traditional relia-
bility evaluation metrics like loss of load expectation (LOLE),
loss of load frequency (LOLF) and expected energy not served
(EENS) are still used to evaluate resilience enhancing methods
[61]

The goal of this paper is to ensure consumers are still sup-
plied with energy and reduce the amount of unserved energy
in the immediate aftermath of natural disasters. An appropriate
resilience metric in this case should measure how loss of loads
or unserved energy is minimized. Therefore a combination of
a specific performance metric of power and a reliability met-
ric of expected unserved energy (EUE) is used to measure the
unserved energy to evaluate the proposed resilience-enhancing
technique.
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3. Methodology and Case Study

The research methodology employed to perform vulnera-
bility assessment on power systems and strategies to enhance
power system resilience in the aftermath of natural disasters is
discussed in this section. An existing 13.8kV distribution feeder
is used as the case study, the feeder consists of 843 buses, 840
lines, and a 115/13.8 kV transformer with a total peak load of
5.4MW. Fig. 3 shows the topology of the distribution feeder.
OpenDSS-G, the graphic interface of OpenDSS which is a dis-
tribution system simulator developed by the Electric Power Re-
search Institute (EPRI) was used to draw Fig. 3.

Fig. 3. Topology of distribution feeder as case study

To perform the impact assessment on the distribution feeder,
the N-k contingency analysis is conducted to identify the most
critical lines in terms of negative impacts on the system. In the
N-k contingency, k components out of a total of N are taken out
of the system and their impacts are observed. In this case, it is
N-1 contingency criteria because to find the true impact of the
individual lines each must be taken to know the impact of their
loss. The impact of losing lines is measured by how much load
is curtailed as a result of losing the line and that is the unserved
loads. The entire process is presented in Fig. 4.

Fig. 4. Research methodology flow chart

Matlab is paired with OpenDSS to perform the simulation
over a specific time horizon. Daily power flow is performed
by OpenDSS to calculate the total load available in the normal
operation of the distribution system, it then proceeds to disable

the lines and calculate the total loads available as a result of
disabling the lines. OpenDSS can perform one power flow sce-
nario at a time and cannot iterate through all 840 lines of the
distribution network. Therefore, a co-simulation platform is
created with Matlab to form the COM interface to perform mul-
tiple power flow iterations and calculate the unserved kilowatt-
hours after each iteration.

During the iteration for each line, the total available load is
calculated, then the line is disabled and another power flow is
run to calculate the available load after losing the line, the un-
served load is calculated by subtracting the total served load
after disabling the line from the total load under normal condi-
tions. The line is then enabled for the next iteration for subse-
quent lines. Fig. 5 shows the results for a single iteration. The
unserved kilowatt-hours for each line are obtained by calculat-
ing the area under the unserved load curve.

Fig. 5. Load analysis before and after disabling a single line, L61

The lines with the largest unserved kilowatt-hours are iden-
tified as the most critical lines. This indicates which areas are
to be prioritized for investment for resilience enhancement. In-
vestment options include the hardening of the vulnerable lines
and the integration of DERs to reduce unserved loads. Gener-
ally, hardening in power systems refers to physically strength-
ening or improving power system infrastructure to make it less
susceptible to disruptions caused by extreme events [34] and
line hardening in particular is defined as strengthening certain
lines that will not be tripped during certain conditions in [62].
Some hardening measures include undergrounding of lines, up-
grading poles and structures with more stronger and robust ma-
terials, relocating facilities and network elements to areas less
prone to casualties, and redundant routes for lines [32]. Hard-
ening measures though effective can still be overcome by some
natural disasters of higher strength. Also, these measures are
not cost-effective especially when implementing them for an
entire network, the impact assessment performed in this paper
would help operators and policymakers to make smart invest-
ment choices to direct investment to the most critical lines to en-
hance system resilience by prioritizing lines for hardening. An-
other investment option is the integration of DERs, this option
can be used to supplement or as a more economical alternative
to hardening. Also, the integration of DERs offers long-term
resilience solutions in place of line hardening in the event criti-
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cal lines are lost since some natural disasters like high-category
hurricanes or wildfires can overcome hardening. The DERs
considered for this case study are solar PVs and battery energy
storage systems (BESS). Due to the intermittency of PV, which
is paired with BESS to supply loads at times PVs do not have
enough capacity to serve loads.

One of the effective ways to enhance power system resilience
with the integration of DERs is the formation of microgrids due
to the ability of microgrids to form islands and their potential
of sustaining the penetration of renewables [63]. Transforming
the existing grid is one of the effective ways to use microgrids
for resilience enhancement and that is the approach explored in
this research methodology.

3.1. Partitioning of Network Into Zones

To ensure better management of resources and loads in the
aftermath of a natural disaster, the existing distribution network
will be partitioned into smaller hubs or zones operating as mi-
crogrids. Integration of DERs with existing grids comes with
many operational challenges like over/under-voltages at DER
buses, increased overloads, and protection coordination [64].
The DERs are optimally allocated at buses to eliminate any op-
erational challenges and ensure the distribution system operates
normally with their integration. To split the network into inde-
pendent islands in OpenDSS, energy meters were placed at the
DER buses. The energy meter determines the parts of the net-
work each DER set is responsible for and this forms the basis
of the zones. the zones formed by matching the total peak load
within a particular region with the initial DER capacity and con-
sidering the control and protection of other circuit elements.

For this case study, The distribution feeder was partitioned
into sixteen hubs for uniform distribution of loads to the DERs
based on assigned priority points of the loads. Each load is as-
signed a priority point based on the impact suffered as a result
of losing power, loads like hospitals and fire departments have
the highest points followed by commercial loads like restau-
rants and hotels with residential loads having the least points.
These points are aggregated and the loads are evenly distributed
for each of the 16 hubs. Some of the zones or hubs have more
lines and buses than others, this is because the zones with fewer
buses and lines have a larger concentration of highly prioritized
loads. The main objective is to minimize unserved loads as a
result of losing the grid due to natural disasters and that should
still be the case even when lines are damaged with the zones or
hubs. Fig. 6 shows the 16 zones indicated by different color
codes with DERs.

3.2. Optimal Placement and Sizing

The DERs should be sized and placed at locations where the
impacts would be minimized should lines be damaged. To do
that, an optimization problem is set up for each hub to iden-
tify the optimal buses to situate the DERs. The objective func-
tion is to minimize the unserved kilowatt-hours with respect to
the costs of PVs and BESS after losing lines to natural disas-
ters. This is important because even though the whole feeder
has been partitioned into islands to enhance its resilience, some

Fig. 6. Distribution network partitioned into 16 hubs with DERs

lines within the hubs could still be damaged. The optimal siz-
ing and allocation of DERs based on this objective function will
ensure resilience is still improved by serving most of the loads
within each hub. The improved grey wolf optimizer (IGWO)
was chosen to solve this optimization problem because it is one
performer for optimal sizing and allocation of renewable energy
resources within power systems [65]. article algorithm algpseu-
docode

The logic and algorithm behind the optimization problem are
shown in Algorithm 1, it explains how the DERs are moved
from one bus to the other and the N-1 contingency criteria for
feeder lines is performed at each bus to determine unserved
loads. With the use of the meta-heuristic improved grey wolf
optimizer borrowed from [66], optimal bus position, PV and
battery sizes are determined for minimizing the unserved loads
and DER cost for each zone.

3.2.1. Objective Function
The objective function as stated earlier is to minimize un-

served loads (UL)as a result of losing lines within the feeder
and reduce the cost of the DERs required to serve the loads.
The unserved loads are calculated by moving the DERs from
one bus to the other and performing N-1 contingency analysis
of feeder lines at the bus DERs are connected. At each bus, the
N-1 analysis is conducted for all the sizes of PVs and BESS in
a specified range. The bus position, PV and BESS sizes that
result in the least unserved loads are the ideal optimal position
and sizes. However, since the goal is to invest smartly the cost
of the DERs should also be considered to ensure effective eco-
nomic investments while alleviating the effects of natural effects
on power systems to optimal levels.

The mathematical representation of the objective function is
shown below. The decision variables are PV size, BESS size &
capacity, and placement. The overall objective function is ob-
tained by combining the unserved load and cost objective func-
tions into one formulated in (1).

• Decision Variables

– PVi = PV size at bus i in kW

– Bsi = BESS size at Bus i in kWh

– Bci = BESS capacity at Bus i in kW
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Algorithm 1 Optimal DER Sizing and Allocation with IGWO

1: Define:
2: DER elements: PV and BESS
3: List all lines
4: List all buses
5: Optimization Parameters:
6: IGWO parameters (e.g., population size, max iter-

ations, convergence criteria)
7: Maximum number of buses
8: Maximum PV size
9: Maximum BESS size

10: Initialize PV and BESS sizes randomly within defined lim-
its

11: Initialize IGWO population with random positions for PV
and BESS

12: Initialize the best solution and its fitness value
13: N “ 10 Ź Number of search agents
14: Max iteration “ 20 Ź Maximum number of iterations
15: for iteration in 1 to Max iteration or until convergence

do
16: for each wolf in IGWO population do
17: for each bus do
18: for each PV and BESS size do
19: for each line in the circuit do
20: Solve Power Flow
21: Calculate Unserved Load
22: for each line in the circuit do
23: Disable the line
24: Solve the power flow
25: Calculate the unserved load
26: Unserved load = Total Load - Total

Load Without line
27: Enable the line to normal state
28: end for
29: end for
30: Calculate fitness based on unserved load
31: Update the position of the wolf using IGWO

algorithm
32: end for
33: end for
34: Implement Optimization with IGWO
35: Update the best solution if the current solution has

a better fitness value
36: Update IGWO parameters based on the current fit-

ness and positions
37: Apply IGWO algorithm to optimize PV and BESS

sizes
38: end for
39: end for
40: Return the best solution found

– Bp = Bus position

• Objective Function

– Z = Total Unserved Load

– N = Total number of Buses

– T = Total number of Lines

Z “

N
ÿ

i“1

T
ÿ

j“1

ULi j ` PVsize ` BESSsize ` BESScap (1)

3.2.2. Constraints
The minimization of our objective function of unserved loads

and cost of DERs will be subjected to constraints shown in (2)
to (5). The calculation of unserved loads during N-1 contin-
gency analysis should always follow (2) where PGi and PDi are
the power injected and demanded at bus i respectively, Gi jq and
Bi jq are the conductance and susceptance between buses i and j
respectively, θi jq is the voltage angle between buses i and j and
Vi and V j are the bus volatges at buses i and j respectively.

The second and third constraints shown in (3) and (4) are
on the sizes of PVs and BESSs, this is very necessary be-
cause without this constraint the sizes of the DERs would be
extremely large to ensure all loads are served. The DERs are
capped by the peak demand of the respective zones. Equation
(5) formulates the bus position constraint referring to the list of
bus numbers within a particular zone. The fifth constraint is the
SOC constraint shown in (6), this is to avoid total depletion and
overcharging of the BESS in order to prolong the lifespan of
BESSs.

PGi ´ PDi “ Vi

T
ÿ

j“1

V jpGi jcosθi j ` Bi jsinθi jq (2)

PV sizemin ď PVi ď PV sizemax (3)

BES S sizemin ď Bi ď BES S sizemax (4)

Bpmin ď Bp ď Bpmax (5)

10 ď S OC ď 90 (6)

3.2.3. Improved Grey Wolf Optimizer - IGWO
The Grey Wolf Optimizer (GWO) is a meta-heuristic algo-

rithm that copies the leadership hierarchy and hunting strate-
gies of grey wolves proposed in [67]. The pack of grey wolves
is divided into four groups alpha, beta, delta, and omega and
are referred to as the search agents in optimization applications.
Alphas are considered the leaders of the pack and are respon-
sible for decision-making, the beta and delta groups of search
agents are the next in command and help the alpha in decision-
making and the omega search agents and are the followers. The
hunting behavior of the search agents involves three main steps;
they first track, chase and approach the prey, the second step is
pursuing, encircling and harassing the prey until it stops mov-
ing and the final step is to attack the prey. This hunting behavior
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aligns with the interest of solving an optimization problem and
therefore the GWO is modelled on this.

In the mathematical modelling of the hunting behavior, the
fittest solution is considered as the alpha, the second and third
best solutions are referred to as the beta and delta respectively,
and the rest of the solutions are considered to be omega. There-
fore, the GWO algorithm is guided by alpha, beta, and delta
with the omega wolves following. The grey wolf strategy can
be modelled mathematically by formulating equations to repre-
sent encircling the prey and hunting stages.

D “ |CXp ´ AXptq| (7)

Xpt ` 1q “ Xpptq ´ AD (8)

Equations (7) and (8) model the encircling behaviour, where t
is the current iteration, X and Xp are the position vectors of the
prey and a search agent respectively. A and C are coefficient
vectors given by:

A “ 2ar1a (9)

C “ 2r2 (10)

where r1 and r2 are random vectors in [0,1] and a linearly varies
from 2 to 0 through the iterations. The hunting stage is mod-
elled by defining the movements of alpha, beta and delta search
agents by (11), (12) and (13) respectively.

Dα “ |Cα ¨ Xαptq ´ Xptq| (11)

Dβ “ |Cβ ¨ Xβptq ´ Xptq| (12)

Dδ “ |Cδ ¨ Xδptq ´ Xptq| (13)

The α, β, δ generally have a better knowledge of the prey’s posi-
tion and the remaining pack of the wolves follow. The positions
of α, β, δ grey wolves at the tth iteration are updated as follows:

X1 “ Xαptq ´ A1 ¨ pDαq (14)

X2 “ Xβptq ´ A1 ¨ pDβq (15)

X3 “ Xδptq ´ A1 ¨ pDδq (16)

Xpt`1q “
X1 ` X2 ` X3

3
(17)

The GWO algorithm, however, has some limitations accord-
ing to [66]. The α, β, δ leadingω agents in search of the optimal
solution can lead to entrapment in a locally optimal solution.
The entrapment in a local optimum can also be a result of a
reduction in the diversity of the grey wolf population and not
taking into consideration the individual hunting behavior of the
wolves. [66] makes modifications to the original algorithm and
proposes the Improved Grey Wolf Optimizer to overcome these
issues. The proposed solution involves three steps initializing,
movement, and selecting and updating. The main modification
is made in the movement phase where the dimension learning-
based hunting (DLH) search strategy is introduced to factor in
the individual hunting of the wolves. The combination of the

two search strategies improves both the local and global search
ability of IGWO. In [66], IGWO was compared with other opti-
mization algorithms and it proved very competitive and in most
cases was the superior algorithm. The enhanced balance in find-
ing the local and global search in IGWO makes it a suitable can-
didate for our application where the search agents have to roam
through several buses and at each bus hunt through different
sizes and capacities of DERs to find the appropriate solution,
the minimum value of the objective function and also obeying
the boundaries of the constraints.

As mentioned earlier, the entire simulations were performed
with OpenDSS version 9.6.1.3 paired with MATLAB R2023a
on a Windows 10 computer with processor configuration of In-
tel(R) Core(TM) i7-9700 CPU @ 3.20GHz 3.00 GHz and 32.0
GB RAM.

4. Results and Analysis

In this section, the results of the criticality assessment and re-
silience enhancement methods introduced in the previous sec-
tion are discussed. The immediate aftermath of hurricane Delta
was considered for this analysis by using a real solar profile on
October 4, 2020 from the Louisiana Solar Energy Laboratory
(LaSEL) shown in Fig. 7. The BESS’ were modelled to com-
pliment the solar PVs by discharging at night when the solar
PVs are not generating any power and charge during the day by
the extra power from the solar PVs.

Fig. 7. Normalized solar power generation October 4, 2020

The impacts of loss of lines are analyzed by measuring the
amount of unserved loads. The unserved load associated with
the disabling of each line is calculated based on Fig. 5. The
result of the criticality assessment performed on the case study
is shown in Fig. 8.

The results show that lines at the top of the feeder are the
most critical to the system’s operation and resilience since los-
ing those lines has more negative impact than the lines further
away from the feeder. This is due to the radial topology of the
network as seen in Fig. 3, The line (L1) that connects the main
feeder to the rest of the network results in total curtailment of
all loads when it is disabled. The loss or disabling of lines that
are connected to L1 also results in high unserved loads. These
lines are considered most critical and that is where any effort to
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Fig. 8. Impact of losing each line in an 840-Bus utility feeder

improve the system’s resilience should be directed. The criti-
cality assessment method was tested on other distribution net-
works with different topologies to confirm the versatility of the
proposed method. Figs. 9, 10, 11 are the criticality assessment
results for IEEE-34 Bus, IEEE-123 Bus and IEEE-8500 node
distribution test systems respectively in OpenDSS.

Fig. 9. Impact of losing each line in an IEEE 34-Bus System

Fig. 10. Impact of losing each line in an IEEE 123-Bus System

The results indicate that the criticality of feeder lines is linked
to the topology of the distribution network and every system
has its peculiar criticality. It is therefore important to under-
take a critical components impact assessment for each system
to ascertain the critical components and areas to make the right

Fig. 11. Impact of losing each line in an IEEE-8500 node test feeder

investment for the system’s resilience improvement.
Having identified the most vulnerable lines of the system, the

next step is to implement the investment options of DER inte-
gration to enhance the system’s resilience. As mentioned in the
previous section, the distribution network has been partitioned
into hubs or zones and operated as microgrids for resilience en-
hancement. The DERs for each zone were optimally sized and
placed to minimize unserved loads with minimal investments in
DERs in the event of losing the grid during a natural disaster.

For each hub, the N-1 contingency analysis is performed for
three different scenarios to compare their impacts and show the
efficacy of our resilient enhancement methodology. First, N-1
contingency analysis is performed in normal grid operation. In
the second scenario, the same analysis is performed when the
grid is lost due to a natural disaster and replaced with DERs to
form a microgrid operating in a grid-forming mode. The loss of
the grid is simulated by disconnecting the line that connects the
grid to the rest of the zone. The DERs are placed at the top of
the feeder, that is the bus that connected the grid before it was
lost, thus replacing the grid. In this scenario, the DERs are sized
by matching the peak load of the zones. In the third scenario,
the optimization problem is solved to determine the optimal bus
position for the placement of the DERS and the optimal sizes
of the DERs. The DERs are then sized and placed accordingly
with the zones operating as grid-forming microgrids for the N-
1 contingency analysis. The results for all three scenarios for
each zone are shown in Fig. 12 to Fig. 27.

Fig. 12. Zone One Results from N-1 Contingency Analysis
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In the performance of normal grid operation and the second
scenario when the grid is replaced the DERs are very identical,
the only difference is the line at the top of the feeder connect-
ing the grid is not considered in the second scenario because
it is assumed to be damaged from the natural disaster. There-
fore the comparison of results is for normal grid operation and
optimally planned DER operation. The results from Fig. 12
show a much-improved system resilience when the DERs are
optimally placed and sized. For zone one the largest unserved
load observed is as low as 45% when optimal planning is imple-
mented compared to 100% when grid operated or DERs are not
optimally planned. And most lines do not result in any unserved
load in the optimal planning scenario.

Fig. 13. Zone Two Results from N-1 Contingency Analysis

All the zones show similar results for normal grid operation
and when DERs replace the grid, which is expected because
the DERs are now playing the role of the grid in that case.
Also, in each zone, the optimal planning implemented vastly
improved resilience by unserved load measurements therefore
meeting our main objective of resilience enhancement. Zones
10 and and 12 experienced the best performance with the high-
est unserved loads in these zones being less than 28%, Zone 5
follows with its highest unserved load at 32%. Other zones like
3 and 14 also recorded impressive results by having their high-
est unserved loads at less than 40%, with zones 1 and 6 at less
than 50%. It is worth mentioning that these reported highest
unserved loads are for few lines in N-1 analysis and most cases
only single lines record that, which means most lines when lost
during natural disasters do not even result in loss of loads when
optimal planning is in place. This means that when these re-
silience enhancements are implemented during the aftermath of
natural disasters the loss of many lines would not result in loss
of any load.

Some of the zones like seven and eleven have their highest
unserved loads at 70%, though this is pretty high, they represent
a much-improved performance when compared to normal grid
operation and DERs in place of grid performances. As men-
tioned earlier, these higher percentages of unserved loads are
the results of losing a single line, the performances of the re-
maining lines show improvement in the resilience of the zones
or hubs and can be seen from Fig. 22. The average percent-
age of unserved loads in both normal, non-optimal DER and

Table 1. Average unserved load percentage per zone

Average Total Unserved Load (% of Total Load)

ZONES Grid Non-Optimal Optimal DER Planning
1 18.8 17.3 5.01
2 22.4 19.8 11.1
3 20.2 18.3 6.2
4 28.4 24.7 14.1
5 20.8 18.4 4.3
6 27.5 23.7 9.3
7 16.1 14.9 8.9
8 14.2 13.1 9.0
9 19.7 17.4 6.1
10 18.3 16.3 3.5
11 18.9 17.4 14.1
12 18.1 16.7 2.1
13 26.9 24.7 17.9
14 22.6 20.9 4.3
15 21.8 19.6 9.3
16 17.3 15.8 13.7

Fig. 14. Zone Three Results from N-1 Contingency Analysis

Fig. 15. Zone Four Results from N-1 Contingency Analysis

optimal planning operations are summarized in Table 1.
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Fig. 16. Zone Five Results from N-1 Contingency Analysis

Fig. 17. Zone Six Results from N-1 Contingency Analysis

Fig. 18. Zone Seven Results from N-1 Contingency Analysis

5. Conclusion

This research explored alternative ways of bolstering the re-
silience of the existing power system instead of replacing it
which is highly costly and inconvenient. We introduced a
methodology to help revamp existing power systems to enhance
their resilience in the face of natural disasters in a cost-efficient
and convenient manner. N-1 contingency criteria which is tradi-
tionally employed in reliability analysis of power systems was
used to perform an impact assessment of losing lines and re-
silience analysis to identify areas within a power network in
need of urgent investment for resilience enhancement. A com-
bination of existing reliability and resilience metrics was used

Fig. 19. Zone Eight Results from N-1 Contingency Analysis

Fig. 20. Zone Nine Results from N-1 Contingency Analysis

Fig. 21. Zone Ten Results from N-1 Contingency Analysis

to determine critical lines of the system and measure resilience.
To improve the resilience of power systems beyond the hard-

ening of vulnerable lines, the use of DERs and partitioning the
existing network in hubs or zones and operating them as grid-
forming microgrids was proposed. These DERs were optimally
sized and placed within each hub to ensure loss of loads is min-
imized during natural disasters when the main grid is lost. To
implement this proposed methodology, a real-world distribu-
tion feeder was used as a case study. With the use of N-1 con-
tingency analysis, impact assessments were performed on the
feeder lines, and the critical lines were identified. The proposed
resilience enhancement strategies were also applied to this ex-
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Fig. 22. Zone Elleven Results from N-1 Contingency Analysis

Fig. 23. Zone Twelve Results from N-1 Contingency Analysis

Fig. 24. Zone Thirteen Results from N-1 Contingency Analysis

isting feeder by dividing it into sixteen zones and optimally siz-
ing and placing DERs in each zone. Each zone was then run as
a grid-forming microgrid on their own.

The Resilience of each zone was evaluated by measuring the
unserved loads when each line was lost with the goal of mini-
mizing the amount of unserved loads. The results proved the ef-
fectiveness of our proposed resilience strategies as the amount
of unserved loads due to losing each line was immensely re-
duced when compared to the amount of unserved encountered
when no resilience enhancement is implemented or randomly
placing DERs to improve resilience. In many instances, the
loss of some lines would not result in any load curtailment due

Fig. 25. Zone Fourteen Results from N-1 Contingency Analysis

Fig. 26. Zone Fifteen Results from N-1 Contingency Analysis

Fig. 27. Zone Sixteen Results from N-1 Contingency Analysis

to the implementation of our proposed optimal planning.
Therefore the proposed resilience enhancement strategies

could help in making smart investment decisions that would
greatly improve the resilience and reduce the vulnerability of
existing power distribution systems.
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