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Abstract

The primary goal of this research study is to enhance energy resilience with a focus on cost efficiency. To achieve this objective, two
key objectives have been identified: 1) reducing unserved loads, and 2) implementing cost-effective resource allocation strategies.
A high-fidelity real-time model of a solar plus storage microgrid is developed to simulate a variety of what-if scenarios. This
model is based on the conceptual design of a campus microgrid facility, which is slated for commissioning at UL Lafayette in close
collaboration with a local power utility. The study examines the microgrid’s performance under different configurations, including
both stationary battery and mobile battery storage options. To ensure the realism of the scenarios, real solar data from specific days
following the occurrence of three major hurricanes in Louisiana is utilized. The analysis includes an assessment of unserved loads
under various scenarios, as well as an investigation into the resilience impact of investment decisions and the planning and operation
of mobile storage systems. The results indicate the proposed planning and operation will improve resilience while staying within
the profitable range. The resilience is quantified and compared with other scenarios providing an insightful planning framework for
decision-makers.

Keywords: Energy Resilience, Renewable Energy, Microgrid

1. Introduction

Enhancing energy resilience is essential for ensuring the sus-
tainable provision of electricity services to customers. The in-
creasing frequency and intensity of natural disasters, such as
hurricanes, wildfires, and extreme weather events, pose signif-
icant challenges to the resilience of energy infrastructure. Mi-
crogrid formation has been a popular strategy in the literature
as a means to enhance energy resilience in response to outages
[1; 2; 3; 4; 5]. Microgrid formation is often suggested as a way
to boost energy resilience during outages. This makes sense
for a few reasons: First, microgrids mostly serve local areas, so
they do not rely on long-distance power lines that may get dam-
aged in disasters. This local focus helps keep the lights on for
nearby homes and businesses. Second, because microgrids are
relatively new, they are built with modern standards in mind.
This means they’re more likely to withstand disasters and stay
running when the main grid might fail. Lastly, microgrids can
provide power when the main grid cannot, ensuring that critical
services stay running even during emergencies.
Power utilities and service providers are increasingly inter-
ested in investing in microgrid formation to enhance energy
resilience. However, their decision-making process is complex
and is influenced by two key considerations: the extent to which
resilience is improved and the associated costs. These questions
are challenging to answer definitively due to several factors:

Scenario Dependence: The concept of resilience varies de-
pending on the scenario. For example, improving resilience
against floods may not necessarily enhance resilience against

hurricanes. Therefore, the specific resilience needs of a partic-
ular location or situation must be carefully evaluated.

Measurement Metrics: Determining how to measure re-
silience improvement is crucial. Various metrics for resilience
have been proposed in the literature [6; 7], ranging from re-
liability indices [8; 9; 10] to social and economic impacts
[11; 12; 13; 14]. Selecting the most appropriate metrics for
a given context is essential but challenging.

Cost Considerations: Understanding how costs escalate
with each percentage increase in resilience is vital. This in-
volves evaluating the costs of implementing and maintaining
microgrid systems compared to the potential benefits in terms
of resilience enhancement.

The investigation into the specific cause of the power outage
falls outside the scope of this study. Instead, our research fo-
cuses on quantifying energy resilience and assessing the associ-
ated costs of enhancing resilience. Different resilience metrics
have been proposed recently in the literature. In [15], a quan-
titative metric is proposed where the full service, worst perfor-
mance, speed of degradation, and speed of recovery are factored
in to develop a comprehensive resilience metric. However, load
priorities are not set and the cost of resilience enhancement is
not discussed. Authors in [16] developed a method for optimiz-
ing network reconfiguration and mobile emergency generator
(MEG) deployment in smart grids. The proposed method is
optimization-based. Time domain studies and economic analy-
sis are not provided. A different resilience metric is proposed in
[17] based on the measured voltage of the main DC bus. This
metric allows for real-time resilience assessment and monitor-
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ing of microgrid resilience over time. The method is specifi-
cally designed for microgrids as opposed to most of the exist-
ing methods that are more applicable to larger power systems.
However, the case study which is a naval ship is more mission-
oriented rather than service-driven. The amount of supplied
loads is a metric used in [18] to evaluate optimum microgrid
formation in a distribution feeder as a resilience enhancement
strategy. Load prioritization, time domain analysis, and cost
studies are not provided. A similar metric is also proposed in
[19; 20] where the amount and cost of unserved loads are used
to measure resilience. Improvements are made by incorporat-
ing electric vehicles and solar PV into the residential feeders.
The same research gaps are also seen in these two studies.

Solar plus energy storage is the most common type of micro-
grid formation at both residential and utility scales [21]. In ad-
dition to stationary energy storage systems, Mobile Resources
(MR) play an important role in enhancing energy resilience,
particularly in the context of modern power systems facing in-
creasing challenges from natural disasters, cyber-attacks, and
other disruptions. The transportability of MRs helps a lot with
uncertainties with respect to the place and scale of damages to
the energy system. The concept of using MRs, such as repair
trucks/crews [22], mobile generators [23], energy storage units
[24], and microgrids [25], has gained attention due to their abil-
ity to provide temporary power supply and restore electricity in
disaster-stricken areas efficiently.

In recent years, mobile resources have been utilized in vari-
ous disaster scenarios, including hurricanes [26], wildfires [27],
and winter storm [28; 29], demonstrating their effectiveness in
providing reliable power supply to critical infrastructure, emer-
gency shelters, and essential services. These resources are of-
ten deployed quickly and can be relocated as needed, mak-
ing them a flexible solution for addressing immediate energy
needs in disaster-affected areas. Mobile resources have been
discussed in different sets of literature within the past few years
to improve energy resilience. In [30], an optimization prob-
lem is solved to effectively dispatch repair crews and mobile
resources; however, load priorities are not considered. Fur-
thermore, the impact on resilience is not measured. Authors
in [31], proposed a strategy to optimally dispatch MRs in a 33
bus distribution system. A similar optimization-based study is
conducted in [32] on a balanced distribution feeder with non-
real DER data. Although most research works in the MR
area are proposed and tested for distribution systems, authors
in [33] proposed a real-time strategy to dispatch MRs com-
bined with microgrid forming. A real-time optimization prob-
lem is proposed where different MRs are incorporated includ-
ing EVs, mobile generators, and mobile energy storage. To the
best of our knowledge, in addition to [33], in three other re-
search works [34; 35], the real-time dispatch of MRs is pro-
posed. However, the proposed algorithms are not tested on any
real-time simulator/processor. In [35], The real-time refers to
sending resources from a pre-determined location to a target lo-
cation. In none of the above-mentioned studies, the real-time
operation of MR is tested. Also, it is not clear how the plan-
ning/operation algorithm is implemented into the feeder or mi-
crogrid controller making real-time decisions.

In this study, a high-fidelity real-time model of a solar plus stor-
age microgrid is created. The microgrid load is categorized
into different priorities. The microgrid’s resilience is evaluated
under different stationary/mobile resource allocation strategies.
The estimated cost of resilience improvement can serve as a
guideline for decision-makers.

The technical contributions of this study include:

• Measuring the impact of stationary and mobile resources
on microgrid’s resilience

• Cost-aware resource allocation along with load priorities

• Incorporating real-time operation of mobile storage sys-
tems into microgrid’s controller

2. Case Study

This research utilized the microgrid facility situated at the
University of Louisiana at Lafayette(UL) as the case study pre-
sented in Fig. 1. Load data is collected from a real distribution
feeder for this research study. All the load data is classified
into three categories: priority load 1, priority load 2, and prior-
ity load 3. Here, priority load 1 is considered the most critical
load and will get the highest priority during the load serving;
priority load 2 is considered a moderate critical load and will
get moderate priority during the load serving; priority load 3
is considered the least critical load and will get the lowest pri-
ority during the load serving. For 24-hour power outage, the
load demand for the most critical, moderate, and least critical
loads is 681.762 kWh, 957.701 kWh, and 638.475 kWh, respec-
tively. The load demand profiles for these three categories are
presented in Fig. 2. This research considered 24-hour power
outages for three hurricanes that hit Louisiana in the past five
years. Those hurricanes are Laura (2020), Zeta (2020), and
Ida (2021). For these three hurricanes, power outages for 24
hours are considered where the microgrid is solely responsible
for satisfying the load demands. The solar radiation data corre-
sponding to every hurricane-affected day is collected from the
University of Louisiana at Lafayette’s 1.1 MW solar PV plant
facility [36] to integrate more realistic approaches. The solar
radiation profile for each hurricane is shown in Fig. 3.

The microgrid investigation for every hurricane-caused
power outage includes three scenarios utilizing three different
configurations of solar PV plant and fixed battery energy stor-
age system (BESS) and Mobile battery energy storage system
(BESS). Table 1 contains the configurations of the solar PV
plant, fixed BESS, and Mobile BESS for the three scenarios
of every power outage. For the BESS operations, the maximum
and minimum state of charge (SOC) for BESS is set to 90% and
10%, respectively. Traditionally, we get to know when any hur-
ricane is arriving from the weather forecast; it is assumed that
the fixed BESS and Mobile BESS are charged and the BESS
SOC is 90% when the simulation starts. For Mobile BESS, it
can provide its rated power of 25 kW for three hours continu-
ously. It is assumed that after providing power for 3 hours, the
Mobile BESS will travel to the nearest charging station. Mo-
bile BESS will be fully charged and return to supply power to

2



Table 1: Configuration of Three Scenarios for Every Hurricanes

Scenario PV Size
Fixed BESS
Size (kW)

Fixed BESS
capacity(kWh)

Mobile BESS
Size (kW)

Mobile BESS
capacity(kWh)

1 50kW 50kW 100kWh 25kW 75kWh

2 150kW 150kW 300kWh 25kW 75kWh

3 250kW 250kW 500kWh 25kW 75kWh

Figure 1: Overview of the UL-Cleco Microgrid Facility

Figure 2: Different Priorities Load Data

Figure 3: Solar Radiation Data (normalized) for Different Power Outages

this microgrid. This movement and charging time duration is
considered to be 3 hours. Optimization of probable road con-

gestion and shortest traveling path of the Mobile BESS is out
of the scope of this paper. Typhoon HIL’s real-time simulator
is utilized to model and analyze the proposed microgrid control
algorithm to study the high-fidelity performance of the micro-
grid in real-time.

3. Methodology

3.1. Proposed Resilience Metric
It requires a few hours to a few days to fully restore the power

grid from power outages caused by natural disasters. Micro-
grids can be used to enhance resilience by supplying power
during power outages. It is unrealistic to fulfill all the power
demands when the main power grid suffers from a power out-
age. Hence, the loads can be classified based on their urgency.
Considering 24-hour power outages caused by natural disasters,
the amount of critical load served can be identified and inves-
tigated to determine the resilience level of the microgrid. Our
proposed resilience metrics measure resilience value based on
the amount of energy supplied to the load, focusing on the most
critical loads. In recent literature [37; 38; 39; 40; 41; 42], re-
searchers have placed five times more emphasis on the most
critical loads than the least critical loads. The weighted factors
of 5, 2.5, and 1 are assigned for priority load 1, priority load 2,
and priority load 3, respectively. Thus, our proposed resilience
metrics can be calculated utilizing the following equation.

Resilience,R = 5β1 + 2.5β2 + β3 (1)

Where,

β1 =
S ervedLoad1

DemandLoad1
(2)

β2 =
S ervedLoad2

DemandLoad2
(3)

β3 =
S ervedLoad3

DemandLoad3
(4)

In Eqn. (1), β1 represents the ratio between the amount of
served most critical load (kWh) and the total demand of the
most critical load (kWh). Similarly, β2 represents the ratio be-
tween the amount of served moderate critical load(kWh) and
the total demand of the moderate critical load (kWh), β3 repre-
sents the ratio between the amount of served least critical load
(kWh) and the total demand of the least critical load (kWh).
The maximum value of β1, β2, and β3 can be 1 (if the to-
tal demands are fulfilled for the whole time duration), so 8.5
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can be the maximum resilience value in our proposed resilience
metrics. Utilizing our proposed resilience metrics, a single re-
silience value of a microgrid can be determined for the whole
power outage duration(considering the highest importance of
the demand satisfaction on the most critical load).

3.2. Technical Analysis

Our proposed microgrid control strategy is presented in Al-
gorithm 1 - Resource Dispatch Algorithm. This microgrid con-
trol algorithm is crafted to fulfill the load demands during a
power outage, putting maximum concentration on the most crit-
ical load satisfaction. This microgrid case study consists of a
solar PV plant, fixed battery energy storage system (BESS), and
Mobile BESS to supply the loads.

During the power outage, the proposed control system will
coordinate the solar PV plant, fixed BESS, and Mobile BESS to
supply the critical loads effectively for longer duration of hours.
If the solar radiation stays at a higher amount for a longer time
period and the availability of Mobile BESS, it looks to be a
more efficient approach to charge the battery of fixed BESS to a
certain level at first instead of satisfying the less critical load so
that the microgrid achieves the capability to fulfill the priority
load 1 for the greater amount of power outage hours. The pro-
posed control system will continuously monitor the solar PV
generation, battery state of charge (SOC), and load demands
and will take necessary actions accordingly. When there is any
solar PV generation, the control system will check the fixed
battery SOC conditions and the availability of Mobile BESS to
satisfy the load demands based on the fixed battery’s SOC. If
the fixed BESS SOC is greater than 70%, solar PV, fixed BESS,
and Mobile BESS will fulfill all the load demands. If Mobile
BESS is available, and the total load demand is higher than 25
kW, the solar PV, Mobile BESS, and the fixed BESS will sup-
ply the load demands together. If Mobile BESS is available,
and the total load demand is less than 25 kW, the Mobile BESS
will supply the loads, and the fixed BESS will go into charging
mode. When the Mobile BESS is unavailable, if solar PV gen-
eration is higher than all the load demands, solar PV will satisfy
the power demands by itself, and the extra generated PV power
will go to the fixed BESS for its charging. If the solar-generated
power is less than the power demands of all the loads, solar PV
and fixed BESS will satisfy the load demands together.

When the fixed BESS SOC stays in the range between 70%
to 40%, only priority loads 1 and 2 will be served, and prior-
ity load 3 will be curtailed. If Mobile BESS is available, and
the combined demand for priority load 1 and priority load 2 is
higher than 25 kW, the solar PV, Mobile BESS, and the fixed
BESS will supply the load demands together. If Mobile BESS
is available, and the load demand is less than 25 kW, the Mo-
bile BESS will supply the loads, and the fixed BESS will go into
charging mode. When the Mobile BESS is unavailable, if solar
PV generation is higher than the combined demand for priority
load 1 and priority load 2, solar PV will satisfy the power de-
mands by itself, and the extra generated PV power will go to the
fixed BESS for its charging. If the solar-generated power is less
than the power demands of the combined demand for priority

load 1 and priority load 2, solar PV and fixed BESS will satisfy
the load demands together.

When the fixed BESS SOC stays in the range between 40%
to 10%, only priority loads 1 will be served, and priority loads
2 & 3 will be curtailed. If Mobile BESS is available, and the
combined demand for priority load 1 is higher than 25 kW, the
solar PV, Mobile BESS, and the fixed BESS will supply the load
demands together. If Mobile BESS is available, and the load
demand is less than 25 kW, the Mobile BESS will supply the
loads, and the fixed BESS will go into charging mode. When
the Mobile BESS is unavailable, if solar PV generation is higher
than the combined demand for priority load 1, solar PV will
satisfy the power demands by itself, and the extra generated
PV power will go to the fixed BESS for its charging. If the
solar-generated power is less than the power demands of the
combined demand for priority load 1, solar PV and fixed BESS
will satisfy the load demands together.

When there is no solar PV generation, the fixed BESS and
Mobile BESS will satisfy the loads. If the fixed BESS SOC
remains higher than 80%, fixed BESS and Mobile BESS will
fulfill all the load demands. If Mobile BESS is available, and
the total load demand is higher than 25 kW, Mobile BESS and
the fixed BESS will supply the load demands together. If Mo-
bile BESS is available, and the total load demand is less than 25
kW, the Mobile BESS will supply the loads, and the fixed BESS
will go into charging mode. When the Mobile BESS is unavail-
able, the fixed BESS will satisfy the load demands. When the
fixed BESS SOC stays in the range between 80% to 50%, only
priority loads 1 and 2 will be served, and priority load 3 will
be curtailed. If Mobile BESS is available, and the combined
demand for priority load 1 and priority load 2 is higher than 25
kW, the Mobile BESS and the fixed BESS will supply the load
demands together. If Mobile BESS is available, and the load
demand is less than 25 kW, the Mobile BESS will supply the
loads, and the fixed BESS will go into charging mode. When
the Mobile BESS is unavailable, the fixed BESS will satisfy the
load demands of priority load 1 and priority load 2. When the
fixed BESS SOC stays in the range between 50% to 10%, only
priority loads 1 will be served, and priority loads 2 & 3 will
be curtailed. If Mobile BESS is available, and the demand for
priority load 1 is higher than 25 kW, the Mobile BESS and the
fixed BESS will supply the load demands together. If Mobile
BESS is available, and the load demand is less than 25 kW, the
Mobile BESS will supply the loads, and the fixed BESS will go
into charging mode. When the Mobile BESS is unavailable, the
fixed BESS will satisfy the load demands of priority load 1.

3.3. Economic Analysis
This section also includes an economic analysis from differ-

ent perspectives on economic indicators. For solar PV panels,
25 years is considered the average life duration [43; 44; 45].
This study considered a 24-year time horizon for the eco-
nomic analysis of this microgrid study[46]. The time dura-
tion of solar PV inverter and BESS is 12 years and 10 years,
respectively[47; 48]. In this analysis, 8 years is selected as the
time duration of the solar PV inverter and BESS as the advanced
features (i.e., Volt-VAR control, Volt-Watt control, etc.) shorten
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Algorithm 1 Resource Dispatch Algorithm

1: Start
2: if PV > 0 then
3: if Fixed BESS SOC ≥ 70% then
4: if Mobile BESS is available: then
5: if Load demand ≥ 25 kW then
6: Supply all loads using Mobile BESS and

Fixed BESS
7: else
8: Supply using Mobile BESS only, and charge

Fixed BESS
9: end if

10: else
11: Supply all loads using Fixed BESS
12: end if
13: Fixed BESS charges until SOC reaches 90%
14: else if Fixed BESS SOC is between 40% and 70% then
15: if Mobile BESS is available then
16: if Load demand ≥ 25 kW then
17: Supply only Priority Load 1 and Priority

Load 2 using Mobile BESS and Fixed BESS
18: else
19: Supply using Mobile BESS only,and charge

Fixed BESS
20: end if
21: else
22: Supply only Priority Load 1 and Priority Load

2 using Fixed BESS
23: end if
24: Fixed BESS charges
25: else if Fixed BESS SOC is between 10% and 40% then
26: if Mobile BESS is available then
27: if Load demand ≥25 kW then
28: Supply only Priority Load 1 using Mobile

BESS and Fixed BESS
29: else
30: Supply using Mobile BESS only, and charge

Fixed BESS
31: end if
32: else
33: Supply only Priority 1 loads using Fixed BESS
34: end if
35: Fixed BESS charges
36: else
37: if Mobile BESS is available then
38: if Load demand ≥ 25 kW then
39: Curtail all load and charge Fixed BESS
40: else
41: Supply Priority Load 1 using Mobile BESS

only, and charge Fixed BESS
42: end if
43: else
44: Curtail all load
45: end if
46: Fixed BESS will go on charging

47: end if
48: else
49: if Fixed BESS SOC is greater than or equal to 80%

then
50: if Mobile BESS is available then
51: if Load demand ≥25 kW then
52: Supply all loads using Mobile BESS and

Fixed BESS
53: else
54: Supply using Mobile BESS only, and charge

Fixed BESS
55: end if
56: else
57: Supply all loads using Fixed BESS
58: end if
59: else if Fixed BESS SOC is between 50% and 80% then
60: if Mobile BESS is available then
61: if Load demand ≥25 kW then
62: Supply Priority Load 1 and Priority Load 2

using Mobile BESS and Fixed BESS
63: else
64: Supply Priority Load 1 and Priority Load 2

using Mobile BESS only, and charge Fixed BESS
65: end if
66: else
67: Supply Priority Load 1 and Priority Load 2 us-

ing Fixed BESS
68: end if
69: else if Fixed BESS SOC is between 10% and 50% then
70: if Mobile BESS is available then
71: if Load demand ≥25 kW then
72: Supply Priority Load 1 using Mobile BESS

and Fixed BESS
73: else
74: Supply Priority Load 1 using Mobile BESS

only, and charge Fixed BESS
75: end if
76: else
77: Supply Priority Load 1 using Fixed BESS
78: end if
79: else
80: if Mobile BESS is available then
81: if Load demand ≥25 kW then
82: Curtail all loads
83: else
84: Supply Priority Load 1 using Mobile BESS

only, and charge Fixed BESS
85: end if
86: else
87: Curtail all loads
88: end if
89: end if
90: end if
91: End
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the inverter’s conventional lifetime [49]. Economic analyses are
presented for all three hurricane scenarios. Furthermore, the in-
vestigation is extended to analyze the impact of the increased
number of Hurricanes in a 24-year time horizon (considering 3
hurricanes in 1 set).

The revenue is generated from selling solar plus storage
power to priority loads 1, 2, and 3. Using 5, the revenue, R can
be found where Ei represents the energy supplied to the priority
loads in kWh, and α is the selling price of solar plus storage
energy in $/kWh. Inflation factor, d is considered as 2.5% for
this investigation [47]. During the power outages emergency
supply, the value of α is considered as $10/kWh, $5/kWh, and
$2/kWh for priority load 1 (most critical load), priority load 2
(moderate critical load), and priority load 3 (least critical load),
respectively [38; 39; 40; 41; 42]. For all the remaining regular
days, the value of α is considered as $0.10/kWh in this analysis.

R =
n∑

i=1

Ei · α · (1 + d)i−1 (5)

Equation 6 calculates the cost of the solar PV system which
is the algebraic summation of the market price of the solar PV
panel, CMAR

PV , operation and maintenance cost of the solar, COM
PV ,

and salvage value of the solar PV, CS AL
PV [46]. Equation 7 cal-

culates the cost of the solar PV inverter, which is the algebraic
summation of the market price of the inverter, CMAR

INV , operation
and maintenance cost of the inverter, COM

INV , salvage value of the
solar inverter, CS AL

INV [46]. Equation 8 is used to compute total
inverter expenditure for 24 year time period where S INV is the
rating of the inverter in kVA, d is the inflation factor, and T INV

R
is the lifetime of the inverter.

CPV = CMAR
PV +COM

PV −CS AL
PV (6)

β = CMAR
PV,INV +COM

PV,INV −CS AL
PV,INV (7)

CPV,INV =

n∑
j=1

S INV · β · (1 + d)(
T INV

R
2 )( j−1) (8)

The BESS expenditure is calculated based on its power and
energy ratings using equation 9 and 10, respectively. Equa-
tion 9 is used to determine the BESS cost for power rating, γ,
which is the algebraic summation of the market price of BESS
for power rating, CMAR

BES S ,P, O&M cost of the BESS for power
rating,COM

BES S ,P, and the salvage value of BESS for power rat-
ing, CS AL

BES S ,P. Equations 10 is used to calculate the BESS cost
for energy rating, η, and this calculation follows the same ap-
proach of the equation 9. η is determined using the market price
of BESS for energy rating, CMAR

BES S ,E , O&M cost of the BESS for
energy rating,COM

BES S ,E , and the salvage value of BESS for en-
ergy rating, CS AL

BES S ,E . In equation 11, BESS cost for 24 years
is calculated where the BESS lifetime, T BES S

R , is considered
as 8 years, and p is the BESS depreciation rate for each year,
2%. PBES S , and EBES S represent the power capacity and energy
capacity of the battery, respectively. To calculate the battery in-
verter cost, equation 12 is utilized where the cost of the BESS
inverter is the algebraic summation of the market price of the

BESS inverter, CMAR
BES S ,INV , operation and maintenance cost of

the BESS inverter, COM
BES S ,INV , salvage value of the BESS in-

verter, CS AL
BES S ,INV . Compared to fixed BESS, Mobile BESS will

likely add a cost premium of 5-10% associated with labor costs
and transportation fuel costs [50]. For this case study, Mobile
BESS cost is considered 7.5% higher than the fixed BESS.

γ = CMAR
BES S ,P +COM

BES S ,P −CS AL
BES S ,P (9)

η = CMAR
BES S ,E +COM

BES S ,E −CS AL
BES S ,E (10)

CBES S =

n∑
k=1

[
γ · PBES S + η · EBES S

]
·(1−p)(T BES S

R −1)(k−1)(11)

δ = CMAR
BES S ,INV +COM

BES S ,INV −CS AL
BES S ,INV (12)

CBES S ,INV =

n∑
j=1

S BES S ,INV · δ · (1 + d)(
T INV

R
2 )( j−1) (13)

In table 2, all the input parameters of economic analysis and
their corresponding values are included. Here, we included
some economic indicators that measure the benefit of solar plus
storage systems in power distribution systems for 24 years op-
eration horizon [46].

• Total cost: the Total cost, C, is the summation of costs
for solar PV panel, solar PV inverter, BESS, and BESS
inverter expressed in 14[46].

C = CPV +CPV,INV +CBES S +CBES S ,INV (14)

• Gained profit by solar system’s owner: The profit, P is
the difference between the revenue and the total cost cal-
culated using the equation 15. The revenue, R, expressed
in the equation 5[46].

P = R −C. (15)

• Net Profit Margin: The net profit margin NPM, or simply
net margin, represents how much net income or profit is
generated as a percentage of revenue made by solar system
owner. The ratio represents the net profit to revenue for the
owner of a solar system facility [46].

NPM =
P
R

(16)

• Net Present Value: Two terms characterize the net present
value (NPV), the present discounted value of costs PDC
in (18) and the present discounted value of revenues PDR
in (17) by NPV = PDR − PDC. Let’s consider Ri to
be the (undiscounted) revenues (benefits) of the solar sys-
tem project during the year i and we consider Ci to be the
(undiscounted) costs of the solar system project during the
year i, afterward. We can calculate NPV using equation
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(19). When the NPV is more than zero, the investment
plan is considered profitable from the investor side [46].

PDR =
T∑

i=1

Ri

(1 + d)i−1 (17)

PDC =
T∑

i=1

Ci

(1 + d)i−1 (18)

NPV =
T∑

i=1

(Ri −Ci)
(1 + d)i−1 (19)

• Revenue-Cost Ratio: The revenue-cost ratio is the ratio of
PDR to PDC which is mentioned in (20). When the RCR
is greater than one, the investment plan will make revenue
for the investor [46].

RCR =
PDR
PDC

=

∑T
i=1

Ri
(1+d)i−1∑T

i=1
Ci

(1+d)i−1

(20)

Table 2: Different Input Parameters of Economic Analysis

Parameters Value Reference
α 10, 5, 2, 0.1 ($/kWh) [38; 39; 40; 41; 42]
d 2.5% [47]

CMAR
PV 400 ($/kW) [47]

COM
PV 1% ($/kW) [51]

CS AL
PV 10% ($/kW) [52]

CMAR
INV 60 ($/kW) [47]

COM
INV 1% ($/kW)

CS AL
INV 10% ($/kW) [52]

CMAR
BES S ,INV 50 ($/kW) [47]

COM
BES S ,INV 1% ($/kW)

CS AL
BES S ,INV 10% ($/kW) [52]

CMAR
BES S ,P 628 ($/kW) [47]

COM
BES S ,P 10 ($/kW) [48]

CS AL
BES S ,P 10% ($/kW) [52]

CMAR
BES S ,E 157 ($/kWh) [47]

COM
BES S ,E 0.003 ($/kW) [48]

CS AL
BES S ,E 10% ($/kW) [52]

EBES S 75, 100, 300, 500 (kWh)
PBES S 25, 50, 150, 250 (kW)

p 2%
S INV 55, 162, 275 kVA
T INV

R 8 Years
T BES S

R 8 Years

4. Results and Discussion

4.1. Technical Analysis

In this portion, the served amount of different categorized
loads for all three scenarios of power outages will be presented
and analyzed. In Fig. 4, the served load of Priority Loads 1,
2, and 3 are depicted for all three scenarios of the power out-
ages caused by Hurricane Laura. For priority load 1, 52.48%
of loads are served in scenario 1, whereas 85.15% loads are
served in scenario 2. In scenario 3, all the 100% of priority
load 1 is served successfully during the whole 24-hour power
outage. For priority load 2, 18.97% loads are served in sce-
nario 1, whereas 40.98% loads are served in scenario 2. In
scenario 3, 53.64% of priority load 2 is served, which is the
maximum amount for all three scenarios. For priority load 3,
7.51%, 22.45%, and 30.67% of loads are served in scenarios
1, 2, and 3, respectively. During all three scenarios, there is a
tendency to increase served load for all the priority loads. Al-
though around 30% priority load 1 is more served in scenario 2
than scenario 1, scenario 3 still shows the best performance by
satisfying 100% priority load 1, which is the most critical load.

Figure 4: Served Loads for the Hurricane Laura (In Percent)

In Fig. 5, the served load of Priority Loads 1, 2, and 3 are
presented for all three scenarios of power outages due to Hur-
ricane Zeta. For priority load 1, 47.73% loads are satisfied in
scenario 1, whereas 82.78% loads are satisfied in scenario 2. In
scenario 3, 100% of priority load 1 is served successfully dur-
ing the 24-hour power outage. For priority load 2, 19.18% loads
are satisfied in scenario 1, whereas 36.61% loads are served in
scenario 2. In scenario 3, 48.50% of priority load 2 is served.
For priority load 3, 9.34%, 19.18% and 25.09% of loads are
satisfied in scenarios 1, 2, and 3, respectively. During all three
scenarios, there is also a similar pattern of increasing served
load for all the categorized loads, like Hurricane Laura.

In Fig. 6, the served load of Priority Loads 1, 2, and 3 are
presented for all three scenarios of power outages caused by
Hurricane Ida. For priority load 1, 47.73% loads are served
in scenario 1, whereas 82.65% loads are served in scenario 2.
In scenario 3, 100% of priority load 1 demand is served suc-
cessfully during the whole 24 hours of power outage. For pri-
ority load 2, 11.65% loads are satisfied in scenario 1, whereas
37.05% loads are served in scenario 2. In scenario 3, 49.30% of
priority load 2 is satisfied. For priority load 3, 5.85%, 11.05%,
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Figure 5: Served Loads for the Hurricane Zeta (In Percent)

and 26.86% of loads are served in scenarios 1, 2, and 3, re-
spectively. During all three scenarios, there is a tendency to in-
crease served load for all the priority loads. Most importantly,
the amount of served loads of priority load 1 is almost doubled
in scenario 2 compared to scenario 1, whereas scenario 3 shows
the best performance by fulfilling 100% of the most critical load
demand.

Figure 6: Served Loads for the Hurricane Ida (In Percent)

Our proposed microgrid control algorithm concentrates on
satisfying the priority load 1 (most critical load) during 24 24-
hour power outage. Fig. 7 presents the time duration of the
most critical load serving. For Hurricane Laura, the most crit-
ical load is satisfied for 65.63% hours of the 24 hours in sce-
nario 1, whereas the most critical load is served in scenario 2
for 88.54% hours of the 24 hours. Scenario 3 shows the best
performance by satisfying 100% of the most critical load for 24
hours. For Hurricane Zeta, the most critical load is satisfied for
62.5% hours of the 24 hours in scenario 1, whereas the most
critical load is served in scenario 2 for 86.46% hours of the 24
hours. Scenario 3 shows the best performance among all three
scenarios by satisfying the most critical load for 100% hours of
the whole 24 hours. For Hurricane Ida, the most critical load is
satisfied for 62.5% hours of the 24 hours in scenario 1, whereas
the most critical load is served in scenario 2 for 87.5% hours of
the 24 hours. Scenario 3 shows the best performance among all
three scenarios by fulfilling 100% of the most critical load for
the whole 24 hours.

In Fig. 8, Fig. 9, Fig. 10, battery SOC profiles for all the
scenarios of the power outages are presented. In Fig. 8, the
battery SOC for all three scenarios is provided for Hurricane

Figure 7: Serving Time Duration of Most Critical Load (In Percent)

Laura. In scenario 1, the battery SOC stays at 10% for around
7 hours, which is the highest duration of hours in all the sce-
narios. 10% SOC indicates that no loads are served during that
time horizon. In scenario 2, the battery SOC shows better char-
acteristics, and SOC stays at 10% for around 2 hours. The SOC
stays at 90% for around 5.5 hours, indicating that all the loads
are served during that time. In scenario 3, the minimum SOC
never goes below 20%, indicating that at least priority load 1 is
served for 24 hours. The SOC remains 90% for around 7 hours,
indicating that all the loads are served during that time.

Figure 8: Battery SOC for the Hurricane Laura

In Fig. 9, the battery SOC for all three scenarios of the power
outage caused by Hurricane Zeta. In scenario 1, the battery
SOC stays at 10% for around 8 hours, which is the highest du-
ration of hours in all the scenarios. In scenario 2, the battery
SOC shows better characteristics, and SOC stays at 10% for
around 2.5 hours. The SOC stays at 90% for around 5.5 hours,
indicating that all the loads are served during that time. In sce-
nario 3, the minimum SOC never goes below 17%, indicating
that at least priority load 1 is served for 24 hours. The SOC re-
mains 90% for around 6 hours, indicating that all the loads are
served during that time.

In Fig. 10, the battery SOC for all three scenarios of the
power outage caused by Hurricane Zeta. In scenario 1, the bat-
tery SOC stays at 10% for around 8 hours, which is the highest
duration of hours in all the scenarios. In scenario 2, the battery
SOC shows better characteristics, and SOC stays at 10% for
around 2 hours. The SOC stays at 90% for around 2.5 hours,
indicating that all the loads are served during that time. In sce-
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Figure 9: Battery SOC for the Hurricane Zeta

Figure 10: Battery SOC for the Hurricane Ida

nario 3, the minimum SOC never goes below 18%, which in-
dicates that at least priority load 1 is served for the whole 24
hours. The SOC remains 90% for around 3.5 hours, indicating
that all the loads are served during that time.

4.2. Resilience Value

After completing the simulation for all three scenarios of
power outages caused by Hurricane Laura, Zeta, and Ida and
determining the amount of served load for each scenario of the
power outages, resilience values have been calculated using the
equations of 1, 2, 3, 4. All the resilience values are presented in
Table 3.

Table 3: Resilience Value for Different Power Outages

Hurricanes Scenarios Resilience Value, R

Laura
1 3.17
2 5.50
3 6.64

Zeta
1 2.95
2 5.24
3 6.46

Ida
1 2.73
2 5.16
3 6.50

Resilience values of scenarios 1, 2, and 3 for the power out-
ages caused by Hurricane Laura are 3.17, 5.50, and 6.64, re-
spectively. Resilience values of scenarios 1, 2, and 3 for the
power outages caused by Hurricane Zetaa are 2.95, 5.24, and
6.46, respectively. The resilience values of scenarios 1, 2, and
3 for the power outages caused by Hurricane Ida are 2.73, 5.16,
and 6.50, respectively.

4.3. Economic Analysis

Table 4 shows the investment required for 24 years, consid-
ering different microgrid configuration scenarios 1, 2, and 3,
respectively. Scenario 1 requires 216.97 thousand US dollars,
whereas Scenario 2 requires 512.88 thousand dollars, which is
more than 2.3 times the investment of Scenario 1. Scenario 3
requires the maximum investment among all three scenarios,
808.78 thousand dollars.

Table 4: Investment for Three Scenarios (in thousands US $)

Scenario 1 Scenario 2 Scenario 3

Investment 216.97 512.88 808.78

Table 5 depicts the profit generated during 24 years time du-
ration of microgrid operation for all three configuration scenar-
ios considering different numbers of hurricane sets. For one
hurricane set (considering 3 hurricanes in 1 set) in 24 years, the
profit of scenarios 1, 2, and 3 is 406.00, 832.10, and 911.90
thousand US dollars, respectively. For five hurricane sets (con-
sidering 3 hurricanes in 1 set) in 24 years, the profit of scenarios
1, 2, and 3 is 471.50, 952.90, and 1061.50 thousand US dollars,
respectively. It is visible that the financial profit is increasing
with the increasing number of hurricane sets for all three sce-
narios, and scenario 3 is the leading profit generator among all
the hurricane sets.

Table 5: Profit for Three Scenarios of Different Hurricane Sets (in thousands $)

Hurricane
Sets Scenario 1 Scenario 2 Scenario 3

1 406.00 832.10 911.90

2 419.60 857.20 943.00

3 434.90 885.40 977.90

4 452.20 917.20 1017.30

5 471.50 952.90 1061.50

In order to investigate the impacts of different numbers of
hurricane sets in all three scenarios, NPV, NPM, and RCR, are
utilized for all three scenarios considering the number of hurri-
cane sets from 1 to 5. In Fig. 11, NPV is increasing for all three
scenarios with the increasing number of hurricane sets. Among
all the hurricane sets, scenario 1 has the lowest NPV in all three
scenarios. Although scenario 2 has the highest NPV for all the
hurricane sets, scenario 3 is approaching to merge on scenario
2 with the increased number of hurricane sets. In Fig. 12, NPM
curves depicts the net profit margin for different hurricane sets.
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For all the different hurricane sets, NPM gradually increases for
all three scenarios. Furthermore, scenario 1 leads to scenarios
2 and 3 for all the hurricane sets. In Fig. 13, RCR graphs are
presented for all three scenarios of different numbers of hurri-
cane sets. For all the hurricane sets, all three scenarios have
RCR value greater than 1, and the RCR value increases with
the increasing number of hurricane sets.

Figure 11: Net Present Value (NPV)

Figure 12: Net Profit Margin (NPM)

Figure 13: Revenue-Cost Ratio (RCR)

The resilience values of scenarios 1, 2, and 3 for every power
outages caused by Hurricanes Laura, Zeta, and Ida are taken
from Table 3 and the investment required for scenarios 1, 2,
and 3 from Table 4 are utilized to present the resilience vs in-
vestment curve in Fig. 14. In Fig. 14, it can be observed that

after increasing investment from 216.97 thousand US dollars to
512.88 thousand US dollars, resilience value increased sharply
for all the outages. When the investment increased from 512.88
thousand US dollars to 808.78 thousand US dollars, resilience
value followed an increasing tendency with the increase of in-
vestment, reaching the highest resilience level.

Figure 14: Resilience vs Investment Curve

5. Summary and conclusions

In conclusion, our research has demonstrated the signifi-
cant potential of integrating both stationary and mobile bat-
tery storage systems (BSS) within microgrids to enhance en-
ergy resilience, particularly in the face of natural disasters. The
study’s findings reveal that strategic deployment and real-time
operation of these systems can substantially reduce unserved
loads, ensuring the continuous provision of power to critical
infrastructure. Moreover, our economic analysis underscores
the financial viability of such investments, highlighting that
with careful planning and implementation, microgrids can of-
fer a cost-effective solution to improve resilience. The insights
gained from this research provide a valuable framework for
decision-makers in the energy sector, suggesting that the inte-
gration of stationary and mobile BSS within microgrids is a
promising avenue for enhancing energy resilience in disaster-
prone areas.
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