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Abstract  10 

Interpretation of Cone Penetration Tests (CPTs) still relies greatly on empirical 11 

correlations that are mostly developed in resource-demanding and time-consuming 12 

calibration chambers. This paper presents a CPT virtual calibration chamber using 13 

machine learning approaches. For such purpose, the multilayer perceptron (MLP) and 14 

long short-term memory (LSTM) neural networks are implemented to predict the cone 15 

resistance (qc) profiles under various soil states and testing conditions. The Bayesian 16 

optimization (BO) is first adopted to find the optimal neural network hyperparameters 17 

of MLP and LSTM. Thereafter, the BO-MLP and BO-LSTM networks are trained with 18 

the available data from published datasets. Further comparison and validation of the 19 

prediction results are carried out against numerical results obtained from a Coupled 20 

Eulerian-Lagrangian (CEL) model. The results show that BO reduces the prediction 21 

error of the neural networks by 73.1% (MLP) and 59.5% (LSTM) in the training set as 22 

well as 44.4% (MLP) and 40% (LSTM) in the testing set compared to that without BO. 23 

The established machine learning models are proven competent to reproduce the qc 24 

profiles with the coefficient of determination (R2) of 98.65% (MLP) and 98.51% 25 

(LSTM) in the training set as well as 95.13% (MLP) and 94.65% (LSTM) in the testing 26 
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set. Apart from matching the numerical model results in terms of accuracy, the proposed 27 

methods show a much greater computational efficiency. Eventually, to showcase the 28 

use of this new virtual calibration chamber, the predicted qc are used to obtain a new 29 

relationship to predict the relative density, Dr, of the sand. The improved correlation 30 

has an R2 of 92.7% compared to all data, including those generated by the machine 31 

learning method and experiments, and 88.3% compared to the pure experimental data. 32 

This is a better generalization than other previously suggested relationships. 33 

 34 

Keywords: cone penetration test, virtual calibration chamber, Bayesian optimization, 35 

multilayer perceptron neural network, long short-term memory network  36 

1. Introduction 37 

The cone penetration test (CPT) is one of the most common and popular in-situ test 38 

tools for site characterization [1]. One notable advantage of CPT is to quickly obtain 39 

continuous and reproducible soil testing records (cone resistance qc and sleeve friction 40 

fs) with minimal disturbance compared to laboratory element testing [2]. The cone 41 

resistance profile from the CPT is widely used to interpret soil properties. However, 42 

many CPT-based interpretations of soil parameters still greatly rely on empirical 43 

correlations [3]. The majority of these correlations are presented from the results of 44 

calibration chamber tests where the soil state and properties can be well-controlled [4]. 45 

However, calibration chamber testing is resource-demanding and time-consuming. As 46 

a consequence, available CPT data from calibration chamber tests is still scarce, which 47 

leads to some of the presented empirical correlations being only valid for specific soil 48 

types or specific conditions (e.g., over-consolidation ratio) [5].  49 

 50 

To remediate the above shortage of CPT data in calibration chambers, analytical 51 

modeling (e.g., cavity expansion theory [6, 7]) and numerical simulations (e.g., 52 

Coupled Eulerian-Lagrangian (CEL) method [8, 9] and discrete-element method (DEM) 53 
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[10]) have been proposed to estimate qc profiles for various types of soils. However, 54 

the complicated formulations contribute to a gap between analytical solutions and 55 

practical use. The numerical solutions are also notoriously difficult due to expensive 56 

computational costs and non-trivial calibration for constitutive models [11, 12], 57 

although the DEM has been previously presented as a solution for virtual calibration 58 

chambers [10]. 59 

 60 

With the advances made in hardware and software over the past decades, machine 61 

learning (ML) approaches may be an attractive alternative possessing a strong ability 62 

to utilize the raw (existing) data for prediction without any prior assumptions [13]. 63 

Multiple attempts have been made towards the application of ML-based models in 64 

geotechnical practice relevant to the CPT, e.g., prediction of bearing capacity of piles 65 

[14], soil type classification [15-17], soil parameter identification [18], and evaluation 66 

of soil liquefaction potential [19, 20]. However, for CPT profile prediction that depends 67 

largely on the depth (overburden stress) and soil type, a non-linear mapping capable of 68 

catering to sequence loading situations may be more suitable. In this regard, two 69 

possible ML options are multilayer perceptron (MLP) and long short-term memory 70 

(LSTM) neural networks [21]. Zhang et al. [22] and Guan and Yang [23] successfully 71 

applied the LSTM model to reproduce the constitutive responses of sands under both 72 

monotonic and cyclic loading. Wang and Sun [24] combined LSTM with a multiscale 73 

framework to capture the hydro-mechanical coupling effects of porous media. 74 

Habibagahi and Bamdad [25] and Kohestani and Hassanlourad [26] employed MLP to 75 

describe the mechanical properties of carbonate sand and unsaturated soil. Their results 76 

demonstrated that MLP and LSTM both have great potential in predicting nonlinear-77 

mapping datasets. Hence, we hypothesize that MLP and LSTM neural networks are 78 

capable of reproducing and predicting CPT resistance profiles in calibration chamber 79 

tests. 80 

 81 
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The selection of hyperparameters is a critical task for the construction of ML-based 82 

models (particularly for neural networks). There are currently no well-established 83 

methods to tune the optimal hyperparameters, which means that typically these are 84 

obtained by a trial-and-error [23]. To address this drawback, some researchers [27, 28] 85 

have used Bayesian optimization (BO) that has been applied to geotechnical problems 86 

to give optimal hyperparameters for various networks. For example, Tao et al. [28] 87 

integrated Bidirection LSTM neural networks with BO to predict excavation-induced 88 

responses. Zhang et al. [29] used the BO-optimized neural network to present a 89 

modeling strategy for developing prediction models of soil properties. Hence, this paper 90 

combines the MLP and LSTM neural networks with Bayesian optimization (i.e., BO-91 

MLP and BO-LSTM) to quickly reproduce and predict the CPT profile in calibration 92 

chamber tests, and to discuss their applications in soil interpretation based on the 93 

predicted CPT data.  94 

 95 

The paper aims at developing accurate, and computationally efficient, virtual 96 

calibration chambers to generate qc profiles of the CPT in sand. First, we briefly 97 

introduce MLP, LSTM, and BO algorithms to illustrate the fundamentals of Bayesian-98 

optimized neural networks. Subsequently, the BO-MLP and BO-LSTM models are 99 

developed and trained by feeding observed data, and their performance is then 100 

evaluated by the testing dataset. The developed models are further compared with the 101 

validated solutions from the Coupled Eulerian Lagrangian (CEL) method. Eventually, 102 

an example is given to show how the developed models are used to correlate cone 103 

resistance with soil properties and to enhance the empirical equations.  104 

2. Fundamentals of machine learning approaches 105 

2.1 Multilayer perceptron (MLP) 106 

The multilayer perceptron is one of the most popular artificial neural networks for 107 
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modelling and predicting complex non-linear responses and processes [26]. Fig. 1 108 

shows a typical MLP structure consisting of one input layer, one or more hidden layers, 109 

and one output layer. A set of neurons are arranged in each layer and connected through 110 

weights and bias. The numbers of hidden layers and neurons in each layer are not 111 

constant and need to be optimized. The input data are firstly presented through the input 112 

layer and then pass through the hidden layer(s) being processed by the neural network 113 

to eventually predict values for the output layer. This process can be expressed 114 

mathematically by considering a feedforward propagation process that uses input x to 115 

estimate the output y: 116 

 𝐡1 = 𝑓(𝑾1𝐱 + 𝒃1)  (1-1) 117 

 𝐡2 = 𝑓(𝑾2𝐡1 + 𝒃2)  (1-2) 118 

 𝐲 = 𝑾3𝐡2 + 𝒃3 (1-3) 119 

The formulas (1-1) and (1-2) represent two hidden layers, where h1 and h2 are the results 120 

of the first and second hidden layer, respectively; W1, W2, W3 represent the weight 121 

matrices, and b1, b2, b3 are the bias vectors; f represents the activation function. The h1 122 

and h2 include the result of each neuron and h1 = [h11, h12, …, h1i, …, h1Nn1] and h2 = 123 

[h21, h22, …, h2i, …, h2Nn2], where Nn1 and Nn2 are the number of neurons of the first and 124 

second hidden layer.  125 

 126 

Fig. 1. Structure of a general MLP. x1, x2, …, xM represent the elements in input vector x; y1, 127 

y2, …, yn represent the elements in output vector y. 128 
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 129 

Typically used activation functions are sigmoid, hyperbolic tangent (tanh), rectified 130 

linear unit (Relu), and leaky Relu activation functions [30]. The weight matrices W as 131 

well as the bias vectors b are randomly initialized first and then updated through a 132 

training process. The training implementation of MLP can be considered into two 133 

phases: forward calculation and backward propagations using the Back-propagation 134 

algorithm. During the forward process, the value of each hidden neuron is calculated 135 

by summing up the values of input neurons multiplied by corresponding connection 136 

weights. The error between the output and the real values can be calculated and then 137 

minimized by the backward algorithm that updates the connection weights. A full 138 

explanation of MLP neural networks can be found in the literature [31]. 139 

2.2 Long short-term memory neural network (LSTM) 140 

LSTM is a typical class of recurrent neural networks (RNNs), which have been widely 141 

used to model time-dependent phenomena. The outputs of RNN depend on inputs of 142 

the network from not only the current time step but also previous time steps, thereby 143 

presenting the ability to predict future information related to previous inputs and 144 

enabling its application in modeling sequential problems. By introducing a memory cell 145 

in place of the neurons, LSTM can overcome the shortcoming of gradient vanishing or 146 

exploding in the back-propagation algorithm in traditional RNNs. 147 

 148 

The typical structure of an LSTM memory cell is displayed in Fig. 2. The memory cell 149 

has three gates (forget gate ft, input gate it, and output ot) which are employed to control 150 

the information flow. First, the output at the previous time step ht-1 in a memory cell 151 

and the input at current time step xt are used to calculate the forget gate ft, input gate it, 152 

output ot, and the storage cell 𝒄̃𝑡, as shown in Eqs. (2-1) to (2-4). Then, the forget gate 153 

ft acts on the memory cell state at the previous time step ct-1, while the input gate it acts 154 

on the storage cell at the current time step 𝐜̃𝑡 , as shown in Eq. (2-5). The ft and it 155 



7 

 

together determine whether the information should be discarded or stored and update 156 

the current memory cell state ct. Eventually, the output ot decides the final output values 157 

ht, as shown in Eq. (2-6). The specific formulas are shown as follows: 158 

 𝐢𝑡 = 𝜎(𝑾i𝐱
𝑡 + 𝑼i𝐡

𝑡−1 + 𝒃i)  (2-1) 159 

 𝐟𝑡 = 𝜎(𝑾f𝐱
𝑡 + 𝑼f𝐡

𝑡−1 + 𝒃f) (2-2) 160 

 𝐨𝑡 = 𝜎(𝑾o𝐱
𝑡 + 𝑼o𝐡

𝑡−1 + 𝒃o) (2-3) 161 

 𝐜̃𝑡 = tanh(𝑾c𝐱
𝑡 + 𝑼c𝐡

𝑡−1 + 𝒃c) (2-4) 162 

 𝐜𝑡 = 𝐟𝑡𝐜𝑡−1 + 𝐢𝑡𝒄̃𝑡 (2-5) 163 

 𝐡𝑡 = 𝐨𝑡tanh⁡(𝐜𝑡) (2-6) 164 

where Wi, Wf, Wo, and Wc represent the weight matrices corresponding to the inputs 165 

within different gates; Ui, Uf, Uo, and Uc represent the weight matrices corresponding 166 

to the output at the previous time step with different gates; bi, bf, bo, and bc denote bias 167 

matrices of each gate, σ is the sigmoid activation function, and  signifies the element-168 

wise product of vectors.  169 
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Fig. 2. Structural diagram of a LSTM memory cell 171 

2.3 Bayesian Optimization  172 

Although applying LSTM or MLP to predict CPT cone resistance profiles is promising, 173 

the selection of hyperparameters for a neural network often needs to be optimized by 174 

hand. To solve this problem, this paper adopts a global optimization algorithm, 175 

Bayesian optimization (BO), to select a superior combination of model 176 
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hyperparameters locating the minima of the model error. BO adopts the probabilistic 177 

surrogate model to fit real objective functions, where the next most likely point is 178 

selected for evaluation according to fitting results. The historical information is used to 179 

reasonably reduce the evaluation time and to improve search efficiency. The framework 180 

mainly includes two core parts: the probabilistic surrogate model and the acquisition 181 

function, which will be introduced in more detail in the following.  182 

2.3.1 Probabilistic surrogate model 183 

The surrogate model is developed using a widely-used Gaussian process [28] with the 184 

assumption that the responses obey a multidimensional normal distribution. 185 

Correspondingly, a prior distribution with the mean value being equal to 0 can be 186 

constructed by a Gaussian regression: 187 

 [

𝑦1
⋮
𝑦𝑛
]⁡~⁡𝑁 (0, [

𝑘(𝑥1, 𝑥1) … 𝑘(𝑥1, 𝑥𝑛)
⋮ ⋱ ⋮

𝑘(𝑥𝑛, 𝑥1) … 𝑘(𝑥𝑛, 𝑥𝑛)
]) (3) 188 

where k denotes the covariance function; x1, …, xn represents input values (i.e., 189 

hyperparameters in MLP and LSTM); and y1, …, yn are the response output values. 190 

Through the training set, the updated value y* can be obtained through a posterior 191 

formula: 192 

𝑃(𝑦∗|𝑦)⁡~𝑁(𝐾∗𝐾
−1𝑦, 𝐾∗∗ −⁡𝐾−1𝐾∗

T)   (4) 193 

where K is the covariance matrix of the assumed prior distribution; 𝐾∗  is the 194 

covariance matrix of the observed set and 𝐾∗∗ is the covariance matrix of new-added 195 

samples. The Gaussian regression model can be continually updated through y*: 196 

[
𝑦
𝑦∗
]⁡~⁡𝑁 (0, [

𝐾 𝐾∗
T

𝐾∗ 𝐾∗∗
])                      (5) 197 

This process considers the relationship of yN and yN+1 and builds the input-output 198 

function, providing the basics of parameter searching.  199 
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2.3.2 Acquisition function 200 

Acquisition functions are employed to select the next probable point that enables the 201 

model's best performance. The acquisition function can obtain the posterior distribution 202 

through the observed dataset D1:n, thereby guiding the next evaluation point xn+1. 203 

Expected Improvement (EI), which is the most widely-used acquisition function, is 204 

employed in this study: 205 

 𝛼𝑛(𝑥, 𝐷1:𝑛) = (𝑣∗ − 𝜇(𝑥))𝜙 (
𝑣∗−𝜇𝑛(𝑥)

𝜎𝑛(𝑥)
) + 𝜎𝑛(𝑥)𝜙 (

𝑣∗−𝜇𝑛(𝑥)

𝜎𝑛(𝑥)
)  (6) 206 

where 𝛼𝑛  is the expectation; υ* is the current optimum function value; ϕ is the 207 

standard normal distribution probability density function; σ and μ are variance and 208 

mean values, respectively.  209 

2.4 Bayesian Optimized MLP/LSTM 210 

Using BO to the selection of the hyperparameters of MLP and LSTM can be considered 211 

into the following formula: 212 

 𝑥∗ = argmin𝑓(𝑥), 𝑥 ∈ 𝑋 (7) 213 

where f(x) is the objective function; x represents a group of hyperparameters; X denotes 214 

the space of hyperparameters combination; and x* signifies the x that makes f(x) obtain 215 

an optimized solution. We use the mean squared error (MSE) of the response from a 216 

neural network as the objective function f(x): 217 

 MSE =
1

𝑛
∑ (𝑦̃𝑖 − 𝑦𝑖)

2𝑛
𝑖=1  (8) 218 

where n represents the number of output elements, and 𝑦̃𝑖 and yi denotes the predicted 219 

and true values of a neural network, respectively.  220 

 221 

In summary, the paper uses this Gaussian process to proxy the hyperparameter 222 

combination x to neural networks. The posterior distribution is obtained according to 223 

the observed dataset. Furthermore, the next evaluation point is selected by the EI 224 

acquisition function, then iteratively modifying the prior information. Thereby the 225 
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surrogate model can be improved step by step and eventually attains the optimal 226 

hyperparameter combination.  227 

3. Implementation of BO-MLP and BO-LSTM 228 

3.1 Data source and processing 229 

The selected cone resistance profiles from previously reported calibration chamber tests 230 

are summarized in Table 1, in which cases 1-45 are experimental results and cases 46-231 

64 are derived from numerical simulations. It is known that the CPT results are 232 

influenced by various factors. In this paper, five well-recognized important factors 233 

greatly affecting qc profiles are considered: the relative density Dr, effective vertical 234 

stress σv, lateral earth pressure coefficient K0, saturation condition (dry or saturated), 235 

and boundary condition (BC) [32, 33]. The five commonly used boundary conditions 236 

(BC1 - BC5) were further summarized in Table 2. Of note, these boundary conditions 237 

are represented with numbers 1 – 5 in the dataset, respectively. It is assumed that the 238 

above five influencing factors of CPT in calibration chambers are considered constant 239 

throughout the penetration process [33]. 240 

 241 

One essential requirement for applying neural networks is the one-to-one mapping 242 

relationship between input data and output data. For the two neural networks MLP and 243 

LSTM, the input data consisted of the above variables, as well as the depth zt at the 244 

current step t, while the output was the current-step cone resistance qc
t. In this way, the 245 

qc - z profiles were processed into the corresponding relationship. For each qc curve, the 246 

initial whole profile was processed into 100 points using interpolation. As can be seen 247 

in Table 1, a total of 64 groups of data were used for training and testing the network. 248 

52 groups (5200 points) were employed to train the machine learning network, while 249 

the rest 12 groups (1200 points) with the “*” symbol in Table 1 were selected as the 250 

testing dataset to evaluate whether the model overfits or underfits. Note that the testing 251 
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set has considered different relative densities, vertical stresses, and K0 conditions, as 252 

well as saturation and boundary conditions. 253 

Table 1. Summary of used cases of calibration chamber test 254 

Case 

No. 
Dr σv (MPa) K0 

Saturation 

condition 

Boundary condition 

(BC) 
Reference 

1 0.878 0.100 0.450 Dry  5 

Kluger et al. 

[34] 

 

2 0.748 0.200 0.450 Dry 5 

3 0.838 0.100 0.450 Saturated 5 

4* 0.78 0.200 0.450 Saturated 5 

5 0.952 0.100 0.450 Dry 5 

6 0.97 0.100 0.450 Saturated 5 

7 0.668 0.200 0.450 Saturated 5 

8* 0.606 0.200 0.450 Dry 5 

9 0.918 0.200 0.450 Saturated 5 

10 0.918 0.200 0.450 Dry 5 

11 0.650 0.056 0.393 Dry 5 

Huang and 

Hsu. [33] 

12 0.840 0.056 0.393 Dry 5 

13 0.250 0.160 0.463 Dry 5 

14 0.500 0.160 0.463 Dry 5 

15* 0.650 0.160 0.463 Dry 5 

16 0.840 0.160 0.463 Dry 5 

17 0.500 0.056 0.786 Dry 1 

18 0.500 0.056 0.786 Dry 5 

19* 0.650 0.056 0.786 Dry 1 

20 0.650 0.056 0.786 Dry 5 

21 0.840 0.056 0.786 Dry 1 

22 0.840 0.056 0.786 Dry 5 

23 0.500 0.070 0.400 Dry 1 

Lech 

Bałachowski 

[35]  

 

24* 0.500 0.100 0.400 Dry 1 

25 0.500 0.150 0.400 Dry 1 

26 0.500 0.200 0.400 Dry 1 

27 0.500 0.350 0.400 Dry 1 

28 0.500 0.400 0.400 Dry 1 

29 0.800 0.050 0.400 Dry 1 

30 0.800 0.070 0.400 Dry 1 

31 0.800 0.100 0.400 Dry 1 

32 0.800 0.150 0.400 Dry 1 

33 0.800 0.250 0.400 Dry 1 

34* 0.800 0.300 0.400 Dry 1 

35 0.800 0.400 0.400 Dry 1 
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36 0.800 0.050 0.400 Dry 3 

37 0.800 0.070 0.400 Dry 3 

38* 0.800 0.150 0.400 Dry 3 

39 0.800 0.200 0.400 Dry 3 

40* 0.800 0.250 0.400 Dry 3 

41 0.330 0.025 1.000 Saturated  1 

Pournaghiazar 

et al. [5] 

42 0.330 0.050 1.000 Saturated  1 

43* 0.330 0.100 1.000 Saturated  1 

44 0.610 0.030 1.000 Saturated  1 

45 0.610 0.050 1.000 Saturated  1 

46 0.718 0.150 0.500 Dry 3 

Chen et al. [4] 
47* 0.615 0.150 0.500 Dry 3 

48 0.395 0.150 0.500 Dry 3 

49 0.231 0.150 0.500 Dry 3 

50 0.23 0.100 1.000 Dry 3 

Schnaid. [36] 

51* 0.63 0.100 1.000 Dry 3 

52 0.86 0.100 1.000 Dry 3 

53 0.65 0.075 0.500 Dry 3 

54 0.65 0.150 0.500 Dry 3 

55 0.65 0.300 0.500 Dry 3 

56 0.752 0.060 1.000 Dry 1 

Arroyo et al. 

[37] 

57 0.752 0.100 1.000 Dry 1 

58 0.768 0.200 1.000 Dry 1 

59* 0.776 0.300 1.000 Dry 1 

60 0.784 0.400 1.000 Dry 1 

61 0.907 0.100 1.000 Dry 1 

62 0.914 0.140 1.000 Dry 1 

63 0.922 0.200 1.000 Dry 1 

64 0.929 0.300 1.000 Dry 1 

Note: ‘*’ represents the testing dataset. 255 

Table 2. Five boundary conditions in the calibration chamber 256 

Boundary 

conditions 

Top and bottom boundary Lateral boundary 

Stress Strain Stress Strain 

BC1 Constant - Constant - 

BC2 - 0 - 0 

BC3 Constant - - 0 

BC4 - 0 Constant - 

BC5 Constant - Servo–controlled 

 257 
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It is known that the quality of input data could significantly affect the predictive 258 

performance of machine learning models. Normalization is preferably adopted to 259 

rescale variables with different scales to lower their influence on the model performance 260 

and also reduce computational costs. The following equation was used to normalize the 261 

input data to the common range of 0 ~ 1: 262 

 xnorm =
x−xmin

xmax−xmin
 (9) 263 

where x is the raw input variables before normalization, xnorm is the input variables after 264 

normalization, xmin and xmax are the minimum and maximum values of the input 265 

variables, respectively. Besides, in many cases, especially DEM simulations [37], the 266 

qc profile usually exhibited large oscillations, which can decrease the quality of training 267 

data. Therefore, a sliding window approach was used to smooth data before input into 268 

neural networks and therefore reduce the fluctuation in qc curves to all groups [38]. The 269 

value of smoothed xs can be calculated by: 270 

 xs =
1

𝑡
∑ x𝑖
𝑛
𝑖=𝑛−𝑡+1  (10) 271 

where t = window size. The average value of datasets within a window is assigned as 272 

the new value of the studied parameter. The datasets within a window consist of current 273 

and former (t–1) values. It should be noted that the first (t–1) and the last (t–1) points 274 

cannot form a complete window, thereby values of such points maintain constant. 275 

Larger window size can generate a smoother sequential curve, but it is much more likely 276 

to deviate from the original curve. The window size is thus set as four in this study for 277 

maintaining the reliability and smoothness of the datasets. 278 

3.2 Neural network structures 279 

3.2.1 MLP 280 

The MLP structure in this paper contains 4 layers: one input layer, two hidden layer 281 

layers, and one output layer, as shown in Fig. 1. The main hyperparameters of the MLP 282 

are listed in Table 3. For training the MLP, three important hyperparameters are to be 283 
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optimized using BO: the number of nodes in the first and second hidden layer (Nn1 and 284 

Nn2) as well as the initial learning rate (ηMLP). Furthermore, we set the range of Nn1 and 285 

Nn2 as 1-20 to decrease the complexity of the network structure, thereby preventing 286 

overfitting in the training set. The Levenberg-Marquardt algorithm is employed to 287 

optimize the weight and bias matrices [39], and the Tanh activation function is also 288 

adopted for hidden layers. The maximum number of training epochs was chosen as 200, 289 

but we also used the early-stop method to prevent overfitting, by which the training 290 

process will stop if the normalized MSE (MSE after data normalization) reaches the 291 

target precision of 5E-4. The two neural networks are implemented in Matlab R2022b 292 

toolboxes.  293 

Table 3. Main hyperparameters of MLP network. 294 

Hyperparameter Description  Value 

Nh Number of hidden layers 2 

Nn1 Number of nodes in the first hidden layer [1, 20]# 

Nn2 Number of nodes in the second hidden layer [1, 20]# 

Optimizer  Algorithm for optimizing weights and biases Levenberg–Marquardt  

MaxEpochs Maximum number of rounds used for training 200 

ηMLP Initial learning rate [1E-5, 1E-2]# 

Note: “#” represents the hyperparameters to be optimized by Bayesian Optimization. 295 

 296 

The discrepancy between prediction values and target values was measured by using 297 

the mean squared error (MSE, see Eq. 8) as the loss function. Besides, the fitting effect 298 

is also quantified by the coefficient of determination: 299 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̃𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

 (11) 300 

where 𝑦̅ is the mean true value and other parameters are the same as in Eq. (8). 301 

3.2.2 LSTM 302 

The LSTM structure contains four layers: a sequence input layer, one LSTM layer, 303 

followed by a fully connected layer, and eventually the regression layer. The main 304 

hyperparameters of the LSTM are listed in Table 4. Herein, three hyperparameters: the 305 
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number of nodes in the hidden layer, the initial learning rate, and the L2 regularization 306 

parameter are determined with the aid of BO. The optimization ranges are also given in 307 

Table 4. During the optimization process, Relu was chosen as the activation function 308 

for the LSTM layer, and the adaptive moment estimation (Adam) optimizer is utilized 309 

due to its superiority [40]. The batch size used for each training iteration is set to 100 310 

because every qc profile has 100 points [38]. The number of epochs needs to be 311 

sufficiently large to ensure the loss value that can converge at a constant value. However, 312 

due to the use of BO in this paper, the epoch should not be too large to prevent 313 

overfitting and therefore was set to 300 [22, 23, 38].  314 

Table 4. Main hyperparameters of LSTM model. 315 

Hyperparameter Description  Value 

Nh Number of hidden layers 1 

Nn Number of nodes in the hidden layer [1, 20]# 

Optimizer  Algorithm for optimizing weights and biases Adam 

ηLSTM Initial learning rate [1E-4, 1E-2]# 

L2 L2 regularization parameter [1E-5, 1E-2]# 

MaxEpochs Maximum number of rounds used for training 300 

Nb The batch size used for each training iteration 100 

Note: “#” represents the hyperparameters to be optimized by Bayesian optimization.  316 

3.3 BO-MLP/BO-LSTM modelling 317 

Fig. 3 presents a flowchart showing the BO-MLP and BO-LSTM modelling process. It 318 

can be described by six main steps: 319 

• Step 1: Obtain the raw datasets under different soil and penetration conditions, as 320 

presented in Section 3.1. Then, normalize the dataset, and separate it between 321 

training and testing datasets. 322 

• Step 2: Establish the MLP and LSTM neural networks. Then determine the 323 

hyperparameters of network models and set the range of hyperparameters to be 324 

optimized. The details for this step can be found in Section 3.2.  325 

• Step 3: Build the Bayesian optimization model. Neural network models are 326 

regarded as the objective function in optimization, while the MSE given in Eq. (8) 327 
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is determined as the evaluation function.  328 

• Step 4: Training the neural network under the current combination of 329 

hyperparameters with the training set. The value of the evaluation function under 330 

the current combination of hyperparameters is calculated and then returned to BO. 331 

According to the probabilistic surrogate model and acquisition function, the next 332 

group of hyperparameters is selected for a new round of training until reaching the 333 

maximum number of iterations. 334 

• Step 5: Output the combination of hyperparameters with the best model 335 

performance after BO. Then use these hyperparameters to train the neural network.  336 

• Step 6: Input the testing dataset into the trained network to evaluate the working 337 

performance of the established neural network.   338 
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Fig. 3. Flow chart of prediction procedure for BO-MLP/BO-LSTM model. 340 

4. Performance of the machine learning models 341 

4.1 Effectiveness of Bayesian optimization 342 

When using BO to optimize the neural networks, the iteration number of the objective 343 

function is set to 10 for preventing overfitting [41]. The process is displayed in Fig. 4. 344 

With the process of Bayesian optimization, the minimum objective value (i.e., the MSE 345 

of the neural network) decreases to a small value, signifying a good performance 346 

achieved by using BO. The combination of hyperparameters, after optimization, for the 347 

MLP neural network was determined to be Nn1 =8, Nn2 = 4, ηMLP = 1.31E-3, while for 348 

the LSTM neural network they are Nn = 16, ηLSTM = 5.2E-3, L2 = 1.2E-3. These 349 

hyperparameters were then used to train the neural networks. 350 
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(a)  (b) 

Fig. 4. Process of Bayesian optimization for (a) MLP model and (b) LSTM model 351 

 352 

The normalized loss function MSE of the two models with the optimized 353 

hyperparameters are shown in Figs. 5(a) and 5(b), respectively. For both models, the 354 

normalized MSE rapidly reduces to a relatively small value. For MLP, the normalized 355 

MSE reaches the target precision at epoch 19, which mainly benefits from the adopted 356 

Levenberg-Marquardt algorithm that can rapidly converge to optimal solutions [39]; 357 

the normalized MSE of the LSTM reaches a relatively constant value at the end of 358 
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training. The evaluation indexes of BO-MLP and BO-LSTM are listed in Table 5. 359 

Besides, the MSE and R2 of MLP and LSTM without optimization are also shown in 360 

Table 5, in which the errors of neural networks achieve an obvious reduction while the 361 

fitting degree R2 has an increase after the Bayesian optimization. The MSE reduces by 362 

73.1% (MLP) and 59.5% (LSTM) in the training set as well as 44.4% (MLP) and 40% 363 

(LSTM) in the testing set; the R2 increases by 0.83% (MLP) and 0.88% (LSTM) in the 364 

training set, and 1.05% (MLP) and 0.76% (LSTM) in the testing set. The loss functions 365 

and evaluation indexes show that the Bayesian optimization performs well in selecting 366 

hyperparameters for the neural networks. 367 
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(a) (b) 

Fig. 5. Evolution of normalized MSE against epochs during model training for (a) MLP model and 368 

(b) LSTM model. 369 

Table 5. Evaluation index for different models 370 

Model 
MSE (MPa) R2 

Training  Testing  Training  Testing 

BO-MLP 2.0006 4.8272 0.9865 0.9513 

BO-LSTM 2.2200 5.0109 0.9851 0.9465 

MLP 3.4720 6.9720 0.9782 0.9408 

LSTM 3.5412 7.0001 0.9763 0.9389 

 371 

To further evaluate whether the optimized hyperparameters in neural networks are 372 

suitable to the used cases, Fig. 6 shows the variation of R2 with the number of data used 373 

in neural networks. It can be observed that R2 in the training set is maintained at a high 374 
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level exceeding 95% for two neural networks. However, the R2 of the testing set 375 

increases with the number of used data from a low level (59.6% and 51.5%) to a 376 

relatively high level of more than 90%. But the used cases 41 to 55 (corresponding to 377 

4100-5500 on x-axial in Fig. 6) decrease the R2 of the training set, which may attribute 378 

to that the results of cases 41 to 55 are not so identical to other research, thereby 379 

reducing the overall quality of the dataset. For the eventually used 64 cases, the R2 of 380 

both training and testing sets reach the highest level, indicating that the adopted cases 381 

in this study are adaptive to the constructed neural networks.  382 
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 383 

Fig. 6. R2 of training and testing sets with the number of data used in neural networks 384 

4.2 Evaluation of the developed models  385 

To evaluate the performance of the established machine learning models, the predicted 386 

qc values obtained from the two neural networks versus the measured data of all the 64 387 

groups are presented in Fig. 7 for the BO-MLP and BO-LSTM models. As expected in 388 

the training set, the predicted qc values from the neural networks are close to the 389 

measured values. The R2 of the training set is 98.65% and 98.51%, respectively for 390 

MLP and LSTM models. Besides, the regression errors MSE in the training set are 391 

2.0006 and 2.2200 for the two networks, respectively. The R2 values for the evaluation 392 

against the unseen testing set are 95.13% and 94.65%, respectively for MLP and LSTM, 393 

while the MSE values are 4.8272 and 5.0109, respectively. In summary, the regression 394 



20 

 

plots in Fig. 7 show that the MLP and LSTM neural networks both perform well in 395 

predicting cone resistances among the selected raw datasets. But in some cases, the 396 

predictions still have some discrepancies with the measured values. A reasonable 397 

explanation might be that the fitting degree of neural networks cannot reach 100% and 398 

thereby hard for the ML model to fit all discrepancies [38]. This means there are some 399 

prediction points deviated from the original results.  400 
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Fig. 7. Measured cone resistances against predicted values from the two neural networks in (a) 401 

training set in BO-MLP network, (b) testing set in BO-MLP network, (c) training set in BO-LSTM 402 

network, and (d) testing set in BO-LSTM network 403 

 404 

To evaluate the performance of developed models more comprehensively, the relative 405 

error (RE) is employed to reflect the deviation percentage between measured values 406 
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and predictions: 407 

 RE = |
𝑦̃𝑖−𝑦𝑖

𝑦𝑖
|⁡ (12) 408 

where the parameters are the same as in Eq. (8). Fig. 8 depicts the frequency and 409 

cumulative probability of relative error distribution for all data in BO-MLP and BO-410 

LSTM models. In the training set of two neural networks, about 13.5% of total points 411 

show a high convergence around the standard line of 0% error. This value is about 10% 412 

for the testing set. The relative errors under 7.5% account for the majority of datasets 413 

with a cumulative probability larger than 60% for both training and testing sets. Besides, 414 

most (about 95%) of the total points show a relative error lower than 20%, proving that 415 

the prediction by the ML-based models can be highly accepted for calibration chamber 416 

tests. However, there are still a small number of points with errors greater than 30%. 417 

These are believed to be within the discrepancies between different scholars even under 418 

similar experimental situations. For example, cases 38 and 46 in Table 1 have similar 419 

experimental conditions, but the stable qc of case 38 is 11.4 MPa while in case 46 the 420 

value is 21.5 MPa. This discrepancy would decrease the precision of machine learning 421 

to the overall dataset, thereby causing a large error. Only if other variables that 422 

explained this discrepancy were included (i.e., instrument accuracy in the 423 

measurements) the machine learning algorithm could be improved. This is however 424 

impractical within the scope of this paper.   425 
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(a)  (b) 

Fig. 8. Frequency and cumulative probability of relative error in (a) BO-MLP network and (b) 426 

BO-LSTM network. 427 

 428 

Fig. 9 shows the comparison between the predicted qc profiles by MLP and LSTM 429 

neural networks with the experimental data. Every subplot in Fig. 9 shows three good 430 

predictions (red lines) and three worst cases (black lines). It can be seen from Fig. 9 431 

that both in the training and testing set, the variation tendency of cone resistance with 432 

the normalized depth z/ztotal (ratio of the current penetration depth over the total 433 

penetration depth) can be successfully reproduced by two neural networks during 434 

penetration processes. Given that coefficient of determination R2 has reached relatively 435 

large values for training and testing datasets, many cases can be well predicted by neural 436 

networks. But some cases still display obvious errors between measured values and 437 

predictions, especially for these worst cases, as displayed in the black lines in Fig. 9. 438 

Such as the example of case 43 in Fig. 9(b), the true stable qc is about 5 MPa while the 439 

prediction reaches 10 MPa, resulting in the relative error of 50%. These worst cases 440 

lead to the RE in Fig. 8 larger than 30%. Besides, the cone resistance at the bottom of 441 

penetration, in some cases, presents the tendency of reduction, as displayed in cases 16 442 

and 58 in Fig. 9(c). The main reason behind this phenomenon might be that some 443 

calibration chamber tests with flexible bottom boundaries cause a decrease in cone 444 

resistance around the bottom of the chamber [34]. The established neural networks 445 

learned this feature, thereby causing the resistance reduction at the bottom of 446 

penetration in some cases. In addition, some experimental results like case 8 show large 447 

errors and singular points where the qc curve did not start from the original point, which 448 

may explain the points outside the 30% error in Fig. 8. In summary, the established 449 

machine learning models are proven capable of predicting the cone resistance profiles 450 

in calibration chamber test with an acceptable fitting degree. 451 
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Fig. 9. Comparison of measured data with prediction profiles from ML model in (a) training set of 452 

BO-MLP; (b) testing set of BO-MLP; (c) training set of BO-LSTM; (d) testing set of BO-LSTM. 453 

Red lines represent better predictions by neural networks while black lines represent the worst 454 

cases. 455 

5. Further validation and application of the trained models 456 

5.1 Validation with numerical solutions 457 

This section aims to further compare the neural networks with numerical solutions for 458 

new (not given in Table 1) cases. These new cases are designed to consider the variation 459 

of relative density, vertical effective stress, and saturation conditions of sand, as listed 460 

in Table 6. Numerical simulations to install the CPT in the calibration chamber for these 461 

cases are then performed to provide cone resistance profiles. Details on the CEL model 462 
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setup and soil constitutive relationships are shown in Appendix A and B, respectively.     463 

Table 6. New cases to be validated by numerical modelling. 464 

No. Dr σv (MPa) K0 Saturation condition 

1 0.563 0.13 0.42 Dry  

2 0.82 0.15 0.45 Saturated 

3 0.734 0.09 0.5 Dry 

4 0.8 0.16 0.38 Dry 

 465 

The CEL model is first compared and validated against calibration chamber tests 466 

conducted by Kluger et al. [34] in Ticino sand. Their testing results under two vertical 467 

effective stresses σv of 100 kPa and 200 kPa are shown in Fig. 10. It can be seen from 468 

Fig. 10 that the numerical solutions are in good agreement with testing results, giving 469 

confidence that the CEL modelling can provide the reliable qc profiles in calibration 470 

chamber tests.  471 
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Fig. 10. Comparison of the simulated cone resistance with the experimental results of Kluger et al. 473 

[34].  474 

 475 

Fig. 11 shows the comparisons of cone resistance profiles obtained from the two neural 476 

networks and the numerical simulation for the artificial cases in Table 6. The qc profiles 477 

obtained from the machine learning models are fair close to the numerical simulations, 478 

although some cases like No. 2 in Table 6 still show discrepancies between the two 479 

methods. However, the stable values of cone resistance achieve a better agreement 480 
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between the numerical simulation and the neural networks. One has to be aware that 481 

the application of the validated models still requires complex model set-up and time-482 

consuming running. In contrast, a well-trained neural network can quickly (typically a 483 

few seconds) create reliable qc curves under certain soil conditions.  484 
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 485 

Fig. 11. Comparison of neural networks with CEL model in predicting unseen cases. 486 

5.2 Application: relating qc with soil properties 487 

As mentioned before, most of the existing correlations between qc and soil properties 488 

(e.g., relative density Dr) were presented through a limited number of datasets for 489 

specific soil types. The trained neural networks have been proven as a reliable approach 490 

to quickly extend the database of CPT in calibration chambers, therefore the corrections 491 

of these correlations can be made based on the extended database based on the machine 492 

learning models. This section shows an example to potentially improve the Dr - qc 493 

correlation using the neural networks developed in this study. 494 

 495 

Table 7 summarizes four reported correlations of Dr - qc. Here, the normalized cone 496 

resistance of Q = (qc-σv)/σv was introduced to consider the influence of vertical stress 497 

whenever available. Fig. 11 presents the deduced correlations of Dr - Q from Eqs. (13) 498 

to (16). The 864 groups of Dr - Q generated from the developed neural networks are 499 

also shown in Fig. 12. Note that only the constant qc values from cone resistance profiles 500 
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are used to relate soil properties, and the ML results are the average values of BO-MLP 501 

and BO-LSTM. The previous experimental results of Bolton and Gui [42] and 502 

Jamiolkowski et al. [43] are also presented in Fig. 12. The existing empirical formulas 503 

often only match with the corresponding experimental data used for fitting but deviate 504 

from others. Conversely, the predictive database from neural networks has considered 505 

different soil types and test conditions (see Table 1).  506 

Table 7. Summary of representative correlations of Dr-qc-σv 507 

Empirical formula Empirical coefficient  Reference 

𝐷𝑟 =⁡
1

𝐶2
ln⁡[

𝑞𝑐

𝐶0(𝜎v)
𝐶1
]        (13) 

C0 = 60, C1 = 0.7, C2 = 

2.91 

Lunne and Christoffersen 

(1983) [44] 

𝐷𝑟 =⁡𝐶2log10⁡[

𝑞𝑐
𝑝𝑎

(
𝜎v
𝑝𝑎
)
𝐶1
− 1]   (14) 

C1 = 0.5, C2 = 68, pa is the 

atmospheric pressure   

Kulhawy and Mayne 

(1990) [45] 

𝐷𝑟 = 𝐴𝑄 + 𝐵⁡and⁡𝑄 =
𝑞𝑐−𝜎v

𝜎v
  (15) A = 0.2831, B = 32.964 

Bolton and Gui (1993) 

[42] 

𝐷𝑟 =⁡𝐴0 + 𝐵0ln⁡[
𝑞𝑐

(𝜎v)
0.5]     (16) A0 = -1.292, B0 = 0.268 

Jamiolkowski et al. 

(2003) [3] 

 508 

Comparison with the dataset from the developed neural networks finds that the linear 509 

regression of Eq. (15) works not so well in fitting all these data, especially for Dr lower 510 

than 50%. Eq. (16) underestimates the relative density from normalized cone resistance 511 

and is close to the lower bound of the dataset. The logarithmic form of Eqs. (13) and 512 

(14) conform better to the Dr - Q relationship. Nevertheless, Eq. (14) overestimates 513 

slightly the dataset for values of Dr lower than 50% while Eq. (15) overestimates 514 

slightly the dataset for values larger than 50%. For pure experimental data in Fig. 12, 515 

the R2 of Eqs. (13) to (16) are 68.7%, 71.3%, 75.6%, and 65.2%, respectively. This 516 

conclusion illustrates that traditional empirical equation regarding a specific soil type 517 

has some limitations when expanded to other soil states. However, with the help of the 518 

ML model, we can generate hundreds of Dr - Q points for practical application. 519 

Consequently, a new correlation of Dr - Q by curve fitting to all the data in Fig. 12 is 520 

given below:   521 

 𝐷𝑟 = 29.832ln𝑄 − 72.397 (17) 522 
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Eq. (17) has a high fitting degree of 92.7% to all Dr - Q points. For the pure experimental 523 

data in Fig. 12, Eq. (17) still has a relatively high R2 value of 88.3%. It is believed that 524 

the improved Eq. (17) is more reliable since the database used for the fitting included 525 

not only the published experimental data but also a large amount of data from the 526 

developed ML models. In the future, if more datasets of calibration chamber tests can 527 

be provided to further train the ML models, more convincing ML models can be trained 528 

for enhancing practical application. 529 
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 530 

Fig. 12. Correlation between relative density and normalized cone resistance. 531 

6. Conclusion 532 

This study introduces a Bayesian-optimized machine learning approach using neural 533 

networks for predicting cone resistance profiles in calibration chamber tests performed 534 

on sand. We began by training the neural networks using 52 groups (5200 points) taken 535 

from the results in the literature, followed by validation of the results using a testing 536 

data set consisting of 12 groups (1200 points). Bayesian optimization was used to obtain 537 

the hyperparameters of both the MLP and the LSTM networks, and in particular the 538 

number of neurons per layer and the initial learning rate.  539 

 540 

The prediction of the cone resistance qc, had a coefficient of determination (R2) for the 541 
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training set of 98.65% (MLP) and 98.51% (LSTM), and an MSE of 2.0006 (MLP) and 542 

2.2200 (LSTM). In the training dataset, the R2 and MSE values were 95.13% (MLP) 543 

and 94.65% (LSTM), and 4.8272 (MLP) and 5.0109 (LSTM) respectively. Further 544 

comparisons were carried out using the results of a Coupled Eulerian-Lagrangian model 545 

for other soils not covered in the experimental results, which also gave good results.  546 

 547 

Finally, the validated machine learning model was deployed to generate unseen 548 

scenarios, correlating cone resistance (qc) with the relative density of sand to prove the 549 

validity of the derived results. The model is derived from 864 groups (cases) generated 550 

using the ML model and is tested against literature models. The obtained R2 value 551 

versus experiments mentioned in the literature is 88.3%, which indicates its ability to 552 

generalization. 553 

 554 

In conclusion, we have demonstrated that neural networks can be applied to provide 555 

general models that could serve the purpose of virtual calibration chambers. This 556 

approach outperforms other previously published calibration chambers based on 557 

numerical models as they provide pseudo-real-time models, and therefore, it is orders 558 

of magnitude more computationally efficient. Besides, this work can be extended to 559 

more CPT-based material parameter interpretations such as soil strength and stiffness 560 

parameters using other machine learning-based approaches. 561 

Appendix A. CEL model set-up 562 

The CEL model for a calibration chamber test is shown in Fig. A1. The CPT probe has 563 

a standard diameter of D = 36 mm and an apex angle of 60° [4]. The cone penetrometer 564 

was modeled by a Lagrangian body and discretized using C3D8R elements with a total 565 

number of 202. Eulerian material was employed to model the soil with large 566 

deformation. As the symmetry of the model test, only a 1/4 size model was established. 567 

A soil domain of 25D in radial direction and 47D in depth direction was sufficient to 568 



29 

 

avoid boundary effects [4]. The central rectangular area of approximately 5.5D was 569 

densified to ensure the calculation accuracy. The mesh size in the dense field was set as 570 

0.125D × 0.27D in radial and vertical directions, respectively. The upper part of 571 

model represents the initially void region but could be filled by the movement of 572 

materials into elements during penetration, while the lower part is filled fully with 573 

materials. The soil domain was discredited by the EC3D8R elements with a total 574 

number of 12968 with reduced integration and hourglass control. 575 

 576 

The bottom boundary of the soil domain was restrained in the vertical direction, and 577 

the lateral boundary was constrained in both horizontal directions (BC3). Two dynamic-578 

explicit steps were employed to simulate the penetration process in sand, in which the 579 

first geostatic step is used to establish the initial stress field and balance the geostatic 580 

stress for sand. According to Table 6, the corresponding σv and K0 were applied to 581 

generate the soil stress field. In the validation with an experiment in Fig. 10, the lateral 582 

earth pressure coefficient K0 was set to be 0.45, which was consistent with the selected 583 

calibration chamber tests. The relative density was calculated by the initial void ratio 584 

[4]. In the second step, the modelling of CPT penetration under a constant vertical 585 

velocity of 0.2 m/s was performed. The contact between the cone/shaft and soil was 586 

modelled using a surface-to-surface discretization with a frictional coefficient of μ = 587 

0.22.  588 
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Cone penetrator

25D

47D

Euler zone 
(material void)

Euler zone 

(material filled)

 589 

Fig. A1. CEL model for calibration chamber 590 

Appendix B. Soil constitutive relationship 591 

The hypoplastic (HP) constitutive model for sand proposed by Gudehus [46] and 592 

Wolffersdorff [47] was employed to model soil constitutive behavior. An extension of 593 

the concept of intergranular strain proposed by Niemunis and Herle [48] was 594 

established to account for the accumulation effects and hysteretic behavior in small 595 

strain stiffness cases. The Ticino sand was chosen to fill the chambers. The 596 

experimental drained triaxial shear data on Ticino sand conducted by Rorato et al. [49] 597 

is shown in Fig. B1 for dense sand with a constant initial void ratio e0=0.612 under 598 

different confining pressure σc. A set of HP model parameters of the Ticino sand are 599 

summarized in Table B1. For calibration, Fig. B1 also gives the predicted constitutive 600 

relationships of Ticino sand modelled by HP model parameters in Table B1. From Fig. 601 

B1, although some small differences between the experimental and the numerical data 602 

are found, the HP model parameters listed in Table B1 are considered to be enough 603 
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reasonable, and hence can be used to run the following models. 604 

  605 

To incorporate the effect of pore water pressure generated in the saturated sand, this 606 

paper employed the method by Qiu and Grabe [50]. The changes in pore water pressure 607 

pw are determined by the state equation of pore pressures and the balance of mass: 608 

𝑝̇w =
𝐾w

𝑛
𝜀v̇ (B1) 609 

where Kw is the bulk modulus of water is derived 2.1 GPa; n is the porosity; εV is the 610 

volumetric strain. Kw=0 means dry sand while Kw>0 signifies saturated condition. The 611 

HP model and Eq. (B1) are employed to describe the constitutive relationship of sand 612 

and are incorporated using a VUMAT subroutine. 613 
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Fig. B1. Comparison between the experiment data and simulation with hypoplastic model 616 

Table B1. Hypoplastic material parameters for Ticino sand 617 

Parameter Value 

Critical state friction angle, φc 31° 

Granular hardness, hs (MPa) 2000 

Material constant, n 0.29 

Minimum void ratio at zero pressure, ed0 0.57 

Critical void ratio at zero pressure, ec0 0.94 

Maximum void ratio at zero pressure, ei0  1.1 

Material constant, α 0.16 

Material constant, β 1.65 

Maximum value of intergranular strain, R 0.00033 

Material constant, mR 5 
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Material constant, mT 2 

Evolution of intergranular strain, βr 0.5 

Parameter controlling stiffness degradation 

during monotonic deformation, χ 
6 
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