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Abstract 
              Machine Cryptography uses digital circuitry that performs operations described as 
modulo-n additions (as in SHA-256 and ChaCha20) and additions over GF(2^k) (as in AES-
GCM and many other protocols). These additions are well documented and are used to ‘mix’ 
data. By themselves these operations provide no additional security. Conventionally, security is 
provided by unknown or secret data (a “key stream”) that is mixed with often ‘known’ data 
(“clear text’). Security is generally created by the unknown or secret keystream and not by a 
secrecy of a function.  
             This article describes ways to create large numbers of (secret) reversible n-state carry 
functions for radix-n additions known as ripple carry additions. Canonical forms of n-state carry 
functions for reversible modulo-n additions and additions over GF(n) are provided. 
  Novel reversible n-state carry functions are provided that keep the n-state machine 
additions reversible but now unpredictable. 
 The modifications are applied in known cryptography such as AES-GCM, ChaCha20 and 
SHA-256. These improve the security and appear to be resistant against quantum computer (QC) 
attacks. 
 Irreversible n-state carry functions are applied in one-way machine cryptography. 

Key Contributions: 

• Defines canonical n-state carry functions in carry based reversible additions modulo-n 
and additions over GF(n) 

• Provides modified versions of canonical and ad hoc reversible n-state carry functions 
• Applies the carry modifications in machine cryptography 
• Increases overall security of standard machine cryptography 

Keywords: N-state ripple carry adder, reversibility, radix-n, n-state carry, n-state borrow, non-
canonical modification, cryptography, finite fields, Finite Lab-Transform, FLT, encryption, 
hashing, AES-GCM, ChaCha20, SHA-256 

1. The Used Notation Herein 

The applied notation herein is derived from the teaching approach of Prof. Dr. Gerrit Blaauw, 
one of the 3 chief designers of the legendary IBM System/360, as applied in his book "Digital 
System Implementation," [1]. Therein Blaauw uses APL to describe standard digital components 
like the AND gate by for instance: c ← aÙb with ‘a’ and ‘b’ being binary input operands and 
‘c’ its output. APL allows a symbol like ⍬ to be introduced/defined as an operator representing, 
for instance, a specific look-up table or customized operation. One may also compute, in for 
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instance Matlab, c = ⍬(a,b) wherein ⍬ is a predefined lookup table.   While unusual, there is 
mathematically nothing wrong with this type of representation, as long as one observes the 
properties of the operation/table, like associativity or lack thereof. 

A straightforward table-based notation is applied herein scn for n-state addition-like operations 
and mgn for multiplication-like operations. Thus, c=scn(a,b) or c=mgn(a,b) become the preferred 
notation herein. It allows direct replacement in computer programs by relevant look-up tables. 

2. Radix-n Addition 

The following table provides the lookup table sc5  for modulo-5 addition: 
 

sc5 0 1 2 3 4 
0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 
3 3 4 0 1 2 
4 4 0 1 2 3 

                Figure 1 

Instead of having to repeat or use the table one may use c=sc5(row,column), wherein one 
convention is that the first operand indicates the row index and the second one is the column 
index of a look-up table. 

The corresponding 5-state carry function car5 is provided in Figure 2 below. 
 

car5 0 1 2 3 4 
0 0 0 0 0 0 
1 0 0 0 0 1 
2 0 0 0 1 1 
3 0 0 1 1 1 
4 0 1 1 1 1 

                Figure 2 

Figure 3 illustrates the radix-5 carry ripple addition using sc5 or the modulo-5 addition to 
determine a residue and the 5-state function car5 to determine the carry which is 0 or 1. The 
carry ripple adder is a positional operation wherein digits of 2 n-state operands are processed. 
There are always cycles of 2 steps:  
      step 1: residues of operand elements in corresponding positions are determined, and placed in 
the position of the operand elements, and  
      step 2: two elements in a position determine a carry digit, which is placed in a neighboring 
position. 
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Each cycle is repeated until no more carry digits are generated. The carry “ripples” through 
intermediate results, so to speak. It corresponds often with the way humans do decimal additions, 
placing a carry to the left of the position of the elements that determine the carry. It coincides 
with big-endian notation. In arithmetic the generated carry digit is 0 if the sum of two digits is 
smaller than n. If the sum is n or greater than n the carry digit is a 1. This is independent of a size 
of n. That is, the carry is always 0 or 1 no matter how large n is. This rule relates to arithmetic 
and not to switching, as a switch doesn’t know that a sum is equal or greater than n. In n-state 
machine operations one may use a look-up table like provided in Figure 2 with fixed criteria for 
generating a carry digit, though one may also implement with circuitry based on a Karnaugh map 
for instance. 

In arithmetic the carry digit ripples from right to left. That is because of a desire to make the 
machine operation similar to human arithmetical approach. For applications like encryption such 
a direction is not required and one may ripple from left to right which may have additional 
benefits. 

Figure 3 shows the steps of a 4-digit radix-5 addition of 2 operands. The ripple is from right to 
left. The selected operands are 5-state: op1= [0 4 4 4 4] and op2 = [0 0 0 0 1]. These are of 
course 5 digit operands. This is done to illustrate the carry-out, which will not be further used. 

op1  0 4 4 4 4 
op2  0 0 0 0 1 
       
sc5  0 4 4 4 0 
car5  0 0 0 1 - 
       
sc5  0 4 4 0 0 
car5  0 0 1 - - 
       
sc5  0 4 0 0 0 
car5  0 1 - - - 
       
sc5  0 0 0 0 0 
car5  1 - - - - 

               Figure 3 

The rows sc5 show the residues addition modulo-5 of the digits of the operands and rows car5 
show the generated carry digits generated by the operand digits in a neighboring position. The 
dash (‘-‘) means that no carry operation is performed and the residue digit in row sc5 
corresponding to ‘-’ is the resulting sum digit. The 4-digit sum is [0 0 0 0]. The carry-out is 1, 
but may not be used in cryptography. If one would have used only the modulo-5 addition, with 
no carry propagation, the result would have been [4 4 4 0]. 

Machine arithmetic performs subtraction in binary form and generally not in the subtraction form 
that humans do, but applies 2’s-complement addition. One may do that also for modulo-n 
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subtraction. Rather than doing n’s complement addition we will do a modulo-n subtraction with 
a corresponding borrow function.  

 

3. Radix-n Subtraction 

The following table in Figure 4 provides the lookup table for modulo-5 subtraction. The table is 
derived from out=(row-column) mod-5.  
 

min5 0 1 2 3 4 
0 0 4 3 2 1 
1 1 0 4 3 2 
2 2 1 0 4 3 
3 3 2 1 0 4 
4 4 3 2 1 0 

                Figure 4 

The corresponding 5-state borrow function bor5 is provided in Figure 5 below. 
 

bor5 0 1 2 3 4 
0 0 1 1 1 1 
1 0 0 1 1 1 
2 0 0 0 1 1 
3 0 0 0 0 1 
4 0 0 0 0 0 

                Figure 5 

From an arithmetical point of view the borrow table has a borrow 1 if the row-index is smaller 
than the column-index. Otherwise, the borrow digit is 0.  

Rule: From a machine computational point of view, a borrow table corresponding to a carry 
table is the mirror image of the carry table, mirrored over the horizontal axis so the rows change 
index. Or index_row_borrow(i)= index_row_carry(n-i-1) for index starting at 0. This is a 
canonical rule for all reversible additions in this article. 

Figure 6 illustrates the radix-5 carry ripple subtraction using min5 or the modulo-5 subtraction to 
determine a residue and the 5-state function bor5 to determine the borrow which is 0 or 1. The 
borrow ripple subtraction is also a positional operation with steps identical to the addition but 
with different functions.  

Figure 6 shows the steps of a 4-digit radix-5 subtraction of 2 operands. The ripple is from right to 
left. The selected operands are 5-state: op1= [0 0 0 0 0] and op2 = [0 0 0 0 1]. These are of 
course 5 digit operands. This is done to illustrate the borrow-out. 
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op1  0 0 0 0 0 
op2  0 0 0 0 1 
       
min5  0 0 0 0 4 
bor5  0 0 0 1 - 
       
min5  0 0 0 4 4 
bor5  0 0 1 - - 
       
min5  0 0 4 4 4 
bor5  0 1 - - - 
       
min5  0 4 4 4 4 
bor5  1 - - - - 

               Figure 6 

The rows min5 show the residues subtraction modulo-5 of the digits of the operands and rows 
bor5 show the generated borrow digits generated by the operand digits in a neighboring position. 
The dash (‘-‘) means that no borrow operation is performed and the residue digit in row min5 
corresponding to ‘-’ is the resulting difference digit. The 4-digit difference is [4 4 4 4]. The 
borrow-out is 1, but would not be used in cryptography. If one would have used only the 
modulo-5 subtraction, with no borrow propagation, the result would have been [0 0 0 4]. 

4. Radix-n Operations in Cryptography 

How would the above be applied in encryption/decryption. Assume a secret key Key and a 
cleartext CTex. The above then suggests a ciphertext Ciphtex as encryption:  Ciphtex = CTex+Key 
and decryption:   CTex = Ciphtex-Key. One may also use subtraction for encryption and addition 
for decryption, of course. 

In most encryption schemes the ‘+’ is performed as an addition over finite field GF(n=2^k), 
which in implementation is the bitwise XORing of words of k bits, wherein CTex, Key and Ciphtex 
are all words of k bits. One may replace k bits by their decimal representation and perform 
encryption by modulo-n with n=2^k addition of the individual n-state elements. This may 
initially throw off an attacker, but there are only a limited number of replacements of the 
addition over GF(n). An informed attacker may simply run through the most likely functions. The 
modification is thus be more of an annoyance than a true barrier. 

The radix-n addition provides a further obfuscation, by introducing the carry propagation. The 
uncertainty herein is formed by the length of the word of n-state elements. The more elements, 
the greater the probability of a carry propagating through the elements. 
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However, the fact that a carry is either 0 or 1 works against the uncertainty.  It would be better to 
have a carry that is never 0. However, in that case it is always 1. A carry always being 1 is of 
course the same as adding a word [1 1 1 0]. 
 
Start carry from earlier position 

The last carry digit being 0 is caused by being the first step in carry determination. The 
application in encryption is different from being a truly arithmetical operation. One can ‘force’ a 
carry (or borrow) by extending the number of elements. For instance op1=[0 4 4 4 4] may be 
op1e=[0 4 4 4 4 0] wherein the last 0 is not part of the cleartext, but a way to invoke a carry. In 
this example the extra 0 does not do anything, but that will change further below. 

The above also shows why computation of carry digits from left to right may be easier, because 
there is already an inactive digit of the unused input carry.  

4. The Modified Carry Function Modulo-n 

A first canonical modification in the modulo-n addition is changing the 0 to any value between 0 
and n-1, and changing the 1 to any value between 0 and n-1.  

The following example shows the new carry function for n=5 and modulo-5 addition wherein the 
carry 0 is replaced by 2 and the carry 1 is replaced by 4. It is illustrated in Figure 7 as function 
can5. 

can5 0 1 2 3 4 
0 2 2 2 2 2 
1 2 2 2 2 4 
2 2 2 2 4 4 
3 2 2 4 4 4 
4 2 4 4 4 4 

                Figure 7 

The corresponding modified borrow function is shown in Figure 8 as function bon5. 

bon5 0 1 2 3 4 
0 2 4 4 4 4 
1 2 2 4 4 4 
2 2 2 2 4 4 
3 2 2 2 2 4 
4 2 2 2 2 2 

                Figure 8 

The modified radix-5 addition of as illustrated in Figure 3, now using modified function can5 
still with sc5 is shown in Figure 9. 
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op1  0 4 4 4 4 
op2  0 0 0 0 1 
       
sc5  0 4 4 4 0 
can5  2 2 2 4 - 
       
sc5  2 1 1 3 0 
can5  4 4 4 - - 
       
sc5  1 0 0 3 0 
can5  4 4 - - - 
       
sc5  0 4 0 3 0 
can5  2 - - - - 

               Figure 9 

The modified radix-5 subtraction as illustrated in Figure 6, now using modified function bon5 
still with min5 is shown in Figure 10. 

 

op1  0 4 0 3 0 
op2  0 0 0 0 1 
       
min5  0 4 0 3 4 
bon5  2 2 2 4 - 
       
min5  3 2 3 4 4 
bon5  2 4 4 - - 
       
min5  1 3 4 4 4 
bon5  4 4 - - - 
       
min5  2 4 4 4 4 
bon5  4 - - - - 

               Figure 10 

One can see that the cleartext [4 4 4 4] is correctly recovered by the modified radix-5 subtraction. 
One should of course ignore the borrow-out. 
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Non-canonical Modifications of Modulo-n Additions 

The above modification, substituting a 0 and a 1 in a carry function, with a value (n-1), the 
substitutions preferably being different, may be considered a canonical modification. While there 
are many possible modifications when n is large, these modifications are predictable. Even 
though brute force attacks on these modifications may be extremely time-consuming. 

There are some ways to construct non-canonical carry functions. One is pure brute force trial-
and-error going through all permutations of an n-by-n table. This runs quickly into limitations of 
size, as there are n^(n^2) different permutations.  

One may build upon this, by further modifying newly found reversible n-state carry tables by 
applying n-state reversible inverters on the outputs and check if they remain reversible. 

As an example of a non-canonical 4-state reversible carry function that corresponds to modulo-4 
addition plus4 is the following 4-state carry function cax4 and the corresponding borrow 
function box4 with subtraction modulo-4 min4. 

plus4 0 1 2 3 cax4 0 1 2 3 min4 0 1 2 3 box4 0 1 2 3 
0 0 1 2 3  3 3 3 0  0 3 2 1  3 1 2 2 
1 1 2 3 0  3 2 3 2  1 0 3 2  3 3 2 3 
2 2 3 0 1  3 3 2 3  2 1 0 3  3 2 3 2 

   3 3 0 1 2  3 1 2 2  3 2 1 0  3 3 3 0 
 Figure 11 

One can perform the carry ripple addition and borrow ripple subtraction as shown in Figures 9 
and 10, using the functions of Figure 11 with op1= [3 3 3 3] and op2=[0 0 0 1]. One gets 
sum=op1+op2= [3 3 0 0] and dif=sum-op2=[3 3 3 3]. Demonstrating that the operations are 
reversible. 

5. Individually per Digit Modified Carry Function Modulo-n 

The above illustrates how one simply can modify the carry function for a radix-n 
addition/subtraction while maintaining reversibility of the operations. It seems a bit trivial to do 
this for a radix-5 addition. The possibilities of modifications increase dramatically for larger 
values of n. For instance, for elements represented by 8 bits one has n=256 and there are over 
65,000 possible modifications. 

Another important opportunity for obfuscation is to use a different carry function for each 
position in the operands. As long as one applies the corresponding (flipped) borrow function, one 
is able to fully reverse the addition, using the modification rules as stated above. 

6. Carry Function in Carry-less Operations 

In cryptography bitwise XORing of words of k bits is much used. This operation may be described 
as an addition over GF(n=2^k). Such an operation is a carry-less operation as no carry digits are 
generated. For instance, a word of 32 bits may be considered a word of 4 8-bit words. The 
bitwise XORing of 32-bits is identical of addition of 4 corresponding words of 8 bits by addition 
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over GF(n=2^8=256). One may compute the individual words of 8 bits as 256-state elements and 
convert the 256-state result back into a word of 8 bits and reconstitute the word of 32-bits from 
the 4 256-state elements. This will, of course, create the 32-bits word formed by bitwise XORing. 

No carry element is applied by the above addition. Confusion and obfuscation will be created 
unexpectedly if by some way a carry element is introduced.  

Let’s first go back to the binary or radix-2 addition. The two binary functions to operate a radix-2 
addition are the XOR as representing the modulo-2 addition and the AND function for generating 
the carry. A binary carry is generated only as both operand bits are 1. 

Extension Functions  

Extension functions are known in finite field arithmetic, where an element in an extension field 
is represented by a polynomial over the base field.  

For the current extension another approach will be applied. The base functions are the XOR and 
the AND. The extended functions for n=2^k will be created by doing bitwise XOR and AND of 
words of k bits and then converting the resulting words of k bits into their decimal representation. 
Figure 12 illustrates the results for n=2^2=4 and Figure 13 illustrates the radix-4 addition of 
operands with 4 4-state elements. The function sc4 is the addition over GF(4) and car4 is the 
corresponding 4-state carry function. The subtraction over GF(4) is also sc4 and the 
corresponding 4-state borrow function bor4 is the ‘flipped’ set of rows of car4 

sc4 0 1 2 3 car4 0 1 2 3 bor4 0 1 2 3 
0 0 1 2 3  0 0 0 0  0 1 2 3 
1 1 0 3 2  0 1 0 1  0 0 2 2 
2 2 3 0 1  0 0 2 2  0 1 0 1 

   3 3 2 1 0  0 1 2 3  0 0 0 0 
  Figure 12 
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op1  0 3 3 3 3 
op2  0 0 0 0 1 
       
sc4  0 3 3 3 0 
car4  0 0 0 1 - 
       
sc4  0 3 3 0 0 
car4  0 0 1 - - 
       
sc4  0 3 0 0 0 
car4  0 1 - - - 
       
sc4  0 0 0 0 0 
car4  1 - - - - 

               Figure 13 

The modified radix-4 addition over GF(4) with carry as illustrated in Figure 13 above. One would 
expect the result of the addition over GF(4) of [3 3 3 3] and [0 0 0 1] to be [3 3 3 0], but in fact 
the result is [0 0 0 0]. One should check manually that this is a reversible operation, by using 
bor4 as the corresponding borrow function. 

Modified Carry Functions 

There is no single canonical rule for modifying the carry function related to additions over 
GF(2^k). One may take different approaches. For n=4 one may use a brute force approach and 
one may find sets of modified carry functions of car4 while keeping sc4 unmodified. One of such 
a set is provided in Figure 14.  

sc4 0 1 2 3 cap4 0 1 2 3 bop4 0 1 2 3 
0 0 1 2 3  3 3 2 3  3 2 1 1 
1 1 0 3 2  3 2 2 2  3 3 1 0 
2 2 3 0 1  3 3 1 0  3 2 2 2 

   3 3 2 1 0  3 2 1 1  3 3 2 3 
                 Figure 14 

The radix-4 addition with ripple addition using sc4 and cap4 is shown in Figure 15. 
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op1  0 3 3 3 3 
op2  0 0 0 0 1 
       
sc4  0 3 3 3 2 
cap4  3 3 3 2 - 
       
sc4  3 0 0 1 2 
cap4  1 1 1 - - 
       
sc4  0 1 1 1 2 
cap4  3 3 - - - 
       
sc4  3 2 1 1 2 
cap4  2 - - - - 

               Figure 15 

The result of the modified radix-4 addition of [3 3 3 3] with [0 0 0 1] is then [2 1 1 2]. 

Figure 16 shows the modified subtraction using sc4 and bop4, using [2 1 1 2] and [0 0 0 1] as 
operands. 

op1  0 2 1 1 2 
op2  0 0 0 0 1 
       
sc4  0 2 1 1 3 
bop4  3 3 3 2 - 
       
sc4  3 1 2 3 3 
bop4  2 0 1 - - 
       
sc4  1 1 3 3 3 
bop4  3 2 - - - 
       
sc4  2 3 3 3 3 
bop4  1 - - - - 

               Figure 16 

One can see that the cleartext operand is recovered with the modified radix-4 operation. A test 
program has verified that reversibility for this operation applies to all possible 4-state operands. 

7. Further Extending Non-canonical N-state Functions 

In cryptography, uncertainty about used n-state functions will increase security. The greater the 
number of possible functions, the greater the required effort of attack by brute force and the 
greater inherent security. 
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In the case of the addition radix-n using addition over GF(n=2^k) the extension of the carry 
function by element-wise application of the AND function as illustrated in Figure 12, has (of 
course) only a single extension for each further power of k. The function of Figure 12 is obtained 
by doing a bitwise AND of words of 2 bits. One may create the extension for n=2^3=8 by doing 
the same for words of 3 bits and so on. One may also extend the 4-state function of Figure 12 to 
4^2 or 16-state elements. One may do this by taking all words of 2 4-state elements and do an 
element-wise application of the 4-state carry function to all possible 2 4-state element words. 
And then convert each 2 4-state element word to its decimal representation. 

This approach does NOT make a difference if one starts with the same bit-wise AND operation. 
Doing a 4-bit word AND or first a 2-bit word AND followed by a 2 4-state word operation will 
create the same result, of course.  

The following tables in Figures 17 and 18 illustrate the effect of extensions. Figure 17 is the 
canonical carry table of the 16-state carry function car16 related to the bitwise XOR car4 
expressed as addition over GF(16). 

car16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 
3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4 
5 0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5 
6 0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6 
7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 
9 0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9 

10 0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10 
11 0 1  2 3 0 1 2 3 8 9 10 11 8 9 10 11 
12 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12 
13 0 1 0 1 4  5 4 5 8 9 8 9 12 13 12 13 
14 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 17 

The table of Figure 18 below illustrates the 16-state extension table cap16 of the 4-state table 
cap4 of Figure 14. 
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cap16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 15 15 14 15 15 15 14 15 11 11 10 11 15 15 14 15 
1 15 14 14 14 15 14 14 14 11 10 10 10 15 14 14 14 
2 15 15 13 12 15 15 13 12 11 11 9 8 15 15 13 12 
3 15 14 13 13 15 14 13 13 11 10 9 9 15 14 13 13 
4 15 15 14 15 11 11 10 11 11 11 10 11 11 11 10 11 
5 15 14 14 14 11 10 10 10 11 10 10 10 11 10 10 10 
6 15 15 13 12 11 11 9 8 11 11 9 8 11 11 9 8 
7 15 14 13 13 11 10 9 9 11 10 9 9 11 10 9 9 
8 15 15 14 15 15 15 14 15 7 7 6 7 3 3 2 3 
9 15 14 14 14 15 14 14 14 7 6 6 6 3 2 2 2 

10 15 15 13 12 15 15 13 12 7 7 5 4 3 3 1 0 
11 15 14 13 13 15 14 13 13 7 6 5 5 3 2 1 1 
12 15 15 14 15 11 11 10 11 7 7 6 7 7 7 6 7 
13 15 14 14 14 11 10 10 10 7 6 6 6 7 6 6 6 
14 15 15 13 12 11 11 9 8 7 7 5 4 7 7 5 4 
15 15 14 13 13 11 10 9 9 7 6 5 5 7 6 5 5 

Figure 18 

One can see the differences between the two 16-state functions. One remarkable difference is 
that the function of Figure 18 has only 1 situation wherein no carry digit or rather a carry digit 0 
is generated. This means that in almost all situations one will have carry propagation. The above 
functions may be extended to 256-state functions, and so on. 

One may use a similar approach for the carry function of modulo-n based addition. But, it has to 
be kept in mind that this will only work with an extension of the modulo-n addition. The 
extension of an addition over GF(2) with a factor k is of course per definition the addition over 
GF(2^k). However, the addition over GF(n=5^2=25) is different from the addition modulo-25. 

8. Other Methods of Modifications of Reversible N-state Carry Functions 

A reversible n-state carry function herein is one for which an n-state borrow function exists in 
combination with an n-state subtraction that reverses the radix-n addition with the n-state carry 
function. It does specifically NOT mean that the carry function itself is reversible, which it is 
usually not. 

Several methods for constructing reversible n-state carry functions from found reversible n-state 
carry functions have been developed. Extending functions is one way. But other modification 
methods have been applied. These methods, applied in cryptographic circuitry, are taught in 
pending US Patent Applications.  

The purpose of this article is to show that numerous modifications of reversible n-state carry 
ripple addition computer implementations can be created. It is not intended to teach all methods 
of modification. However, feel free to contact the author at info at labcipher dot com if you want 
to learn more about these methods. 
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The Finite Lab-Transform (FLT) Modification 

The number of possible modifications of reversible n-state carry functions becomes quickly very 
large for n=8 and n=16 and greater. Even for n=8 that number may be greater than a standard 
computer can generate in a reasonable time. This is of importance if one applies the 
modifications in cryptography. A dedicated attacker with unlimited or close to unlimited 
computer power may be able to generate many if not all possible 16-state modifications. This 
puts a cryptographer at a disadvantage. It is still unlikely that an attacker will reasonably be 
successful at a brute force attack, but the risk is not entirely zero. 

Application of the Finite Lab-Transform or FLT [2] and [8] can overcome that risk. The FLT is 
an n-state transformation that transforms the numerical appearance of an n-state function but 
preserves its meta-properties. The number of possible transformations is a factor related to the 
factorial of n (n!). It depends somewhat on the function that is transformed, but in all cases is at 
least (n-3)!.  For n=256 or 8-bit representation that means a factor greater than 10^400. It is an 
immense number which renders it impossible to find the selected FLT with all computer power 
in the world during the life-time of our universe. 

The factorial factor has as a strange effect that for small n, like n=4 the numbers are limited. For 
n=4 n!=24, and one may say: “so what?” But for n=8 that number is already 8!=40,320 and for 
n=16 one has 16!= 20,922,789,888,000 variations. 

Application of the FLT to a modified radix-n addition/subtraction is simple. Apply the FLT to all 
functions, the n-state addition, the n-state carry, the n-state subtraction and the n-state borrow 
functions and perform the operations as one would do in un-FLTed form. 

As an example, use the 4-state functions as shown in Figure 14. Using the 4-state inverter 
inv4=[3 2 1 0], one gets the functions by FLT as shown in Figure 19. 
 

sn4 0 1 2 3 can4 0 1 2 3 bon4 0 1 2 3 
0 3 2 1 0  2 2 1 0  0 1 0 0 
1 2 3 0 1  3 2 0 0  1 1 1 0 
2 1 0 3 2  1 1 1 0  3 2 0 0 

   3 0 1 2 3  0 1 0 0  2 2 1 0 
                 Figure 19 

Using as input inn=[3 3 3 3] and key=[0 0 0 1] using the above functions one gets as ciphertext:  
cipt=inn+key = [1 2 2 1]. One can recover inn from inn=cipt-key. It is to be understood that ‘+’ 
and ‘-‘ in the expression mean the modified functions. The ciphertext using the functions of 
Figure 14 would result in cipher text [2 1 1 2]. 

This illustrates how one can generate different ciphertext (and recover clear text) by using a 
modified radix-n addition, followed by an FLT of the functions. 
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9. Application in Cryptography 

Why this modification of radix-n addition? One reason is to make the data flow numerically 
more unpredictable, while maintaining the proven and tested data flow of existing cryptographic 
methods, and dramatically increasing security against for instance Quantum Computer attacks. 

One may apply the modified radix-n addition in several parts of well-established encryption 
protocols, of which AES-GCM (Advanced Encryption Standard-Galois Counter Mode) and 
ChaCha20, both part of TLS 1.3 are among the most widely used. 

Advanced Encryption Standard (AES)  

The Advanced Encryption Standard (AES) has several operational modes. These modes have an 
encryption side to generate cipher text and a decryption mode to recover the clear text from the 
cipher text.  

Most of the AES modes have a forward implementation Cipher() and an inverse implementation 
InvCipher(). There are 4 major modules in AES Cipher():1) SubBytes() applies a substitution table 
(S-box) to each byte. 2) ShiftRows() shifts rows of the state array by different offsets. 3) MixColumns() 
mixes the data within each column of the state array. and 4) AddRoundKey() combines a round key with 
the state. 

AddRoundKey() is a bitwise XOR of a state array with a round key array. It does so by bitwise XORing the 
columns of 4 bytes of the arrays. See AES [3] section 5.1.4. A bitwise XOR of bytes may be described as 
an addition over GF(2^8=256). One may then describe the bitwise XORing of words of 4 bytes as a carry-
less addition of a word of 4 256-state elements radix-256. 

This addition is reversed in InvCipher() for decryption, using the same round key, but now using as state 
array, the one created in the corresponding AddRoundKey() operation in the encryption in Cipher(). 
Because the addition over GF(256) is an involution (or self-reversing operation), AddRoundKey() in 
InvCipher uses the same instructions as the AddRoundKey() in Cipher(). 

Reversibility 

The addition can be modified into a reversible addition with carry radix-256 with 4 256-state elements. 
Let’s use the above functions as illustrative examples. Use inn=[41   123   204   177] as a 256-state 
representation of a word of 32-bits and key=[21   121   221   232]. Using the bitwise XOR approach with 
no carry, the result is sux=[60 2 17 89]. Using car4 as displayed in Figure 14, and extending it 4-state 
wise by representing a 256-state element as 4 4-state elements and thus do a 4-state element wise 
application of car4 one gets a novel carry function car256 corresponding to sc256 the addition over 
GF(256).  

Applying this carry function on the radix-256 addition of inn and key provides as result sux=[204  159  10  
89]. One can see that the last element is the same as the unmodified addition, because no carry was 
induced at the last element in a classical radix-n addition. But this may be changed as discussed earlier 
above. Because the element 0 also induces a carry, one may create a starting carry from 0s added to both 
inn and key, but which are (of course) not used as part of the cipher text. 



Page 16 of 19 
 

The example has used an addition of 4 256-state elements. However, the AES state array consists of 16 
bytes. Accordingly, one may also perform a radix- 256 addition of 16 bytes or in the alternative 2 
additions of 8 bytes. An advantage of using more elements is a broader propagation of carry values, but at 
a cost of a longer ripple. 

The above example is provided because it has a corresponding 256-state reversing borrow function. The 
InvCipher part requires a reversing function. It has been tested in a program and it works fine. 

AES-256 for instance, has 14 rounds. Because of the avalanche effect one does not really need to 
modify AddRoundKey() in all 14 rounds. Probably, a modification in a single round should be 
sufficient to generate a completely different ciphertext. 

Other Reversibility Applications 

Popular encryption methods AES-GCM and ChaCha20 apply bitwise XOR in a final stage of 
encryption. These methods generate a keystream which is bitwise XORed with the cleartext to 
create ciphertext. In that case one may replace the bitwise XORing of bitstreams with the 
modified radix-n operations as described above. 

Irreversible Applications 

The AES part of AES-GCM [4] is actually a one-way application of AES to purely generate a 
secret keystream. The secret keystream is the same in encryption and decryption mode. 
Decryption is achieved by the earlier mentioned bitwise XOR. So only the Cipher() part of AES is 
applied and no InvCipher() is required. (One may of course also apply InvCipher() to generate the 
keystream.) This dictates that the AES part should be repeatable for encryption and decryption, 
but no requirement exists that the AES part should be reversible. 

Sum-Space 

The above necessitates the introduction of, what is herein called, the sum-space of an n-state 
addition or more generally of an operation. The n-state sum-space of an operation may be 
defined as the totality of sums of c=a⊕b wherein ⊕ is an n-state operation. For ⊕ being the 
addition modulo-n or the addition over GF(n=2^k) the sum-space is the set of all possible n-
state elements and the distribution of the elements is uniform and flat. That is, no bias 
exists related to a particular outcome. That means for instance that if no bias exists in the 
original AddRoundKey() operation, then no bias will be introduced by applying an 
alternative function with the same sum-space as the bitwise XORing. The sum-space of a 
conventional modulo-n ripple addition is called a complete sum-space. 

Without direct proof but based on programming examples, it is asserted that with any n-
state carry function (including non-reversible n-state carry functions) a combination with 
an n-state reversible function in radix -n ripple carry mode, has a uniform (non-biased) 
complete sum-space. 
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Continue Irreversible Applications 

AES-GCM 

In AES-GCM one may then modify for instance the n-state function in AddRoundKey() from a 
carry-less addition over GF(2^k) to a ripple carry radix-n addition still using a function described 
by addition over GF(2^k) but in combination with a random (any random) n-state carry function. 
One merely has to make sure that the same n-state carry function is applied for both encryption 
and decryption. Again, in this situation there is no need for reversibility. 

The total number of for instance possible 256-state carry functions is immense. (256^(256^2)). 
Certain conditions may be pre-set for such functions, for instance that no 0 carry element is 
generated or that at least 100 different 256-state carry states are applied. And so on. 

ChaCha20 

ChaCha20 [5] is another encryption method that is widely used and part of TLS 1.3 [6]. 
Similarly, as in AES-GCM, the main part of ChaCha20 is to generate a secret keystream that is 
identical for encryption and decryption. 

ChaCha20 has 20 so called quarter-rounds operated on a state array of 16 * 32 bits. Each quarter-
round includes a bitwise XOR operation on words of 32 bits and an addition of 2 words of 32-bits 
modulo-2^32. The quarter round expressions are provided and explained in section 2.1 of RFC 
7539 [5]. 

Both operations may be modified as described above. For instance, by processing each block of 
32-bits as 4 256-state elements and by performing a 256-state ripple adder operation using any 
useful 256-state carry table. As with AES, it is not needed to modify all operations, but for 
example merely 1 or several quarter-rounds. The internal strength of the avalanche effect of the 
quarter-rounds guarantees a complete change in output due to the modification. 

SHA-256 

Virtually all hashing methods use at some point bitwise XORing, or a description by an addition 
over GF(2^k). One may modify this function as explained above. This creates a customization of 
most popular hashing methods, including SHA-256 [7]. SHA-256 applies bitwise XORing as 
defined in FIPS 180-4 section 4.1.2 expressions (4.4)-(4.7) on words of 32 bits. As explained 
earlier one may break-up each bitwise XORing of words of 32 bits into a radix-256 carry ripple 
addition with a custom 256-state carry function, which needs NOT be reversible.  It is not 
needed to do this for all expressions, nor is it required to do this for all rounds of SHA-256 to 
create an entirely different but still repeatable and valid hash value. 

SHA-256 also applies an addition modulo-2^32, as defined in section 6.2.2 of FIPS 180-4, which 
may also be modified as explained above. This creates a strong and privatized hashing method 
that may be used to generate one-step exchange of private keys. 
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10. Conclusions 

Security of cryptographic machines is usually obtained from two aspects:  
1) a set of well described operations that in combination create an output that is intractable to be 
inverted to an input operand; and  
2) at least one operand that is so large that brute force attacks in the context of the combined 
operations are infeasible.  

A different approach is used herein. The data-flow as in standard cryptographic operations  is 
maintained, but certain functions are replaced. This results is a data-flow that has the same 
structural properties (and at least the security) as the unmodified cryptographic method, but with 
an entirely different numerical output. This allows for customization of cryptographic methods 
and inherently increases its security against attacks. It appears that the modifications are resistant 
against Quantum Computer attacks. 

The modifications in the above case are based on novel n-state carry functions that preserve the 
reversibility of a radix-n carry ripple-like machine addition, but with a different numerical output 
than a standard canonical addition. 

11. License to Use the Modified Radix-n Machine Operations for Limited Purposes 

Certain aspects of the above machine operations are claimed in pending USPTO Patent 
Applications and issues USPTO Patents [9], [10], [11]. The patents are assigned to LCIP jv. 
LCIP jv provides explicit license to use the claimed invention for trial, research and educational 
purposes only. Any use of the above modified machine operations in cryptography is explicitly 
not part of this license. This specifically pertains to operational data encryption and hashing in 
operational storage and/or exchange of data. Permission and license for operational use can only 
be obtained by written permission of Peter Lablans. Such license may require a reasonable 
royalty or license fee. Please contact Peter Lablans at info at labcipher dot com for further 
information.     
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