
Page 1 of 19

Modified Reversible Radix-n Machine Computations with Novel N-state Carry Functions
Applications in Cryptography

Peter Lablans – LabCipher

Abstract
 Machine Cryptography uses digital circuitry that performs operations described as
modulo-n additions (as in SHA-256 and ChaCha20) and additions over GF(2^k) (as in AES-
GCM and many other protocols). These additions are well documented and are used to ‘mix’
data. By themselves these operations provide no additional security. Conventionally, security is
provided by unknown or secret data (a “key stream”) that is mixed with often ‘known’ data
(“clear text’). Security is generally created by the unknown or secret keystream and not by a
secrecy of a function.
 This article describes ways to create large numbers of (secret) reversible n-state carry
functions for radix-n additions known as ripple carry additions. Canonical forms of n-state carry
functions for reversible modulo-n additions and additions over GF(n) are provided.
 Novel reversible n-state carry functions are provided that keep the n-state machine
additions reversible but now unpredictable.
 The modifications are applied in known cryptography such as AES-GCM, ChaCha20 and
SHA-256. These improve the security and appear to be resistant against quantum computer (QC)
attacks.
 Irreversible n-state carry functions are applied in one-way machine cryptography.

Key Contributions:

• Defines canonical n-state carry functions in carry based reversible additions modulo-n
and additions over GF(n)

• Provides modified versions of canonical and ad hoc reversible n-state carry functions
• Applies the carry modifications in machine cryptography
• Increases overall security of standard machine cryptography

Keywords: N-state ripple carry adder, reversibility, radix-n, n-state carry, n-state borrow, non-
canonical modification, cryptography, finite fields, Finite Lab-Transform, FLT, encryption,
hashing, AES-GCM, ChaCha20, SHA-256

1. The Used Notation Herein

The applied notation herein is derived from the teaching approach of Prof. Dr. Gerrit Blaauw,
one of the 3 chief designers of the legendary IBM System/360, as applied in his book "Digital
System Implementation," [1]. Therein Blaauw uses APL to describe standard digital components
like the AND gate by for instance: c ← aÙb with ‘a’ and ‘b’ being binary input operands and
‘c’ its output. APL allows a symbol like ⍬ to be introduced/defined as an operator representing,
for instance, a specific look-up table or customized operation. One may also compute, in for

Page 2 of 19

instance Matlab, c = ⍬(a,b) wherein ⍬ is a predefined lookup table. While unusual, there is
mathematically nothing wrong with this type of representation, as long as one observes the
properties of the operation/table, like associativity or lack thereof.

A straightforward table-based notation is applied herein scn for n-state addition-like operations
and mgn for multiplication-like operations. Thus, c=scn(a,b) or c=mgn(a,b) become the preferred
notation herein. It allows direct replacement in computer programs by relevant look-up tables.

2. Radix-n Addition

The following table provides the lookup table sc5 for modulo-5 addition:

sc5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

 Figure 1

Instead of having to repeat or use the table one may use c=sc5(row,column), wherein one
convention is that the first operand indicates the row index and the second one is the column
index of a look-up table.

The corresponding 5-state carry function car5 is provided in Figure 2 below.

car5 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 1
3 0 0 1 1 1
4 0 1 1 1 1

 Figure 2

Figure 3 illustrates the radix-5 carry ripple addition using sc5 or the modulo-5 addition to
determine a residue and the 5-state function car5 to determine the carry which is 0 or 1. The
carry ripple adder is a positional operation wherein digits of 2 n-state operands are processed.
There are always cycles of 2 steps:
 step 1: residues of operand elements in corresponding positions are determined, and placed in
the position of the operand elements, and
 step 2: two elements in a position determine a carry digit, which is placed in a neighboring
position.

Page 3 of 19

Each cycle is repeated until no more carry digits are generated. The carry “ripples” through
intermediate results, so to speak. It corresponds often with the way humans do decimal additions,
placing a carry to the left of the position of the elements that determine the carry. It coincides
with big-endian notation. In arithmetic the generated carry digit is 0 if the sum of two digits is
smaller than n. If the sum is n or greater than n the carry digit is a 1. This is independent of a size
of n. That is, the carry is always 0 or 1 no matter how large n is. This rule relates to arithmetic
and not to switching, as a switch doesn’t know that a sum is equal or greater than n. In n-state
machine operations one may use a look-up table like provided in Figure 2 with fixed criteria for
generating a carry digit, though one may also implement with circuitry based on a Karnaugh map
for instance.

In arithmetic the carry digit ripples from right to left. That is because of a desire to make the
machine operation similar to human arithmetical approach. For applications like encryption such
a direction is not required and one may ripple from left to right which may have additional
benefits.

Figure 3 shows the steps of a 4-digit radix-5 addition of 2 operands. The ripple is from right to
left. The selected operands are 5-state: op1= [0 4 4 4 4] and op2 = [0 0 0 0 1]. These are of
course 5 digit operands. This is done to illustrate the carry-out, which will not be further used.

op1 0 4 4 4 4
op2 0 0 0 0 1

sc5 0 4 4 4 0
car5 0 0 0 1 -

sc5 0 4 4 0 0
car5 0 0 1 - -

sc5 0 4 0 0 0
car5 0 1 - - -

sc5 0 0 0 0 0
car5 1 - - - -

 Figure 3

The rows sc5 show the residues addition modulo-5 of the digits of the operands and rows car5
show the generated carry digits generated by the operand digits in a neighboring position. The
dash (‘-‘) means that no carry operation is performed and the residue digit in row sc5
corresponding to ‘-’ is the resulting sum digit. The 4-digit sum is [0 0 0 0]. The carry-out is 1,
but may not be used in cryptography. If one would have used only the modulo-5 addition, with
no carry propagation, the result would have been [4 4 4 0].

Machine arithmetic performs subtraction in binary form and generally not in the subtraction form
that humans do, but applies 2’s-complement addition. One may do that also for modulo-n

Page 4 of 19

subtraction. Rather than doing n’s complement addition we will do a modulo-n subtraction with
a corresponding borrow function.

3. Radix-n Subtraction

The following table in Figure 4 provides the lookup table for modulo-5 subtraction. The table is
derived from out=(row-column) mod-5.

min5 0 1 2 3 4
0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0

 Figure 4

The corresponding 5-state borrow function bor5 is provided in Figure 5 below.

bor5 0 1 2 3 4
0 0 1 1 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 0 0 0 0 1
4 0 0 0 0 0

 Figure 5

From an arithmetical point of view the borrow table has a borrow 1 if the row-index is smaller
than the column-index. Otherwise, the borrow digit is 0.

Rule: From a machine computational point of view, a borrow table corresponding to a carry
table is the mirror image of the carry table, mirrored over the horizontal axis so the rows change
index. Or index_row_borrow(i)= index_row_carry(n-i-1) for index starting at 0. This is a
canonical rule for all reversible additions in this article.

Figure 6 illustrates the radix-5 carry ripple subtraction using min5 or the modulo-5 subtraction to
determine a residue and the 5-state function bor5 to determine the borrow which is 0 or 1. The
borrow ripple subtraction is also a positional operation with steps identical to the addition but
with different functions.

Figure 6 shows the steps of a 4-digit radix-5 subtraction of 2 operands. The ripple is from right to
left. The selected operands are 5-state: op1= [0 0 0 0 0] and op2 = [0 0 0 0 1]. These are of
course 5 digit operands. This is done to illustrate the borrow-out.

Page 5 of 19

op1 0 0 0 0 0
op2 0 0 0 0 1

min5 0 0 0 0 4
bor5 0 0 0 1 -

min5 0 0 0 4 4
bor5 0 0 1 - -

min5 0 0 4 4 4
bor5 0 1 - - -

min5 0 4 4 4 4
bor5 1 - - - -

 Figure 6

The rows min5 show the residues subtraction modulo-5 of the digits of the operands and rows
bor5 show the generated borrow digits generated by the operand digits in a neighboring position.
The dash (‘-‘) means that no borrow operation is performed and the residue digit in row min5
corresponding to ‘-’ is the resulting difference digit. The 4-digit difference is [4 4 4 4]. The
borrow-out is 1, but would not be used in cryptography. If one would have used only the
modulo-5 subtraction, with no borrow propagation, the result would have been [0 0 0 4].

4. Radix-n Operations in Cryptography

How would the above be applied in encryption/decryption. Assume a secret key Key and a
cleartext CTex. The above then suggests a ciphertext Ciphtex as encryption: Ciphtex = CTex+Key
and decryption: CTex = Ciphtex-Key. One may also use subtraction for encryption and addition
for decryption, of course.

In most encryption schemes the ‘+’ is performed as an addition over finite field GF(n=2^k),
which in implementation is the bitwise XORing of words of k bits, wherein CTex, Key and Ciphtex
are all words of k bits. One may replace k bits by their decimal representation and perform
encryption by modulo-n with n=2^k addition of the individual n-state elements. This may
initially throw off an attacker, but there are only a limited number of replacements of the
addition over GF(n). An informed attacker may simply run through the most likely functions. The
modification is thus be more of an annoyance than a true barrier.

The radix-n addition provides a further obfuscation, by introducing the carry propagation. The
uncertainty herein is formed by the length of the word of n-state elements. The more elements,
the greater the probability of a carry propagating through the elements.

Page 6 of 19

However, the fact that a carry is either 0 or 1 works against the uncertainty. It would be better to
have a carry that is never 0. However, in that case it is always 1. A carry always being 1 is of
course the same as adding a word [1 1 1 0].

Start carry from earlier position

The last carry digit being 0 is caused by being the first step in carry determination. The
application in encryption is different from being a truly arithmetical operation. One can ‘force’ a
carry (or borrow) by extending the number of elements. For instance op1=[0 4 4 4 4] may be
op1e=[0 4 4 4 4 0] wherein the last 0 is not part of the cleartext, but a way to invoke a carry. In
this example the extra 0 does not do anything, but that will change further below.

The above also shows why computation of carry digits from left to right may be easier, because
there is already an inactive digit of the unused input carry.

4. The Modified Carry Function Modulo-n

A first canonical modification in the modulo-n addition is changing the 0 to any value between 0
and n-1, and changing the 1 to any value between 0 and n-1.

The following example shows the new carry function for n=5 and modulo-5 addition wherein the
carry 0 is replaced by 2 and the carry 1 is replaced by 4. It is illustrated in Figure 7 as function
can5.

can5 0 1 2 3 4
0 2 2 2 2 2
1 2 2 2 2 4
2 2 2 2 4 4
3 2 2 4 4 4
4 2 4 4 4 4

 Figure 7

The corresponding modified borrow function is shown in Figure 8 as function bon5.

bon5 0 1 2 3 4
0 2 4 4 4 4
1 2 2 4 4 4
2 2 2 2 4 4
3 2 2 2 2 4
4 2 2 2 2 2

 Figure 8

The modified radix-5 addition of as illustrated in Figure 3, now using modified function can5
still with sc5 is shown in Figure 9.

Page 7 of 19

op1 0 4 4 4 4
op2 0 0 0 0 1

sc5 0 4 4 4 0
can5 2 2 2 4 -

sc5 2 1 1 3 0
can5 4 4 4 - -

sc5 1 0 0 3 0
can5 4 4 - - -

sc5 0 4 0 3 0
can5 2 - - - -

 Figure 9

The modified radix-5 subtraction as illustrated in Figure 6, now using modified function bon5
still with min5 is shown in Figure 10.

op1 0 4 0 3 0
op2 0 0 0 0 1

min5 0 4 0 3 4
bon5 2 2 2 4 -

min5 3 2 3 4 4
bon5 2 4 4 - -

min5 1 3 4 4 4
bon5 4 4 - - -

min5 2 4 4 4 4
bon5 4 - - - -

 Figure 10

One can see that the cleartext [4 4 4 4] is correctly recovered by the modified radix-5 subtraction.
One should of course ignore the borrow-out.

Page 8 of 19

Non-canonical Modifications of Modulo-n Additions

The above modification, substituting a 0 and a 1 in a carry function, with a value (n-1), the
substitutions preferably being different, may be considered a canonical modification. While there
are many possible modifications when n is large, these modifications are predictable. Even
though brute force attacks on these modifications may be extremely time-consuming.

There are some ways to construct non-canonical carry functions. One is pure brute force trial-
and-error going through all permutations of an n-by-n table. This runs quickly into limitations of
size, as there are n^(n^2) different permutations.

One may build upon this, by further modifying newly found reversible n-state carry tables by
applying n-state reversible inverters on the outputs and check if they remain reversible.

As an example of a non-canonical 4-state reversible carry function that corresponds to modulo-4
addition plus4 is the following 4-state carry function cax4 and the corresponding borrow
function box4 with subtraction modulo-4 min4.

plus4 0 1 2 3 cax4 0 1 2 3 min4 0 1 2 3 box4 0 1 2 3
0 0 1 2 3 3 3 3 0 0 3 2 1 3 1 2 2
1 1 2 3 0 3 2 3 2 1 0 3 2 3 3 2 3
2 2 3 0 1 3 3 2 3 2 1 0 3 3 2 3 2

 3 3 0 1 2 3 1 2 2 3 2 1 0 3 3 3 0
 Figure 11

One can perform the carry ripple addition and borrow ripple subtraction as shown in Figures 9
and 10, using the functions of Figure 11 with op1= [3 3 3 3] and op2=[0 0 0 1]. One gets
sum=op1+op2= [3 3 0 0] and dif=sum-op2=[3 3 3 3]. Demonstrating that the operations are
reversible.

5. Individually per Digit Modified Carry Function Modulo-n

The above illustrates how one simply can modify the carry function for a radix-n
addition/subtraction while maintaining reversibility of the operations. It seems a bit trivial to do
this for a radix-5 addition. The possibilities of modifications increase dramatically for larger
values of n. For instance, for elements represented by 8 bits one has n=256 and there are over
65,000 possible modifications.

Another important opportunity for obfuscation is to use a different carry function for each
position in the operands. As long as one applies the corresponding (flipped) borrow function, one
is able to fully reverse the addition, using the modification rules as stated above.

6. Carry Function in Carry-less Operations

In cryptography bitwise XORing of words of k bits is much used. This operation may be described
as an addition over GF(n=2^k). Such an operation is a carry-less operation as no carry digits are
generated. For instance, a word of 32 bits may be considered a word of 4 8-bit words. The
bitwise XORing of 32-bits is identical of addition of 4 corresponding words of 8 bits by addition

Page 9 of 19

over GF(n=2^8=256). One may compute the individual words of 8 bits as 256-state elements and
convert the 256-state result back into a word of 8 bits and reconstitute the word of 32-bits from
the 4 256-state elements. This will, of course, create the 32-bits word formed by bitwise XORing.

No carry element is applied by the above addition. Confusion and obfuscation will be created
unexpectedly if by some way a carry element is introduced.

Let’s first go back to the binary or radix-2 addition. The two binary functions to operate a radix-2
addition are the XOR as representing the modulo-2 addition and the AND function for generating
the carry. A binary carry is generated only as both operand bits are 1.

Extension Functions

Extension functions are known in finite field arithmetic, where an element in an extension field
is represented by a polynomial over the base field.

For the current extension another approach will be applied. The base functions are the XOR and
the AND. The extended functions for n=2^k will be created by doing bitwise XOR and AND of
words of k bits and then converting the resulting words of k bits into their decimal representation.
Figure 12 illustrates the results for n=2^2=4 and Figure 13 illustrates the radix-4 addition of
operands with 4 4-state elements. The function sc4 is the addition over GF(4) and car4 is the
corresponding 4-state carry function. The subtraction over GF(4) is also sc4 and the
corresponding 4-state borrow function bor4 is the ‘flipped’ set of rows of car4

sc4 0 1 2 3 car4 0 1 2 3 bor4 0 1 2 3
0 0 1 2 3 0 0 0 0 0 1 2 3
1 1 0 3 2 0 1 0 1 0 0 2 2
2 2 3 0 1 0 0 2 2 0 1 0 1

 3 3 2 1 0 0 1 2 3 0 0 0 0
 Figure 12

Page 10 of 19

op1 0 3 3 3 3
op2 0 0 0 0 1

sc4 0 3 3 3 0
car4 0 0 0 1 -

sc4 0 3 3 0 0
car4 0 0 1 - -

sc4 0 3 0 0 0
car4 0 1 - - -

sc4 0 0 0 0 0
car4 1 - - - -

 Figure 13

The modified radix-4 addition over GF(4) with carry as illustrated in Figure 13 above. One would
expect the result of the addition over GF(4) of [3 3 3 3] and [0 0 0 1] to be [3 3 3 0], but in fact
the result is [0 0 0 0]. One should check manually that this is a reversible operation, by using
bor4 as the corresponding borrow function.

Modified Carry Functions

There is no single canonical rule for modifying the carry function related to additions over
GF(2^k). One may take different approaches. For n=4 one may use a brute force approach and
one may find sets of modified carry functions of car4 while keeping sc4 unmodified. One of such
a set is provided in Figure 14.

sc4 0 1 2 3 cap4 0 1 2 3 bop4 0 1 2 3
0 0 1 2 3 3 3 2 3 3 2 1 1
1 1 0 3 2 3 2 2 2 3 3 1 0
2 2 3 0 1 3 3 1 0 3 2 2 2

 3 3 2 1 0 3 2 1 1 3 3 2 3
 Figure 14

The radix-4 addition with ripple addition using sc4 and cap4 is shown in Figure 15.

Page 11 of 19

op1 0 3 3 3 3
op2 0 0 0 0 1

sc4 0 3 3 3 2
cap4 3 3 3 2 -

sc4 3 0 0 1 2
cap4 1 1 1 - -

sc4 0 1 1 1 2
cap4 3 3 - - -

sc4 3 2 1 1 2
cap4 2 - - - -

 Figure 15

The result of the modified radix-4 addition of [3 3 3 3] with [0 0 0 1] is then [2 1 1 2].

Figure 16 shows the modified subtraction using sc4 and bop4, using [2 1 1 2] and [0 0 0 1] as
operands.

op1 0 2 1 1 2
op2 0 0 0 0 1

sc4 0 2 1 1 3
bop4 3 3 3 2 -

sc4 3 1 2 3 3
bop4 2 0 1 - -

sc4 1 1 3 3 3
bop4 3 2 - - -

sc4 2 3 3 3 3
bop4 1 - - - -

 Figure 16

One can see that the cleartext operand is recovered with the modified radix-4 operation. A test
program has verified that reversibility for this operation applies to all possible 4-state operands.

7. Further Extending Non-canonical N-state Functions

In cryptography, uncertainty about used n-state functions will increase security. The greater the
number of possible functions, the greater the required effort of attack by brute force and the
greater inherent security.

Page 12 of 19

In the case of the addition radix-n using addition over GF(n=2^k) the extension of the carry
function by element-wise application of the AND function as illustrated in Figure 12, has (of
course) only a single extension for each further power of k. The function of Figure 12 is obtained
by doing a bitwise AND of words of 2 bits. One may create the extension for n=2^3=8 by doing
the same for words of 3 bits and so on. One may also extend the 4-state function of Figure 12 to
4^2 or 16-state elements. One may do this by taking all words of 2 4-state elements and do an
element-wise application of the 4-state carry function to all possible 2 4-state element words.
And then convert each 2 4-state element word to its decimal representation.

This approach does NOT make a difference if one starts with the same bit-wise AND operation.
Doing a 4-bit word AND or first a 2-bit word AND followed by a 2 4-state word operation will
create the same result, of course.

The following tables in Figures 17 and 18 illustrate the effect of extensions. Figure 17 is the
canonical carry table of the 16-state carry function car16 related to the bitwise XOR car4
expressed as addition over GF(16).

car16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4
5 0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5
6 0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6
7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8
9 0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9

10 0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10
11 0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11
12 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12
13 0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13
14 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17

The table of Figure 18 below illustrates the 16-state extension table cap16 of the 4-state table
cap4 of Figure 14.

Page 13 of 19

cap16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 15 14 15 15 15 14 15 11 11 10 11 15 15 14 15
1 15 14 14 14 15 14 14 14 11 10 10 10 15 14 14 14
2 15 15 13 12 15 15 13 12 11 11 9 8 15 15 13 12
3 15 14 13 13 15 14 13 13 11 10 9 9 15 14 13 13
4 15 15 14 15 11 11 10 11 11 11 10 11 11 11 10 11
5 15 14 14 14 11 10 10 10 11 10 10 10 11 10 10 10
6 15 15 13 12 11 11 9 8 11 11 9 8 11 11 9 8
7 15 14 13 13 11 10 9 9 11 10 9 9 11 10 9 9
8 15 15 14 15 15 15 14 15 7 7 6 7 3 3 2 3
9 15 14 14 14 15 14 14 14 7 6 6 6 3 2 2 2

10 15 15 13 12 15 15 13 12 7 7 5 4 3 3 1 0
11 15 14 13 13 15 14 13 13 7 6 5 5 3 2 1 1
12 15 15 14 15 11 11 10 11 7 7 6 7 7 7 6 7
13 15 14 14 14 11 10 10 10 7 6 6 6 7 6 6 6
14 15 15 13 12 11 11 9 8 7 7 5 4 7 7 5 4
15 15 14 13 13 11 10 9 9 7 6 5 5 7 6 5 5

Figure 18

One can see the differences between the two 16-state functions. One remarkable difference is
that the function of Figure 18 has only 1 situation wherein no carry digit or rather a carry digit 0
is generated. This means that in almost all situations one will have carry propagation. The above
functions may be extended to 256-state functions, and so on.

One may use a similar approach for the carry function of modulo-n based addition. But, it has to
be kept in mind that this will only work with an extension of the modulo-n addition. The
extension of an addition over GF(2) with a factor k is of course per definition the addition over
GF(2^k). However, the addition over GF(n=5^2=25) is different from the addition modulo-25.

8. Other Methods of Modifications of Reversible N-state Carry Functions

A reversible n-state carry function herein is one for which an n-state borrow function exists in
combination with an n-state subtraction that reverses the radix-n addition with the n-state carry
function. It does specifically NOT mean that the carry function itself is reversible, which it is
usually not.

Several methods for constructing reversible n-state carry functions from found reversible n-state
carry functions have been developed. Extending functions is one way. But other modification
methods have been applied. These methods, applied in cryptographic circuitry, are taught in
pending US Patent Applications.

The purpose of this article is to show that numerous modifications of reversible n-state carry
ripple addition computer implementations can be created. It is not intended to teach all methods
of modification. However, feel free to contact the author at info at labcipher dot com if you want
to learn more about these methods.

Page 14 of 19

The Finite Lab-Transform (FLT) Modification

The number of possible modifications of reversible n-state carry functions becomes quickly very
large for n=8 and n=16 and greater. Even for n=8 that number may be greater than a standard
computer can generate in a reasonable time. This is of importance if one applies the
modifications in cryptography. A dedicated attacker with unlimited or close to unlimited
computer power may be able to generate many if not all possible 16-state modifications. This
puts a cryptographer at a disadvantage. It is still unlikely that an attacker will reasonably be
successful at a brute force attack, but the risk is not entirely zero.

Application of the Finite Lab-Transform or FLT [2] and [8] can overcome that risk. The FLT is
an n-state transformation that transforms the numerical appearance of an n-state function but
preserves its meta-properties. The number of possible transformations is a factor related to the
factorial of n (n!). It depends somewhat on the function that is transformed, but in all cases is at
least (n-3)!. For n=256 or 8-bit representation that means a factor greater than 10^400. It is an
immense number which renders it impossible to find the selected FLT with all computer power
in the world during the life-time of our universe.

The factorial factor has as a strange effect that for small n, like n=4 the numbers are limited. For
n=4 n!=24, and one may say: “so what?” But for n=8 that number is already 8!=40,320 and for
n=16 one has 16!= 20,922,789,888,000 variations.

Application of the FLT to a modified radix-n addition/subtraction is simple. Apply the FLT to all
functions, the n-state addition, the n-state carry, the n-state subtraction and the n-state borrow
functions and perform the operations as one would do in un-FLTed form.

As an example, use the 4-state functions as shown in Figure 14. Using the 4-state inverter
inv4=[3 2 1 0], one gets the functions by FLT as shown in Figure 19.

sn4 0 1 2 3 can4 0 1 2 3 bon4 0 1 2 3
0 3 2 1 0 2 2 1 0 0 1 0 0
1 2 3 0 1 3 2 0 0 1 1 1 0
2 1 0 3 2 1 1 1 0 3 2 0 0

 3 0 1 2 3 0 1 0 0 2 2 1 0
 Figure 19

Using as input inn=[3 3 3 3] and key=[0 0 0 1] using the above functions one gets as ciphertext:
cipt=inn+key = [1 2 2 1]. One can recover inn from inn=cipt-key. It is to be understood that ‘+’
and ‘-‘ in the expression mean the modified functions. The ciphertext using the functions of
Figure 14 would result in cipher text [2 1 1 2].

This illustrates how one can generate different ciphertext (and recover clear text) by using a
modified radix-n addition, followed by an FLT of the functions.

Page 15 of 19

9. Application in Cryptography

Why this modification of radix-n addition? One reason is to make the data flow numerically
more unpredictable, while maintaining the proven and tested data flow of existing cryptographic
methods, and dramatically increasing security against for instance Quantum Computer attacks.

One may apply the modified radix-n addition in several parts of well-established encryption
protocols, of which AES-GCM (Advanced Encryption Standard-Galois Counter Mode) and
ChaCha20, both part of TLS 1.3 are among the most widely used.

Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) has several operational modes. These modes have an
encryption side to generate cipher text and a decryption mode to recover the clear text from the
cipher text.

Most of the AES modes have a forward implementation Cipher() and an inverse implementation
InvCipher(). There are 4 major modules in AES Cipher():1) SubBytes() applies a substitution table
(S-box) to each byte. 2) ShiftRows() shifts rows of the state array by different offsets. 3) MixColumns()
mixes the data within each column of the state array. and 4) AddRoundKey() combines a round key with
the state.

AddRoundKey() is a bitwise XOR of a state array with a round key array. It does so by bitwise XORing the
columns of 4 bytes of the arrays. See AES [3] section 5.1.4. A bitwise XOR of bytes may be described as
an addition over GF(2^8=256). One may then describe the bitwise XORing of words of 4 bytes as a carry-
less addition of a word of 4 256-state elements radix-256.

This addition is reversed in InvCipher() for decryption, using the same round key, but now using as state
array, the one created in the corresponding AddRoundKey() operation in the encryption in Cipher().
Because the addition over GF(256) is an involution (or self-reversing operation), AddRoundKey() in
InvCipher uses the same instructions as the AddRoundKey() in Cipher().

Reversibility

The addition can be modified into a reversible addition with carry radix-256 with 4 256-state elements.
Let’s use the above functions as illustrative examples. Use inn=[41 123 204 177] as a 256-state
representation of a word of 32-bits and key=[21 121 221 232]. Using the bitwise XOR approach with
no carry, the result is sux=[60 2 17 89]. Using car4 as displayed in Figure 14, and extending it 4-state
wise by representing a 256-state element as 4 4-state elements and thus do a 4-state element wise
application of car4 one gets a novel carry function car256 corresponding to sc256 the addition over
GF(256).

Applying this carry function on the radix-256 addition of inn and key provides as result sux=[204 159 10
89]. One can see that the last element is the same as the unmodified addition, because no carry was
induced at the last element in a classical radix-n addition. But this may be changed as discussed earlier
above. Because the element 0 also induces a carry, one may create a starting carry from 0s added to both
inn and key, but which are (of course) not used as part of the cipher text.

Page 16 of 19

The example has used an addition of 4 256-state elements. However, the AES state array consists of 16
bytes. Accordingly, one may also perform a radix- 256 addition of 16 bytes or in the alternative 2
additions of 8 bytes. An advantage of using more elements is a broader propagation of carry values, but at
a cost of a longer ripple.

The above example is provided because it has a corresponding 256-state reversing borrow function. The
InvCipher part requires a reversing function. It has been tested in a program and it works fine.

AES-256 for instance, has 14 rounds. Because of the avalanche effect one does not really need to
modify AddRoundKey() in all 14 rounds. Probably, a modification in a single round should be
sufficient to generate a completely different ciphertext.

Other Reversibility Applications

Popular encryption methods AES-GCM and ChaCha20 apply bitwise XOR in a final stage of
encryption. These methods generate a keystream which is bitwise XORed with the cleartext to
create ciphertext. In that case one may replace the bitwise XORing of bitstreams with the
modified radix-n operations as described above.

Irreversible Applications

The AES part of AES-GCM [4] is actually a one-way application of AES to purely generate a
secret keystream. The secret keystream is the same in encryption and decryption mode.
Decryption is achieved by the earlier mentioned bitwise XOR. So only the Cipher() part of AES is
applied and no InvCipher() is required. (One may of course also apply InvCipher() to generate the
keystream.) This dictates that the AES part should be repeatable for encryption and decryption,
but no requirement exists that the AES part should be reversible.

Sum-Space

The above necessitates the introduction of, what is herein called, the sum-space of an n-state
addition or more generally of an operation. The n-state sum-space of an operation may be
defined as the totality of sums of c=a⊕b wherein ⊕ is an n-state operation. For ⊕ being the
addition modulo-n or the addition over GF(n=2^k) the sum-space is the set of all possible n-
state elements and the distribution of the elements is uniform and flat. That is, no bias
exists related to a particular outcome. That means for instance that if no bias exists in the
original AddRoundKey() operation, then no bias will be introduced by applying an
alternative function with the same sum-space as the bitwise XORing. The sum-space of a
conventional modulo-n ripple addition is called a complete sum-space.

Without direct proof but based on programming examples, it is asserted that with any n-
state carry function (including non-reversible n-state carry functions) a combination with
an n-state reversible function in radix -n ripple carry mode, has a uniform (non-biased)
complete sum-space.

Page 17 of 19

Continue Irreversible Applications

AES-GCM

In AES-GCM one may then modify for instance the n-state function in AddRoundKey() from a
carry-less addition over GF(2^k) to a ripple carry radix-n addition still using a function described
by addition over GF(2^k) but in combination with a random (any random) n-state carry function.
One merely has to make sure that the same n-state carry function is applied for both encryption
and decryption. Again, in this situation there is no need for reversibility.

The total number of for instance possible 256-state carry functions is immense. (256^(256^2)).
Certain conditions may be pre-set for such functions, for instance that no 0 carry element is
generated or that at least 100 different 256-state carry states are applied. And so on.

ChaCha20

ChaCha20 [5] is another encryption method that is widely used and part of TLS 1.3 [6].
Similarly, as in AES-GCM, the main part of ChaCha20 is to generate a secret keystream that is
identical for encryption and decryption.

ChaCha20 has 20 so called quarter-rounds operated on a state array of 16 * 32 bits. Each quarter-
round includes a bitwise XOR operation on words of 32 bits and an addition of 2 words of 32-bits
modulo-2^32. The quarter round expressions are provided and explained in section 2.1 of RFC
7539 [5].

Both operations may be modified as described above. For instance, by processing each block of
32-bits as 4 256-state elements and by performing a 256-state ripple adder operation using any
useful 256-state carry table. As with AES, it is not needed to modify all operations, but for
example merely 1 or several quarter-rounds. The internal strength of the avalanche effect of the
quarter-rounds guarantees a complete change in output due to the modification.

SHA-256

Virtually all hashing methods use at some point bitwise XORing, or a description by an addition
over GF(2^k). One may modify this function as explained above. This creates a customization of
most popular hashing methods, including SHA-256 [7]. SHA-256 applies bitwise XORing as
defined in FIPS 180-4 section 4.1.2 expressions (4.4)-(4.7) on words of 32 bits. As explained
earlier one may break-up each bitwise XORing of words of 32 bits into a radix-256 carry ripple
addition with a custom 256-state carry function, which needs NOT be reversible. It is not
needed to do this for all expressions, nor is it required to do this for all rounds of SHA-256 to
create an entirely different but still repeatable and valid hash value.

SHA-256 also applies an addition modulo-2^32, as defined in section 6.2.2 of FIPS 180-4, which
may also be modified as explained above. This creates a strong and privatized hashing method
that may be used to generate one-step exchange of private keys.

Page 18 of 19

10. Conclusions

Security of cryptographic machines is usually obtained from two aspects:
1) a set of well described operations that in combination create an output that is intractable to be
inverted to an input operand; and
2) at least one operand that is so large that brute force attacks in the context of the combined
operations are infeasible.

A different approach is used herein. The data-flow as in standard cryptographic operations is
maintained, but certain functions are replaced. This results is a data-flow that has the same
structural properties (and at least the security) as the unmodified cryptographic method, but with
an entirely different numerical output. This allows for customization of cryptographic methods
and inherently increases its security against attacks. It appears that the modifications are resistant
against Quantum Computer attacks.

The modifications in the above case are based on novel n-state carry functions that preserve the
reversibility of a radix-n carry ripple-like machine addition, but with a different numerical output
than a standard canonical addition.

11. License to Use the Modified Radix-n Machine Operations for Limited Purposes

Certain aspects of the above machine operations are claimed in pending USPTO Patent
Applications and issues USPTO Patents [9], [10], [11]. The patents are assigned to LCIP jv.
LCIP jv provides explicit license to use the claimed invention for trial, research and educational
purposes only. Any use of the above modified machine operations in cryptography is explicitly
not part of this license. This specifically pertains to operational data encryption and hashing in
operational storage and/or exchange of data. Permission and license for operational use can only
be obtained by written permission of Peter Lablans. Such license may require a reasonable
royalty or license fee. Please contact Peter Lablans at info at labcipher dot com for further
information.

References

[1] Gerrit A. Blaauw, Digital System Implementation, 1976, Prentice-Hall, Inc., Englewood
Cliffs, NJ

[2] Peter Lablans, The Finite Lab-Transform (FLT) for Invertible Functions in Cryptography,
2024 at https://engrxiv.org/preprint/view/3570/6377

[3] National Institute of Standards and Technology (NIST). (2001, November). Advanced
Encryption Standard (AES) (Federal Information Processing Standard (FIPS) 197).
https://csrc.nist.gov/pubs/fips/197/ipd

[4] National Institute of Standards and Technology (NIST). (2001, November).
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC for Advanced Encryption Standard (AES) (Special Publication 800-38D).
https://csrc.nist.gov/pubs/sp/800/38/d/final

https://engrxiv.org/preprint/view/3570/6377
https://csrc.nist.gov/pubs/fips/197/ipd
https://csrc.nist.gov/pubs/sp/800/38/d/final

Page 19 of 19

[5] ChaCha20 and Poly1305 for IETF Protocols, Request for Comments: 7539, May 2015,
https://datatracker.ietf.org/doc/html/rfc7539

[6] The Transport Layer Security (TLS) Protocol Version 1.3 at
https://datatracker.ietf.org/doc/html/rfc8446

[7] National Institute of Standards and Technology (NIST). (2015, August). Secure Hash
Standard (SHS) (Federal Information Processing Standard (FIPS) 180-4).
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf .

[8] The Finite Lab-Transform (FLT), a website https://www.labtransform.com/

[9] US Patent Ser. No. 11,336,425B1 to Peter Lablans, entitled Cryptographic machines
characterized by a Finite Lab-Transform (FLT), issued on May 27, 2022

[10] US Patent Ser. No. 11,093,213B1 to Peter Lablans, entitled Cryptographic computer
machines with novel switching devices, issued on Aug. 17, 2021

[11] US Patent Ser. No. US 10,650,373B2 to Peter Lablans, entitled Method and apparatus for
validating a transaction between a plurality of machines, issued on May 12, 2020

Biography:
Peter Lablans received B.Sc. and M.Sc. (Ir.) degrees in electrical engineering from the
Technische Hogeschool Twente in Enschede, The Netherlands. Lablans is a prolific inventor and
is the named inventor of over 50 US Patents. He resides in New Jersey.

https://datatracker.ietf.org/doc/html/rfc7539
https://datatracker.ietf.org/doc/html/rfc8446
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://www.labtransform.com/

