
On indexing de Bruijn sequences
Oscar Cabrera

ocg.steppenwolf@gmail.com

Independent Researcher

April 2024

Abstract

Indexing refers to associating a unique de Bruijn sequence with a numerical value,
so that from either index value or sequence we can generate the associated sequence
or index, respectively. The objective is to index the greatest number of this type of
sequences, for any alphabet size, in the most efficient possible way.
As part of a larger project, a software has been specially designed to analyze these
sequences and thus helping us to create and verify a model that meets the objective.

1 Introduction

1.1 Overview

Given an alphabet of size k, a de Bruijn sequence of order n is a cyclic sequence in which
every possible string of length n occurs exactly once as a substring. We denote this sequence
of length N = kn by B(k, n). The number of unique de Bruijn sequences B(k, n) is

(k!)k
n−1

kn
.

Figure 1: de Bruijn graph G(2, 3)

Some examples of binary de Bruijn sequences are: 01, 0011,
00010111, 0000100110101111... There are many known ways to
create de Bruijn sequences [1], we can see indexing as another
way to generate this kind of sequences. Each valid sequence
is a Hamiltonian cycle in the corresponding de Bruijn graph
G(k, n). An interesting property is that every Hamiltonian cy-
cle in G(k, n) is associated to an Eulerian cycle in G(k, n− 1).
For instance, in order to generate de Bruijn sequences of length
N = 24 we can find Eulerian cycles in G(2, 3) (Figure 1). Re-
member that in an Eulerian cycle we visit each node exactly
once, and in a Hamiltonian cycle we visit each edge once.

Definition 1.1. Ik(n) is the number of unique de Bruijn se-
quences we can index using a method of our choice.

Proposition 1.1. Any valid indexing method associates a sub-
set of Ik(n) unique de Bruijn sequences to a set of indices. The indexing relation among
index i and sequence S is given by function f(S) = i and its inverse f−1(i) = S. The method
must satisfy the following requirements:

1

mailto:ocg.steppenwolf@gmail.com

1. ∃x ∈ [0 . . (k!)k
n−1

/kn − 1] ∀i ∈ [0 . . Ik(n)− 1] : f(Sx) = i⇐⇒ f−1(i) = Sx.
Each index value inside the interval is associated to a unique de Bruijn sequence.

2. Given i, j ∈ [0 . . Ik(n)− 1], f−1(i) = Sx and f−1(j) = Sy, then Sx ̸= Sy ∀i ̸= j.
The same unique de Bruijn sequence cannot be associated to more than one index value.

We can apply Hierholzer’s algorithm [2] to generate a random de Bruijn sequence, but
there is no clear way to index since, although its efficiency is maximum, it does not meet
Proposition 1.1.

1.2 Preliminaries

Throughout this text we will make some assumptions. First of all, we normally will use the
notation N instead of kn, especially to express the computational complexity, since it will
make things easier when we use other known algorithms; furthermore, it seems more natural,
because the time complexity for generating a sequence will never be less than O(N).

Besides, to make the analysis easier we will establish an initial substring of length n, and all
generated sequences will begin with that substring.

In next sections we will use the same example to analyze the problem: a handable case for
sequences of length N = 24 and working graph G(2, 3) (Figure 1). In this case, the number
of unique de Bruijn sequences is 16 (Figure 2).

Figure 2: The 16 de Bruijn sequences Sx of length N = 24 sorted by initial substring 0000

As we walk through a path in graph G(k, n− 1) to obtain an Eulerian cycle, we will remove
edges of the path. For reasons of clarity and compatibility with other algorithms we use, we
will force that it is always possible to form an Eulerian cycle; to do this, we will add an extra
node Z to interconnect initial node and latest node. For instance, let’s suppose a partial
valid path 11 starting from node 000, using the extra node Z applied to our example (Figure
3). Something very important is that, as we remove edges of the path, we won’t consider
isolated nodes (i.e. nodes without edges) as part of the graph, and they will be excluded
from the analysis. To approach the analysis we will use two new concepts that will be useful
to us.

Definition 1.2. A Sequence Tree (ST) is a tree where all unique de Bruijn sequences are
gathered along the nodes, removing redundant information.

Pay attention to the ST for our example (Figure 4).

2

Figure 3: Simulating path 11 in graph G(2, 3) (removed edges are dotted), we can find an Eulerian cycle on each step

For simplicity, we will call splitting nodes to those branch nodes with more than one child
node. Be careful with the following: the fact that a certain node in the ST is not a splitting
node doesn’t imply that the associated node in graph G(k, n − 1) has only one outcoming
edge, but rather only one of its outcoming edges leads to, at least, one de Bruijn sequence.

Figure 4: ST for N = 24 and initial substring 0000 (splitting nodes are shown rounded)

Definition 1.3. A Sequence Number Tree (SNT) is a simplification of the ST, where we
have removed all branch nodes with only one child node. Then, every node in a SNT is either
a splitting node or a leaf node. Each splitting node is marked with the total amount of leaf
nodes hanging from it, directly or indirectly.

3

Figure 5: SNT for N = 24 and initial substring 0000

Look carefully the SNT for our example (Figure 5). Note that the levels of the SNT are
reorganized, losing information about the position where a splitting node occurs; this is not
worrying and will have its advantages in the analysis. The shape of the SNT may change
depending on the chosen initial substring. Keep in mind that, in practice, we won’t have to
build either the ST nor the SNT, they are only presented here for analytic purposes.

2 Full indexing

Having the objective of indexing the greatest number of de Bruijn sequences in the most
efficient possible way, we can wonder if indexing the total amount of sequences is possible.
The answer is obviously affirmative, the question is whether it is efficient to do so.
As initial approach, brute force allows us to achieve full indexing, but in a totally inefficient
way (exponential cost).

Algorithm 1 Update data indexing in node

Input: S, posS (initially 0), index (initially 0)
Output: posS, index (both updated)

1: isSplitNode← GetNumEC(ec) ▷ Get Eulerian cycles for each symbol
2: if isSplitNode then
3: for c = 0 to k − 1 do
4: if ec[symOrder[c]] > 0 then
5: if symOrder[c] = S[posS] then
6: posS ← posS + 1
7: break
8: index← index+ ec[symOrder[c]] ▷ Add Eulerian cycles

4

Let’s think about an alternative method: if on each splitting node visited in our path through
the SNT (or in each node in the ST) we could be able to calculate the values inside its child
nodes, then indexing would be trivial (see Algorithm 1 and 2 to update internal data when
we find a splitting node).

Algorithm 2 Update data unindexing in node

Input: S (initially empty), index
Output: S, index (both updated)

1: isSplitNode← GetNumEC(ec) ▷ Get Eulerian cycles for each symbol
2: if isSplitNode then
3: for c = 0 to k − 1 do
4: if ec[symOrder[c]] > index then
5: S.Add(symOrder[c])
6: break
7: else
8: index← index− ec[symOrder[c]] ▷ Substract Eulerian cycles

One way to do this is by using the BEST theorem [3] and the Kirchhoff’s matrix tree theorem
[4]. The BEST theorem gives the number of Eulerian cycles ec(G) in directed graphs:

ec(G) = tw(G)
∏
v∈V

(
deg(v)− 1

)
! (1)

Here, tw(G) is the number of spanning trees of graph G, which are trees directed towards the
root vertex fixed in w; deg(v) can be either outdegree or indegree of vertex v; V is the set
of vertices of our graph. No matter the vertex we choose into the connected graph G, the
result will be the same... but, as we said in section 1.2, isolated vertices are excluded.
To calculate tw(G) we will apply the Kirchhoff’s matrix tree theorem: its value is equal to
any cofactor of the Laplacian matrix of G, and can be computed in polynomial time. Steps:

1. Construct the Laplacian matrix Q for graph G, excluding isolated vertices.

qi,j =

{
deg(vi)− loops(vi) if i = j

−m if i ̸= j and vi has m edges towards vj

For the degree of vi, deg(vi), we can either use indegree or outdegree. The amount
loops(vi) is the number of edges connecting vertex vi to itself.

2. Construct a matrix Q′ by deleting row w and column w from Q (we can use any other
non-isolated vertex of our choice, instead of w).

3. Take the determinant of Q′ to obtain tw(G).

5

Figure 6: Simulating path 000011 in
G(2, 3) (removed edges are dotted)

In our example, let’s suppose we follow the path 00001
and want to evaluate the value of the child node in
the SNT extending the path with the symbol 1, that is,
the number of de Bruijn sequences we can constuct with
the resulting graph (Figure 6). We know that the cor-
rect number of Eulerian cycles is 8 (Figure 2, 4 and
5).
Let’s see what we obtain applying the two theorems men-
tioned above; we use indegree to calculate Q, we take
Z as the ninth vertex, and for simplicity we remove
the latest row and column of Q to obtain Q′. Fi-
nally, we only have to take the determinant of Q′,
apply (1) and compare the result with the expected
value:

Q =

1 0 0 0 0 0 0 0 −1
0 1 −1 0 0 0 0 0 0
0 0 2 0 −1 −1 0 0 0
0 0 0 2 0 0 −1 −1 0
−1 −1 0 0 2 0 0 0 0
0 0 −1 −1 0 2 0 0 0
0 0 0 0 −1 −1 2 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 −1 0 0 0 0 1

, Q′ =

1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 2 0 −1 −1 0 0
0 0 0 2 0 0 −1 −1
−1 −1 0 0 2 0 0 0
0 0 −1 −1 0 2 0 0
0 0 0 0 −1 −1 2 0
0 0 0 0 0 0 −1 1

tw(G) =

∣∣Q′
∣∣ = 8, ec(G) = 8 · (1!)6 · (0!)3 = 8

Using this method, although the total cost has polynomial complexity, it is still unaffordable
except for small cases: take the determinant has a space complexity of O(N2) and a time
complexity typically of O(N3)... by doing it N times, we have a global time complexity of
O(N4). In practice it is even worse due to the need of using operations with support for big
numbers. So it seems that, if we don’t find a more efficient way to do it, we will have to settle
for a partial indexing. As a final note, with full indexing we can obtain a lexicographically
sorted indexing when we prioritize the symbols from least to greatest.

3 Partial indexing

3.1 Encoding

If we leave aside the full indexing, let’s see if we can find some pattern or scheme in the de
Bruijn sequences that allows us to efficiently index as many of them as possible and without
the need of using support for big numbers.
Observing the SNT, we can consider the chosen symbols in the splitting nodes to represent
the sequence encoding. In our example, we can directly construct all encodings for an initial
substring 0000 (Figure 7), and they can be easily verified looking at the corresponding ST
(Figure 4).

6

Figure 7: The 16 encoded values for de Bruijn sequences of length N = 24 with initial substring 0000

Definition 3.1. Given k, n and the encoding C of a sequence S, we will call M to the length
of C.

Proposition 3.1. In general, as we change the initial substring, C and M may also change
for a certain sequence S, and values Ci ∀i ∈ [0 . . Ik(n)− 1] are not fully consecutive.

In our example, we have four sequences for M = 3, four sequences for M = 4 and eight
sequences for M = 5, therefore the minimum is 3 and the maximum is 5. Note that, although
we could generate an exact indexing model for our example, it would generally not hold for
other cases. Trying to find a pattern in the encoding values can be a really difficult task.

3.2 Indexing

Definition 3.2. Given k and n, we call Mmin(k, n) and Mmax(k, n) to the minimum and
maximum value of M , respectively, taking into account all SNT created by all possible initial
substrings.

Conjecture 3.1. Given k and n, the values Mmin(k, n), Mmax(k, n) and the number of
sequences for each value of M ∈ [Mmin . . Mmax] are independent of the initial substring.

We can advance that the previous conjecture seems true in practice, but in our analysis
we won’t need to assume or prove it, because we are interested in the global minimum and
maximum, no matter the initial substring we choose.
In our example, we have seen that Mmin(2, 4) = 3 and Mmax(2, 4) = 5; we do know it because
we have generated the SNT, but in real cases we won’t generate that tree... then, how can we
know it in advance? If we suppose that Mmin(k, n) and Mmax(k, n) follow a pattern or have
structure, we have two options: deduce them mathematically in a theorical way, or model
them from a practical analysis by software. In this text we will approach the second option.

Proposition 3.2. Given a tree, whose nodes are either leaf nodes or splitting nodes with
exactly k child nodes, we will be able to safely index a number of leafs (i.e. sequences) equal
to kMmin, being Mmin the minimum level of the tree where there is at least one leaf. Each
valid index value belongs to interval [0 . . kMmin−1], filling the most significant positions with
zeros if necessary. This is so because such a tree will always be a full tree up to level Mmin.

Theorem 3.1. Encoding the selected symbols of the splitting nodes in a SNT, the biggest
number of indexed de Bruijn sequences that we can guarantee with consecutive indices is:

Ik(n) = 2Mmin(k,n) (2)

7

Proof. Let’s apply Proposition 3.2 to SNTs:

• Case k = 2: It fully satisfies the proposition, therefore I2(n) = 2Mmin(2,n).
In our example, we have 8 indexed sequences using partial indexing (Figure 8). We
represent indices in binary format, from 0 to 7, starting with MSB (leftmost) and
finishing with LSB (rightmost).

Figure 8: The 8 indexed values for de Bruijn sequences
of length N = 24 with initial substring 0000

Be careful with the growing direction of the weight of the symbols in the SNT: in our
case it grows from the root node (LSB) onwards, filling with zeros the most significant
bits to complete the path to reach a de Bruijn sequence.

• Case k > 2: It doesn’t satisfy the proposition because splitting nodes can have from
2 to k child nodes. In order to be able to do a partial indexing in this case, we will
binarize the tree to turn it into case k = 2: as to efficiently encode we would need to
know the marked values inside splitting nodes (a high complexity task, as we saw in
section 2), then we will use precalculated coding tables and we will assume that we
always have the worst scenario (one bit encoding). To clarify the method let’s leave
aside our classical example for a moment and look at a specific example only for this
time: there are 24 de Bruijn sequences of length N = 32 with initial substring 00 in
lexicographic order (Figure 9).

Figure 9: The 24 de Bruijn sequences of length N = 32 sorted by initial substring 00

Again, we can build its associated SNT (Figure 10a), where we observe thatMmin(3, 2) =
3, and its binarized SNT (Figure 10b). Note that in this binarized SNT we observe
that Mmin(3, 2) = 4, and dashed nodes mean unreal nodes, only shown to see how node

8

(a) SNT (b) Binarized SNT

Figure 10: Trees for N = 32 and initial substring 00

grouping is made during encoding. This binarized SNT is just one among all encoding
possibilities... in fact, it is the best one because it always merges the two nodes with
lowest value, providing a number of indexed sequences of 24. But, as we generally won’t
know the values marked in the nodes, we will suppose the worst scenario: a number of
indexed sequences of 23 using partial indexing (Figure 11).

Figure 11: The 8 indexed values for de Bruijn sequences
of length N = 32 with initial substring 00

9

Applying both cases, we come to the conclusion that (2) gives us a predictable and safe
bound that assures us that we can index satisfying Proposition 1.1.

Now, we only need a way to deduce or model the funtion Mmin(k, n): as we’ll see, we’ll try
to model it in section 4. Note that to carry out partial indexing it is crucial to verify if a
node is a splitting node; we have two options to do it:

• Hierholzer’s algorithm: if we can build an Eulerian cycle by at least two child nodes of
the current node, then the current node is a splitting node. Time complexity: O(N).
Space complexity: O(N). We get a global time complexity of O(N2). Not bad, but we
can think of a better a way to improve it: having to build an Eulerian cycle is perhaps
a waste (too much information that we don’t need) and what is really interesting is to
detect if by removing an edge is still possible to build an Eulerian cycle... of course, this
detection must have a time complexity lower than O(N) to get a global time complexity
lower than O(N2).

• Fully Dynamic Connectivity (FDC): if after removing an edge the source node doesn’t
become isolated, for sure we will have to return to that node at some point of our path.
It implies that the two nodes, whose shared edge we remove, must continue belonging
to the same connected component. In fact, discarding isolated vertices, the graph will
always have a single connected component; then, we can deduce that if we remove an
edge that doesn’t lead to a de Bruijn sequence, the graph will be divided into two
disconnected subgraphs.

Theorem 3.2. Given a partial path on a de Bruijn graph, and using vertex Z for
readapting the graph after the edge removal, when we fail trying to build an Eulerian
cycle it always means that the main graph is not connected anymore.

Proof. A graph must satisfy two requirements so that we can apply Hierholzer’s algo-
rithm:

– It must be an Eulerian graph. This requirement is satisfied since the beginning; in
every vertex of the graph, indegree must be equal to outdegree in order to obtain
an Eulerian cycle. It is always true, no matter the edge we remove, due to the use
of vertex Z readapting the graph after each edge removal (review Figure 3).

– It must be a connected graph. This requirement is satisfied at the beginning,
because a de Bruijn graph is always initially connected, but it can’t be guaranteed
until the end: if we remove an edge that doesn’t lead to an Eulerian cycle, the
graph must become disconnected because the first requirement is always true.

Hence, by checking connectivity between the two nodes after removing the shared edge,
we can say whether the extended path is valid with complete certainty.

So after removing an edge we have to check if the two nodes are still connected (as long
as the source node is not isolated), and do this with a time complexity lower than O(N).
For directed graphs, like our de Bruijn graphs, such efficient algorithm is not known...

10

but for undirected graphs there is an existing one [5]. Luckily, in our case, as we want to
detect a disconnection between two subgraphs, we don’t care if we take our graph as if
it were undirected, we are only interested in that break of the graph. Then, we can use
that efficient algorithm without problem. Using dynamic connectivity, we dynamically
maintain information about the connected components of a graph. When edges can be
either added or removed, as in our case, this can be called fully dynamic connectivity. If
advancing by at least two child nodes of the current node the graph remains connected,
then the current node is a splitting node. Time complexity: O(lg2N) amortized time
per update (edge insertion or removal), and O(lgN) per connectivity query (it can be
improved to O(lgN/ lg lgN)). Space complexity: O(N lg3N). We get a global time
complexity of O(N lg2N), which is quite acceptable.

Figure 12: Simulation of path
00001110 in graph G(2, 3) creates

two disconnected subgraphs

Going back to our classic example, let’s suppose we have
a valid path 0000111 and want to extend it with a
0 using FDC method (Figure 12). As we see, the
main connected graph has been divided into two discon-
nected subgraphs containing non-isolated vertices, and one
of them composed only of vertex 111. Since there is
no way to return directly or indirectly to vertex 111
from vertex 110, we can’t construct a de Bruijn se-
quence and therefore the extension of the path is in-
valid.

Finally, very schematic indexing and unindexing algorithms are
proposed (Algorithm 3 and 4). Thus, the critical work of par-
tial indexing consists of determining which node edges lead us
to de Bruijn sequences (Algorithm 5).

Algorithm 3 Partial indexing

Input: k, n, initSubStr, index, method
Output: S, state
1: N ← kn

2: G← CreateGraph(k,n− 1) ▷ Node Z used
3: G.ApplyInitialSubString(initSubStr)
4: posindex ← 0, S ← initSubStr, state← True

5: for c = 1 to N − n do
6: edges← G.GetValidNodeEdges(method) ▷ Algorithm 5
7: (selEdge, posindex)← G.GetSelEdgeByIndex(edges,index,posindex)
8: if selEdge = None then
9: S ← [], state← False

10: break
11: else
12: S.Add(edges[selEdge])
13: G.SelectEdge(edges[selEdge])

11

Algorithm 4 Partial unindexing

Input: k, n, S, method
Output: index, state
1: N ← kn

2: initSubStr ← S[0, ..., n− 1]
3: G← CreateGraph(k,n− 1) ▷ Node Z used
4: G.ApplyInitialSubString(initSubStr)
5: posS ← n, index← [], state← True

6: for c = 1 to N − n do
7: edges← G.GetValidNodeEdges(method) ▷ Algorithm 5
8: (selEdge, posS, binCodif)← G.GetSelEdgeByS(edges,S,posS)
9: if selEdge = None then

10: index← [], state← False

11: break
12: else
13: index.Add(binCodif)
14: G.SelectEdge(Edges[selEdge])

Algorithm 5 Get valid edges of current node in SNT

Input: G, method
Output: edges
1: edges← []
2: Vi ← G.GetCurrentNode()

3: nodeEdges← G.GetNodeEdges() ▷ symOrder[] used
4: for each e ∈ nodeEdges do
5: Vf ← G.GetNodeUsingEdge(e)
6: if method = FDC2 then
7: NCi ← G.GetNumConnectedComponents()

8: G.SelectEdge(e)
9: state← G.IsIsolated(Vi)

10: if ¬ state then
11: if method = Hierholzer then
12: state← G.Hierholzer()

13: else if method = FDC1 then
14: state← G.IsConnected(Vi,Vf)

15: else ▷ FDC2
16: NCf ← G.GetNumConnectedComponents()

17: state← G.IsConnected(Vi,Vf)

18: if NCi = NCf then
19: state← True

20: if state then
21: edges.Add(e)

22: G.UnselectEdge(e)

12

As a final note, with partial indexing we don’t obtain a lexicographically sorted indexing
when we prioritize the symbols from least to greatest.

4 Implementation: Myshella

Myshella is a personal project with a broad and idealistic objective: to bring order into
chaos. It will be a highly appreciated help for the purpose of this text, indexing, because of
the difficulty of theoretical analysis and fast increase in the number of sequences for different
values of k and n. As part of this project, a C++ implementation has been developed for the
analysis of different aspects of de Bruijn sequences, with the additional objective of finding
a potential use in cryptography.

Some implementation features of Myshella related to this text:

1. Symbol sorting in the splitting nodes.
It allows three types of sorting: increasing, decreasing and random.

2. Full indexing/unindexing of the sequences.
It uses LU decomposition to take the determinant [6].

3. Encoding/decoding of the sequences.

4. Partial indexing/unindexing of the sequences.

• Hierholzer’s algorithm or FDC may be used. For the second case, we take advan-
tage of an excellent open source implementation [7].

• In order to detect if the graph becomes disconnected after an edge removal, there
are two options: we can either call a function to see if source vertex and target
vertex are still connected, with a time complexity of O(lgN), or call another
function to compare the number of connected components in the graph after and
before the edge removal, with a time complexity of O(1); of course the second
option is slightly better, but in practice we have a time complexity of O(lg2N)
due to the edge insertion and removal, no matter the option we use.

• When tree binarization is needed (k > 2), we use precalculated tables for Huffman
coding [8], assuming symbol equiprobability.

5. Smart search of practical values for Mmin(k, n) and Mmax(k, n).
Given a certain splitting node, we use the method seen in section 2 (BEST theorem
and Kirchhoff’s matrix tree theorem) to find the child nodes with the minimum or
maximum number of Eulerian cycles. In order to speed up the process, we avoid the
use of big numbers and we calculate the logarithm of the determinant. Even so, both
factors are difficult to evaluate for high values of n.

In the previous study of partial indexing we have seen that the only thing we needed to find
out was Mmin(k, n). Let’s start the analysis using Myshella for k = 2, grouping practical
results for functions Mmin(2, n) and Mmax(2, n) (Table 1).

13

Table 1: Reached values of Mmin(2, n) and Mmax(2, n) using Myshella

n 1 2 3 4 5 6 7 8 9

Mmin(2, n) 0 0 1 3 9 19 45 93 197
Mmax(2, n) 0 0 1 5 13 29 61 125 253

The numerical series for Mmin(2, n) and Mmax(2, n) match the sequence A329145(n) and
max(A036563(n− 1), 0), respectively, in OEIS [9], having the following expressions:

Mmin(2, n) = 2n−1 −N2(n) + 1 (3)

Mmax(2, n) = max(2n−1 − 3, 0) (4)

Nk(n) is the number of necklaces of length n over an alphabet of size k (where φ(n) is Euler’s
totient function) [10]:

Nk(n) =
1

n

∑
d|n

φ(d)kn/d =
1

n

n∑
i=1

k gcd(i,n) (5)

We can easily calculate some reference values of Nk(n) for k ∈ [2 . . 6] (Table 2, where the
appropriate numerical series in OEIS are included). We must take in mind thatN1(n) = 1 ∀n.

Table 2: Some values of Nk(n)

k
n

1 2 3 4 5 6 7 8 9 10 OEIS

2 2 3 4 6 8 14 20 36 60 108 A000031(n)
3 3 6 11 24 51 130 315 834 2195 5934 A001867(n)
4 4 10 24 70 208 700 2344 8230 29144 104968 A001868(n)
5 5 15 45 165 629 2635 11165 48915 217045 976887 A001869(n)
6 6 21 76 336 1560 7826 39996 210126 1119796 6047412 A054625(n)

Going further, we can group practical results for functions Mmin(k, n) and Mmax(k, n), re-
spectively, using Myshella for some values of k and n (Table 3 and 4).

Table 3: Some values of Mmin(k, n)

k
n

1 2 3 4 5 6 7 8 9 10

2 0 0 1 3 9 19 45 93 197 405
3 1 3 11 36 119 370 1163 3576 10987 33540
4 2 8 35 146 611 2502 10259 41756 169659 687398
5 3 15 79 405 2079 10565 53679 271815 1374599 6940581
6 4 24 149 909 5549 33689 204449 1238469 7495329 45317955

14

https://oeis.org/A329145
https://oeis.org/A036563
https://oeis.org/A000031
https://oeis.org/A001867
https://oeis.org/A001868
https://oeis.org/A001869
https://oeis.org/A054625

Table 4: Some values of Mmax(k, n)

k
n

1 2 3 4 5 6 7 8 9 10

2 0 0 1 5 13 29 61 125 253 509
3 1 5 17 53 161 485 1457 4373 13121 39365
4 2 11 47 191 767 3071 12287 49151 196607 786431
5 3 19 99 499 2499 12499 62499 312499 1562499 7812499
6 4 29 179 1079 6479 38879 233279 1399679 8398079 50388479

A value in normal style means that Myshella has successfully reached the predicted value,
and not exceeded (neither below Mmin(k, n) nor above Mmax(k, n)); a value in italics means
that it has not been reached in practice but, what is more important, it has not been ex-
ceeded either (an excess would invalidate the model automatically).

Let’s explain where the practical and predicted values come from. The smart search of
practical values for Mmin(k, n) and Mmax(k, n) is based on the following conjecture:

Conjecture 4.1. There is at least one sequence with encoding length equal to Mmin(k, n)
or Mmax(k, n) choosing always the child nodes with the minimum or maximum number of
Eulerian cycles, respectively, through a path in the SNT.

This conjecture, although it may be not true in general, allows us to reach in practice the
predicted values in many cases, as it is shown in Table 3 and 4. Taking into account these
practical values, we can try to generalize (3) and (4) to create the predictive model for partial
indexing:

Hypothesis 4.1. Given k and n, the exact expressions for values Mmin(k, n) and Mmax(k, n)
are the following:

Mmin(k, n) = (k − 1)kn−1 −Nk(n) +Nk−1(n) (6)

Mmax(k, n) =

max(2n−1 − 3, 0) if k = 2

(k − 1)kn−1 − 1 if k > 2
(7)

This model seems to fit perfectly the practical values. Note that, in practice, grouping terms
we calculate (6) in this way:

Mmin(k, n) = (k − 1)kn−1 − 1

n

∑
d|n

φ(d)[kn/d − (k − 1)n/d] (8)

In summary, (2) gives us the number of indexed sequences Ik(n) using partial indexing, whose
function Mmin(k, n) we have successfully modeled in (6) or (8), so we can generate with a
global time complexity of O(N lg2N) any de Bruijn sequence associated to a certain index
i ∈ [0 . . Ik(n)− 1] (and vice versa).
We must keep in mind that, although in general Ik(n) is huge in absolute terms, it is an
insignificant part of the total amount of unique de Bruijn sequences.

15

5 Conclusion

We have initially set the requirements that any valid indexing method must satisfy. As a
consequence of the high complexity of the method used in this text, full indexing in practice
is only possible for small cases. On the contrary, using partial indexing we have supposedly
achieved the objective of indexing a relatively big number of unique de Bruijn sequences, for
any alphabet size and in a quite efficient way. For that purpose we have modeled the struc-
ture of two properties of these sequences, Mmin(k, n) and Mmax(k, n) (lengths of encoded
sequences using splitting nodes), thanks to an implementation of project Myshella.

As long as the model is correct, partial indexing offers another way to generate de Bruijn
sequences, added to those already known, with acceptable efficiency. But before going further
in the investigation of potential applications, a proof for the model is required.

What we have seen in this text could also be used in other cases where we want to index the
Eulerian cycles for a certain family of graphs; although, in order to use partial indexing, we
would have to know how to predict the value Mmin for those kind of graphs.

6 Open problems

There are many related things pending investigation:

1. Proof for Hypothesis 4.1 to confirm the predictive model used in partial indexing. Oth-
erwise, we should keep trying to reach in practice more predicted values of Table 3 and
4; that way, either the model would be more robust or we could find counterexamples
to refute it.

2. Proofs for Conjecture 3.1 and 4.1. There is no need, but it would be interesting to
know if they are true. Especially, the creation of a model for the number of de Bruijn
sequences for each M ∈ [Mmin . . Mmax], given k and n.

3. Possible pattern in de Bruijn sequences to achieve an efficient full indexing. Alterna-
tively, a way to make a kind of dynamic full indexing using the method seen in this
text, saving operations.

4. For k > 2, an efficient coding in splitting nodes for increasing Mmin(k, n) in the bina-
rized SNT, because right now we suppose the worst coding case.

5. Possible use of these indexing methods in cryptography.

16

References

[1] J. Sawada, A. Williams, and D. Wong. ”A surprisingly simple de Bruijn sequence con-
struction”. Discrete Mathematics, 339(1):127-131, 2016.

[2] C. Hierholzer. ”Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren”. Mathematische Annalen, 6:30–32, 1873.

[3] T. van Aardenne-Ehrenfest, N. G. de Bruijn. ”Circuits and tress in oriented linear
graphs”. Simon Stevin, 28: 203–217, 1951.

[4] G. Kirchhoff. ”Ueber die Auflösung der Gleichungen, auf welche man bei der Un-
tersuchung der linearen Vertheilung Galvanischer Ströme geführt wird”. Annalen der
Physik und Chemie, vol. 72, pp. 497-508, 1847.

[5] J. Holm, K. de Lichtenberg, and M. Thorup. ”Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity”. Journal of the ACM, 48(4):723–760, 2001.

[6] A. Schwarzenberg-Czerny. ”On matrix factorization and efficient least squares solution”.
Astronomy and Astrophysics Supplement Series, 110: 405. 1995.

[7] T. Tseng. ”Dynamic Connectivity”.
https://github.com/tomtseng/dynamic-connectivity-hdt

[8] D. Huffman. ”A Method for the Construction of Minimum-Redundancy Codes”. Pro-
ceedings of the IRE, 40 (9): 1098–1101. 1952.

[9] OEIS Foundation Inc. (2023), The On-Line Encyclopedia of Integer Sequences, Pub-
lished electronically at http://oeis.org.

[10] G. Pólya. ”Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen”. Acta Mathematica, 68 (1): 145–254. 1937.

17

	1 Introduction
	1.1 Overview
	1.2 Preliminaries

	2 Full indexing
	3 Partial indexing
	3.1 Encoding
	3.2 Indexing

	4 Implementation: Myshella
	5 Conclusion
	6 Open problems

