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Abstract— In this paper we present the architecture of the
Kyber-E2E submission to the map track of CARLA Leader-
board 2.0 Autonomous Driving (AD) challenge 2023, which
achieved first place. We employed a modular architecture for
our solution consists of five main components: sensing, local-
ization, perception, tracking/prediction, and planning/control.
Our solution leverages state-of-the-art language-assisted per-
ception models to help our planner perform more reliably in
highly challenging traffic scenarios. We use open-source driving
datasets in conjunction with Inverse Reinforcement Learning
(IRL) to enhance the performance of our motion planner. We
provide insight into our design choices and trade-offs made
to achieve this solution. We also explore the impact of each
component in the overall performance of our solution, with the
intent of providing a guideline where allocation of resources
can have the greatest impact.

I. INTRODUCTION

The CARLA Autonomous Driving (AD) challenge aims
to advance autonomous vehicle research and development
by focusing on their ability to excel in challenging traffic
scenarios. The 2023 CARLA AD challenge adopts Leader-
board 2.0 as the evaluation framework, introducing a sig-
nificant evolution from its predecessor, Leaderboard 1.0.
Notably, Leaderboard 2.0 presents a heightened level of
complexity by incorporating challenging scenarios, including
open-door maneuvers, yielding to emergency vehicles, and
more. Despite advances in end-to-end solutions and their
superior performance, modular approaches provide abstrac-
tions that can yield much faster development. The inherent
interpretability of modular solutions is another point of
strength that differentiate them from end-to-end solutions.
Another challenge associated with end-to-end solutions is
their dependency on availability of good expert data. As
of writing this report, unlike Leaderboard 1.0, Leaderboard
2.0 does not provide an autopilot as an expert driver for
data collection. Consequently, training models exclusively
on datasets from Leaderboard 1.0 proves insufficient for
effectively addressing the challenges posed by Leaderboard
2.0 scenarios.

We present our Kyber-E2E solution, which secured the top
rank in the 2023 CARLA AD challenge on the map track.
We employ a modular approach which allows us to reuse
components trained based on other datasets in the absence
of expert data for Leaderboard 2.0. The key components
of our solution includes sensing, localization, perception,

tracking/prediction, and planning/control. In the realm of
perception, we enhance object detection performance by
integrating state-of-the-art language-assisted vision models.
Leveraging these advanced models allows our solution to
interpret complex scenes with heightened accuracy and effi-
ciency. For tracking and prediction, our approach integrates
the Unscented Kalman Filter (UKF) [1] in conjunction with
an unbalanced linear-sum assignment [2] to effectively track
and predict the trajectories of objects in dynamic environ-
ments. To fine-tune the parameters of our motion planner, we
employ Inverse Reinforcement Learning (IRL) [3]. Particu-
larly, we use IRL over InD open-source dataset [4] to opti-
mize the parameters of our planner. This synergistic approach
facilitates the development of a robust and adaptable motion
planner capable of navigating complex driving scenarios in
a short amount of time. Our experimental results confirm the
effectiveness of our planner, demonstrating its capability to
navigate diverse and challenging driving scenarios presented
in the CARLA AD challenge.

The contributions of this paper is two-fold:
• Empirically show a modular design with components

trained on different dataset is an effective approach.
• Analyse the impact of each component on overall per-

formance with the aim of showcasing where its better
to allocate engineering and development resources.

In section II we present details about the design of each
component and their development. Section III discusses
the training and development of the models. We present
the empirical result and analysis about impact of various
modules in section IV. Conclusion and limitation of our work
are provided in Section V.

II. AGENT ARCHITECTURE

The architecture of our agent is given in Fig. 1. In what
follows, we discuss the main components of our architecture
design.

A. Sensing

Our sensing module consists of the following complemen-
tary sensors:

• One Front-facing RGB camera, used for object detec-
tion and traffic signal detection.

• One 360-deg LiDAR used for object detection.



• One radar to estimate velocity and position of far
dynamic objects.

• GNSS, IMU, and odometer to estimate ego vehicle state.
• OpenDrive map that is used to extract reference path

and improve the perception output

B. Perception

The perception module deals with instantaneous obser-
vation of the environment handling dynamic and static
object detection and traffic signals. Temporal perceptual
information is handled by tracking and prediction modules
downstream to perception, which are discussed in II-C. The
architecture for perception is decomposed into two main
components, as shown in Fig. 2. The first component focuses
on object detection and provide the location, orientation,
and size of objects. The second one deals with traffic signs
including traffic light, stop sign and speed limit signs. In
what follows, we briefly describe the architecture of each
module.

1) Signs Detection and Recognition: This part of percep-
tion deals more exclusively with camera based perception.
For this purpose we feed a high resolution (1080p) front
facing camera feed to a combination of two pre-trained open-
source models. The OWL-ViT [5] model is used for Zero-
shot First-person-view (FPV) 2D object detection and ViLT
[6] model is used for Visual Question Answering in the
same view point. We find that using zero-shot detection is
enough for the level of performance that was needed. The
camera feed is first segmented into regions of interest based
on assumptions about the potential location of each traffic
sign. The segmented regions are then separately fed into
OWL-ViT to detect the bounding boxes based on the newly
defined zero-shot classes (e.g. ”traffic light”, ”stop sign”,
”speed sign”).
Azimuth, altitude and distance are calculated using the
detected bounding boxes and the intrinsic and extrinsic of the
camera sensor. Bounding boxes are also used to further crop
the segments of the image to check for additional inquiries
about the signs. For this purpose, the cropped images are
fed into ViLT along with language based queries (prompts)
to get the traffic light state and the speed limit value that
is written on the sign. The prompts used for the winning
submission are (”What color is the traffic light?”, ”what is
the speed written on the sign?”). We dub this sub-module
the Language Aided Perceptions (LAPS).

2) Object Detection: This module is a modified variant on
top of the work from [7], using the backbone as described
in Transfuser along with the Centernet head [8]. The input
to this branch is Birds-eye-view (BEV) voxelization of the
lidar point cloud along with a front facing camera. It passes
through the fusion backbone and the 3D object detection
head. This outputs the position, orientation, size and class
information of the detected objects. We augment the existing
classes to include (cars, bikes, pedestrians, construction
areas, cars with open door, and emergency vehicles).
The Lidar-based object detection has a limited range of 32
meters. To enrich object detection, especially for objects

located far away from the ego, we employ radar. This
process runs concurrently with the primary object detection,
extending the list of identified objects.

3) Post-processing: The outputs from the two detection
modules are further enhanced using the OpenDrive map.
Based on certain rules and expert knowledge, we match
objects and traffic signs with the maps elements to rectify
any erroneous detections and orientations.

C. Tracking and prediction

1) Tracking: Tracking is essential in our solution for two
reasons. Given the zero shot perception we employed, there is
no speed information for dynamic objects. The objects need
to be tracked over time to estimate their speed for effective
prediction and planning. Additionally, certain scenarios in
CARLA Leaderboard 2.0 necessities tracking of object to
estimate their behavior for proper decision making. The
architecture of our tracking/prediction module is shown in
Fig. 3. At every time-step, the perception module measures
the ego-frame position and the orientation of all the objects
around the ego. All the measurements are then converted
to the global frame to make the measurements independent
from the ego state. Moreover, we need to improve robustness
of the perception measurements and determine the temporal
relationship between consecutive perception measurements.
To achieve this goal, we use UKF alongside an unbalanced
linear-sum assignment to track the objects along time, filter
the noise, and improve robustness. We use unbalanced linear-
sum assignment to assign the new perception observations
to the already active tracks. The associated cost for each
assignment is the norm of error between the UKF prediction
and the candidate observation. If the minimum assignment
cost for an active track is above a fixed maximum allowable
cost, the track will not be assigned to any of the observations.
If a track is not assigned to any observation for a fixed
amount of simulation time-steps (MAX-ACTIVE-TIME), the
track will be dropped. On the other hand, if an observation is
not assigned to any of the tracks, we initiate a new track for
that observation. To suppress noise, a new track will become
active only after if it is assigned to an observation for a fixed
amount of simulation time-steps (TIME-To-INIT). When an
observation is assigned to a track, we use the observation to
update the Kalman Filter state. We set the values of MAX-
ACTIVE-TIME and TIME-To-INIT according to the object
types observed by the perception module. For example,
for pedestrians and bikes we set a high MAX-ACTIVE-
TIME and a low TIME-To-INIT so that the planner is more
conservative towards these minority yet important object
classes.

2) Prediction: We use output of the UKF to predict other
objects’ future trajectories which is required by the planning
module. To achieve this goal, we assume a constant speed
along the anchored path if the object moves along a lane.
Contrarily, if the object crosses a lane, both speed and
heading are kept constant.



Fig. 1: Kyber-E2E agent architecture.

D. Planning and Control

Our planning module consists for three sub-modules: 1)
The behavior planning makes the high level decisions, 2) the
motion planner generates safe and feasible motions according
to bheavior planning’s output, and 3) controller convert the
trajectory from motion planner to throttle/brake and steering
command.

1) Behavior planning: Behavior planning consists of ne-
gotiation and lane decision. The role of negotiation module
is to calculate the assumed acceleration of each object. It
assumes an internal model for each object and apply a heuris-
tic rule over the prediction module’s output to anticipate
reaction of other objects to possible ego behavior. Objects
following the ego or moving toward it are assumed to have
a negative acceleration, while emergency vehicles driving
toward the ego are assumed to have a positive acceleration.
For other objects, interception points with the ego’s reference
path are calculated, determining the required ego accelera-
tion to yield/unyield. After estimating the accelerations, the
predicted trajectory for each object is then adjusted.

For the decision making, the first choice of the lane which
the ego is following is the reference path. However, based
on the position of the front object, there could be multiple
options. If the front object is overlapping with the reference
path, the ego is supposed to keep lane and follow it. If the
front object is deviating to one side of the lane and leaving
enough room on the other side (bicycles and pedestrians),
the ego is supposed bypass it. If the front ego is stopped, or
it is a construction site (road blocker), the ego is supposed
to change lane. Note that in some cases, the other lane is in
another direction. In such cases, the ego should find a long
enough gap (40 m+5×oncoming speed+road blocker length)
in the oncoming traffic lane before initiating the lane change.
Based on the target lane and the avoidance, the reference path
is translated, and is passed to the motion planner.

2) Motion Planning: A sample-based SLT planner [9]
is utilized for motion planning. Laterally, with the current

Fig. 2: perception modules.

heading as the initial heading, it samples 11 Bezier curves
as potential paths to account for the need to deviate laterally
from the reference path. Longitudinally, with the current
speed as initial speed, it samples 12 speed profiles with
constant accelerations. In total, 132 potential trajectories are
generated. These trajectories are evaluated using a com-
bination of costs, including: 1) Swiftness cost, which is
defined as the L2 difference integration of the acceleration
and 3m/s2; 2) Longitudinal jerk cost, which is defined as
the L2 integration of longitudinal jerk; 3) Lateral jerk cost,
which is defined as the L2 integration of the lateral jerk;
4) Close to reference path cost, which is defined as the
L2 difference integration of the trajectory and the reference
path; and 5) Safety cost, which is defined as the exp(−γd),
where γ is the safety cost parameter and d is the minimum
polygon-to-polygon distance between ego’s trajectory and
object’s prediction. Often the challenge in motion planning
is finding the suitable set of weights to balance the various



Fig. 3: Tracking/prediction module

costs and achieve the desired behavior. We utilized Inverse
Reinforcement Learning, specifically the Maximum Margin
Planning algorithm from [3] to find the weights assigned to
each cost and the parameter γ.

3) Controller: The controller is decoupled into lateral
controller and longitudinal controller. They are both classic
PID controllers. The lateral controller takes heading error
as input, and steering angle as output. The longitudinal
controller takes acceleration error as input, acceleration com-
mand as intermediate result, and with calibrated longitudinal
dynamics as feed-forward lookup table, throttle/brake output
is generated.

III. EXPERIMENTS AND RESULT

A. Data

Most modules in our solution are either designed with
hand or pre-trained models, with the exceptions being the
object detection sub-module and the motion planner.

In the absence of expert trajectory data for learning the
motion planner module, we leveraged the inD datatset [4]
to tune our planner. Given the prominence of unsignalized
intersections in leaderboared 2.0 scenarios, we found the inD
dataset to be a suitable choice for this purpose.

Given the need for identification of wider classes of
objects in Leaderboard 2.0 scenarios, there was need to
collect suitable for training the object detection submodule.
We collected about 12 hours of new data from CARLA
Town 12 according to the routes and scenarios provided
as part of Leaderboard 2.0. For this purpose, we employed
the developed prediction and planning modules and replaced
the perception and tracking modules with privileged infor-
mation directly received from CARLA simulator. The data
was collected with randomly varying weather and lighting
conditions in addition to augmentation of camera and lidar
through rotation along z axis.

B. Object Detection Training

The training process for the perception model has three
phases. First, we trained our model for 100 epochs on a
set of 40K frames captured from CARLA Town 12, and
evaluated on 5337 validation frames from Town 13. We
adopted the AP/mAP (Mean Average Precision) BEV object
detection evaluation metrics implementation from [10]. The
trained model performed reasonably well on the car class.
However, due to class imbalance issue, its performance was
unfavorable for the rest of the classes. To address this issue,
we collected a set of short sequences focused on capturing

instances of the under-represented classes, and prepared a
new training set of 42K class-balanced training frames with
global rotation augmentations to continue training for another
50 epochs. Thanks to this, we observed significant improve-
ments in the under-represented classes. For all experiments,
we used 8 Nvidia Tesla V100 GPUs with batch size of
14, with constant learning rate set to 0.0005, and AdamW
optimizer as done in [11].

IV. ANALYSIS AND RESULT

We evaluated our model on the set of validation routes
from Town13 provided as part of Leaderboard 2.0 and
present the evaluation result provided by the Leaderboard.
The Leaderboard assesses agents based on their driving score
((DS), calculated as the product of route completion (RC)
and infraction penalty (IS). Route completion measures the
extent to which the agent follows the planned route, while
the infraction penalty penalizes the agent for violations of
traffic rules or collisions. For every violation in a route the
infraction penalty is multiplied by certain fraction. A higher
driving score indicates superior driving performance. Each
number is the average across 20 routes from the Town13
validation routes.

CARLA Leaderboard 2.0 poses increased challenges com-
pared to its predecessor, introducing new scenarios that
demand agents to navigate complex situations, such as han-
dling open doors, yielding to emergency vehicles, exiting
parking, etc. As a result, scores from Leaderboard 1.0 are
incomparable to those from Leaderboard 2.0.

A. CARLA Leaderboar 2.0 Result

The CARLA Leaderboard 2.0 for 2023 competition in the
MAP Track is presented in in Table II1.

Our experiments demonstrate that our planner adeptly
manages numerous challenging scenarios, including yielding
to emergency vehicles, lane changes, etc. However, as we
integrate rules into our planner, its performance becomes
more dependent on perception module’s accuracy. An error
in the perception module can lead the agent to come to a
halt. For instance, when the agent needs to navigate into
the oncoming lane to circumvent existing traffic, we require
high-range information to determine if there is a sufficient
gap for the ego vehicle to proceed. Since this high-range
information is presently unavailable, the planner does not
perform optimally in these situations.

B. Impact of Modules

To assess the effectiveness of each module we performed
a range of experiments were modules were replaced with
their privileged counterparts. The result are summarized in
table Table I. On one end of spectrum we have the Privileged
agent (Mp) that utilizes the simulators privileged perception
and tracking information. On the other end is the submitted
solution (Ms) that does not use any privileged information.

1It is reported by CARLA team that that more than 20 teams participated
and made more than 100 submissions. However, only two teams made their
submission public for the MAP Track.



TABLE I: Evaluation on the impact of various modules on the overall performance of the AD solution

exp DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ Stat ↓ Red ↓ Stop ↓ Dev ↓ Spd ↓ Emrg ↓ STO ↓ Rdev ↓ Block ↓ RTO ↓
Mp 27.25 87.11 0.36 0.17 1.72 0.56 0.33 0.28 0.17 0.17 0.22 0.56 0.00 0.28 0.00
Mp+SensorEgoPos 24.69 83.10 0.39 0.00 1.72 0.22 0.33 0.17 0.17 0.06 0.28 0.61 0.00 0.33 0.00
Mp+SensorSign 24.69 83.10 0.39 0.00 1.72 0.22 0.33 0.17 0.17 0.06 0.28 0.61 0.00 0.33 0.00
Mp+32m 7.76 76.15 0.20 0.06 3.88 0.18 0.41 0.06 0.47 0.06 0.29 1.41 0.00 0.41 0.00
Mp+Track 11.84 81.99 0.22 1.33 2.47 0.40 0.27 0.33 0.20 0.13 0.20 0.67 0.00 0.33 0.00
Ms+NoProcess 2.45 8.59 0.52 0.11 1.11 0.11 0.50 0.17 0.17 0.06 0.00 0.39 0.00 1.00 0.00
Ms+PrivEgoPos 1.46 35.62 0.14 1.72 5.44 2.00 1.39 1.00 0.33 0.33 0.00 0.94 0.00 0.78 0.06
Ms+PrivSign 6.17 30.69 0.29 0.56 3.39 0.67 0.33 0.22 0.39 0.06 0.00 0.50 0.00 1.00 0.00
Ms 1.99 39.01 0.14 0.72 4.11 0.94 0.72 0.39 0.28 0.22 0.00 1.22 0.00 0.94 0.00

TABLE II: CARLA official Leaderboard 2.0 - MAP Track -
2023

Team Driving Score Route Completion Infraction Penalty
Kyber-E2E 3.109 5.285 0.669

LRM 1.14 3.65 0.46

1) Localization: We performed two experiments
Mp+SensorEgoPos and Ms+PrivEgoPos to override the
localization module with sensor-based and privileged
localization respectively and assess the impact of
localization. While there is variation due to randomness of
the simulator, the replacing localization does not have a
significant impact on the performance.

2) Detection Range: To simulate the impact of the limited
range of lidar-based object detection, we performed an
experiment Mp+32m where the privileged objects retrieved
from CARLA simulator is limited to a 32 meter radius. We
see a significant increase in vehicle collisions (Veh) and
consequently drop in driving score (DS). These collisions
are happening in three type of scenarios: 1) emergency
braking in highway and suburban roads with high speed
limit, 2) bypassing blocked lanes through incoming lane, and
3) unprotected left turn. These are all scenarios where the
relative speed of ego and other vehicles are relatively high
and the 32 meter does not provide enough time for ego to
avoid a collision.

3) Traffic Signs: The two experiments Mp+SensorSign
and Ms+PrivSign override the LAPS module for traffic
sign detection with sensor-based and privileged traffic sign
detection, respectively. comparing the Ms+PrivSign and
Ms we see a notable improvement in DS. Intuitively, this
improvement can be attributed to the improved red light
violation (Red), stop sign infraction (Stop), and minimum
speed infraction (Spd) due to improved detection of traffic
signs. Additionally, we see notable improvement in scenario
time out (STO). This is due to the LAPS-based traffic
sign detection identifying green lights as red light in harsh
weather condition, causing ego to stop indefinitely behind a
traffic light resulting in a scenario time out violation.

Similarly, we see degraded performance when the privi-

leged traffic sign information is replaced with sensor-based
information when comparing Mp and Mp+SensorSign

4) Tracking: We conduct an experiment Mp+Track to
evaluate the effect of the tracking module. Here the IDs
provided by the simulator is removed and the tracking
module tries to track objects and assign appropriate ID to
them. Compared to Mp, there is notable impact on IS which
in turn result in reduce DS. The infraction with the most
notable increase is the collision with pedestrians (Ped). This
is likely a limitation of our tracking module as it was mainly
tuned for vehicles and cannot handle pedestrians properly.

5) Post-processing: The post-processing module takes the
detected object and refine the result based on map informa-
tion. We performed an experiment Ms+NoProcess where we
remove the post-processing step. The intuitive expectation
is to get reduced DS; however, we see DS is higher for
this experiment compared to Ms. We noticed that the agent
with no post-processing often gets blocked due to erroneous
detection and result in an agent blocked (Block) result. This
is evident in RC metric, whcih is significantly lower in this
experiment. Due to lower driving distance, the number of
infractions are also much lower resulting in better IS value
compared to Ms. This is a byproduct of the way CARLA’s
score metrics are designed. When the number of infractions
are relatively high, between two agents that make the same
number of infractions per kilometer, the agent that drives
further will likely get lower DS. For example if an agent
drives 10% and makes one infraction with penalty of 0.5
the total driving score will be 5. Another agent that drives
40% and makes 4 infractions with each having a penalty of
0.5 will have driving score of 2.5. Given the complexity of
Leaderboard 2.0 and limited performance of our module the
number of infractions are relatively high. Hence supposedly
lower performing model is getting a higher DS.

V. CONCLUSION AND LIMITATIONS

We introduced Kyber-E2E solution that secured the top
spot in the 2023 CARLA AD challenge, map track. Our five-
component architecture, encompassing sensing, localization,
perception, tracking/prediction, and planning/control, proved
effective in surpassing the challenges posed by the evolved
Leaderboard 2.0. the emperical result show that in a modular



architecture with right abstraction, modules developed inde-
pendetly with different dataset can still yield reasonably well
performance. While we achieved the top spot in Leaderboard
2.0 in 2023 competition, we acknowledge the dependence of
our planner on accurate perception, particularly in highly-
crowded scenes. The need for high-range information, es-
pecially in situations requiring lane changes into oncoming
traffic, presents an avenue for future refinement. We antici-
pate addressing these challenges through the implementation
of a fully end-to-end autonomous driving architecture in our
future work.
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