
Model-Predictive Control of Polyolefin Processes
Y.A. Liu and Niket Sharma

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.

Abstract

This chapter presents an in-depth exploration of model-predictive control (MPC) or advanced process
control (APC) techniques in the optimization of polyolefin manufacturing processes. Drawing on the
foundational motivations outlined in previous discussions, it highlights the pivotal role of APC in
enhancing industrial efficiency and innovation. Through a comprehensive introduction to the basic
concepts and tools of APC, including definitions of manipulated variables (MV),
feedforward/disturbance variables (FF/DV), controlled variables (CV), and the intricacies of multivariable
dynamic models, this work delineates the advantages of APC over traditional proportional-integral-
derivative (PID) control systems. It further elucidates the mechanisms through which APC achieves its
benefits, such as model CV prediction, economic optimization, and dynamic control execution,
leveraging Aspen DMCplus and DMC3 control structures for illustration.

The chapter provides a detailed walkthrough of developing a dynamic matrix controller model for a
copolymerization process utilizing Aspen DMC3 Builder, transitioning to the formulation and control of
nonlinear processes. It addresses the challenges inherent in constructing nonlinear dynamic models for
polymerization process control, introduces the Wiener model for nonlinear processes, and discusses the
state-space, bounded derivative network (SS-BDN) for nonlinear controller modeling. A hands-on
workshop for the development of a nonlinear model-predictive control (NMPC) of a polypropylene
process is presented, culminating in an overview of recent advancements in MPC with embedded AI
technologies.

Serving both as a primer for newcomers and a sophisticated reference for experienced practitioners and
scholars, this work underscores the transformative potential of APC integrated with AI in the polyolefin
production sphere. It advocates for the systematic adoption of these advanced control strategies to
realize significant improvements in process efficiency, optimization, and innovation within the chemical
processing industries.

This is a preprint version of a chapter from our book - Integrated Process Modeling, Advanced Control
and Data Analytics for Optimizing Polyolefin Manufacturing. Please cite the original work if referenced
[26,35]

8.1 Introduction to Advanced Process Control (APC)

This chapter covers the fundamentals and practice of model-predictive control (MPC), or advanced
process control (APC), of polyolefin processes. The motivation for this chapter appeared previously in
Chapter 1, Section 1.4.2, discussing the industrial and potential applications of advanced process control
to optimizing polyolefin manufacturing.

We begin by introducing the basic concepts and tools of APC in Section 8.1. Specifically, Section 8.1.1
presents some basic definitions, including manipulated variable (MV), feedforward/disturbance (FF/DV)

variables, controlled variable (CV), unit-step response curve, and integrating (ramp) variable. Section
8.1.2 explains the multivariable dynamic model, and the key differences between conventional
proportional-integral-derivative (PID) control and APC. This subsection describes where the benefits of
APC come from, including model CV prediction and reconciliation to online measurements, steady-state
economic optimization to identify MV and CV targets, and dynamic control execution to reach MV and
CV targets. This subsection presents the Aspen DMCplus control structure illustrating the three sources
of benefits of APC, and the Aspen DMC3 (third-generation dynamic matric control) control structure.
Section 8.1.3 introduces linear modeling of dynamic matrix control (DMC), step-response model, and
finite-impulse response (FIR) model. Section 8.1.4 covers model evaluation and useful tools, including
the concepts of relative gain array, ill-conditioned model matrices and collinear systems, open-loop
predictions, prediction error filtering, and prediction update. Section 8.1.6 presents the important
concepts and parameters in steady-state economic optimization and dynamic controller simulation. This
is a key subsection that a beginner in APC should fully understand to develop and fine-tune advanced
process controllers.

Section 8.2 presents a hands-on workshop for the step-by-step development of a dynamic matrix
controller model for a copolymerization process using Aspen DMC3 Builder.

Section 8.3 introduces the MPC of nonlinear processes. Specifically, Section 8.3.1 discusses the
challenges of developing nonlinear dynamic models for polymerization process control. Section 8.3.2
explains the concept of the Wiener model for nonlinear processes. Section 8.3.3 introduces the state-
space, bounded derivative network (SS-BDN) for developing a nonlinear controller model of polyolefin
processes.

Section 8.4 presents a hands-on workshop for the step-by-step development of a nonlinear model-
predictive control (NMPC) of a polypropylene process. Section 8.5 discusses the new development of
model-predictive control with embedded AI, and Section 8.6 gives the bibliography.

8.1.1 Some Basic Definitions
8.1.1a Independent and Dependent Variables

We begin by introducing the basic concepts of advanced process control [1,2,3,4]. Process control and
monitoring are pivotal elements in ensuring the efficiency and safety of both chemical [42] and
bioprocesses [25,43]. This study specifically zeroes in on the intricacies and challenges associated with
polymer processes, underscoring the critical importance of advanced process management strategies in
this domain. Figure 8.1 illustrates a simplified flowsheet of a solution copolymerization process. There
are two monomers, methyl methacrylate (MMA) and vinyl acetate (VA), an initiator (INITIATO), and a
chain-transfer agent (TRANSFER). The reactor has a cooling jacket with a cooling water (CW) stream as
the cooling medium. Process details for the polymer processes are described in [31,33,39-41].

A similar practical application of model predictive control in polymerization has been showcased by [44]
to control the reaction process to control the temperature and concentration for the polymer
precipitation process.

We define independent variables as those causal variables whose values are not affected by or are
independent of any other variables in the process. We classify the independent variables into two
categories:

(1) Manipulated variables (MVs) - variables that the operator can change, particularly:

 the setpoint to regulate a controller, labelled by *.SP, such as FMMA.SP, for the setpoint for the
mass flow rate of monomer MMA, FMMA; and

 the valve position (% open) to regulate a control valve, labelled by *.VP, such as FVA.VP for the
valve position for the control valve for monomer mass flow rate, FVA.

(2) Feedforward/Disturbance variables (FFs/DVs) – variables that impact the process, but cannot be
adjusted directly, such as:

 the temperature of cooling water through the cooling jacket of the reactor, which depends on
an upstream cooling tower system, and varies with seasonal weather.

 Unmeasured temperature of a feed stream, which acts as a disturbance variable.

Figure 8.1 A simplified flowsheet of a solution copolymerization process.

We define dependent variables as those variables whose dynamic behavior could be fully described by
changes in independent variables over time, particularly control variables (CVs), labelled by *.PV, such as
polymer production rate, POLYMER.PV, that are typically maintained at a constant value, or between
high and low limits. We note that in a process, there are many dependent variables, but we only choose
those important ones as CVs.

For the copolymerization example of Figure 8.1, we consider the following variables:

 MVs: mass flow rates (kg/hr) of monomer MMA and VA, initiator and chain-transfer agent
(represented by Flow_MMA.SP, Flow_VA.SP, Init.SP and Transf.SP), and temperature of the
cooling jacket, T_Jkt.SP.

 CVs: polymer production rate (kg/hr), polymer molecular weight, reactor exit temperature (°C)
and mole fraction of monomer MMA in the polymer product (represented by Polymer.PV,
Mol_Wt.PV, T_Rx.PV, and Conc_MMA.PV).

 There is no FF/DV in this example.

8.1.1b Unit-Step Response Curve: Time to Steady State and Steady-State Gain

Figure 8.2 illustrates the step-response curve for a 2MV-1CV process, in which CV1 varies as a response
to a step change of one unit of MV1. At time t = 12 hr, CV1 no longer changes and reaches its steady-state
value of 1.25 unit. We call the time of 12 hr as the time to steady state (Tss), and the ratio of the changes
in values of CV1 to MV1 at steady state, that is, ∆CV1, ss /∆MV1, ss of 1.25/1.0, as the steady-state gain (SS
gain).

Figure 8.2 A step response curve for CV1 in a 2MV-1CV process with a step change in MV1.
Note the steady-state gain (∆CV1, ss /∆MV1, ss) and the time to steady state (Tss)

8.1.1c Integrating Variable (Ramp Variable)

Liquid level in a storage vessel with both steady inlet and exit flows is a typical ramp variable or
integrating variable. Let us consider a cylindrical storage vessel with inlet and exit liquid volumetric flow
rates Fi and Fo m3/hr, respectively, a cross-sectional area A m2, a liquid height of h m, and a liquid
volume V m3. See Figure 8.3.

Figure 8.3 Liquid level in a storage tank

A simple volume balance gives:

 dV/dt = A dh/dt = Fi – Fo (8.1)

 h = () ∫ [𝐹𝑖 − 𝐹𝑜]𝑑𝑡 (8.2)

Based on Eq. (8.2), we call the liquid level h an integrating variable or a ramp variable.

If the flow rate entering the vessel Fi is increased and the exit flow rate Fo is held fixed, the liquid level in
the vessel increases. The flow exiting the vessel must be increased by the same amount to “balance the
level”. Therefore, the level exhibits an integrating or a ramp response to changes to the inlet flow rate.

Figure 8.4 illustrates that for an integrating or ramp variable, the step response curve has a constant
steady-state rate of change or slope of ∆(CV1)/∆(MV1), instead of a constant steady-state value as in
Figure 8.2, and the “traditional” time to steady state Tss does not exist.

Figure 8.4 A step-response curve for CV1 in a 1MV-1CV integrating process with a step change in MV1.

In addition to liquid level, we can cite examples for other pressure and temperature integrating
variables. An example is the material imbalance ramp representing the pressure in a hydroprocessing
reactor, for which the hydrogen pressure is a measure of the hydrogen consumption [5]. If the make-up
hydrogen flow does not equal to the amount of hydrogen consumed in the reactor, then the pressure
either rise or fall. In this case, the pressure is a measure of the hydrogen material balance. Additionally,
an example of an energy imbalance ramp is the dense-bed temperature in a fluid catalytic cracking (FCC)
regenerator when the unit operates in a partial combustion mode [6]. This happens when the reactor
temperature controller is operating in an automatic mode and continually changing the carbon balance
on the catalyst. Breaking the reactor temperature controller will eliminate the ramp behavior in this
case.

8.1.2 Where do the benefits of APC come from?

We describe three sources of the benefits of APC in this section.

8.1.2a Online Reconciliation of Model-Based Predictions to the Process Measurements to Provide
Robustness to the Multivariable Dynamic Step-Response Model

(1) Multivariable Dynamic Model

Extending the step-response model of Figure 8.2 to a system of multiple independent and dependent
variables, we can develop a multivariable step-response model to represent the time-dependent

changes of control variables (CVs) to changes in manipulated variables (MVs) and
feedforward/disturbance variables (FF/DVs). Workshop 8.1 in Section 8.2 gives the details of the
development a multivariable predictive controller model for our copolymerization process of Figure 8.1.

Figure 8.5 shows the resulting multivariable step-response model. In the plot, each column represents a
dependent variable or a CV, and each row represents an independent variable, a MV or a FF/DV. We
typically arrange a FF/DV, if available, as a bottom row in the plot. For the copolymerization example, all
4 columns are CVs, and all 5 rows are MVs, and there is no FF/DV. Note that in the plot, MV Flow_MMA
has a negligible impact on CV T_RX, and the model does not show any step-response curve for the MV-
CV pair, as the corresponding steady-state gains become negligible. The same is true for three other MV-
CV pairs with no step-response curve.

Figure 8.5 A multivariable step-response model for the copolymerization process.

In Figure 8.5, the number at the upper right corner of each step-response curve block represents the
steady-state gain discussed in Figure 8.2. We can organize the displayed steady-state gains for all step-
response curve blocks in a steady-state gain matrix, Eqs. (8.3):

This matrix represents the relationship in Eq. (8.4), which we will use below in introducing the steady-
state optimization to obtain MV and CV targets to minimize the operating cost and maximize product
profit:

(2) Key Differences between Traditional PID Control and Advanced Process Control

Figure 8.6 compares the traditional PID control and advanced process control (APC). A key difference
between the two is that the traditional PID control aims at keeping a CV at its setpoint, while the APC
maintains a CV between its specified lower and upper limits. Thus, an operator of an APC system is to
specify the lower and upper limits of a CV, but not its setpoint.

Figure 8.6 A comparison of traditional PID control (top) and advanced process control (bottom).

From a control point of view, as long as MVs are within their lower and upper limits, and the predicted
value of the CV from the dynamic process model is also within its lower and upper limits, then there is
no need to vary the CV value and the corresponding values of MVs that affect this CV. This minimizes the
frequency of adjusting the MVs that impact a chosen CV, thus greatly minimizing the fluctuations of CVs
and enhancing the operational stability of the control system. Figure 8.7 illustrates two facts: (1) APC
could typically reduce the fluctuations of CVs by 30% or more; and (2) through a steady-state
optimization step that we will discuss further below, APC typically operates at or near the lower or
upper limits of CVs that minimize the steady-state operating cost and maximize the product profit,
called the economic optimum variable target.

Figure 8.7 Reduced variable fluctuations and increased profit by operating
at economic optimum variable target

(3) Continuing Reconciliation of Model-Based Predictions to the Process Measurements and Feedback
Correction to Update the Model Predictions to the Future [2]

We illustrate a key aspect of predictive modeling of APC that makes it less sensitive to modeling errors
and more accurate in predicting future CV response. Specifically, we consider a simple fire heater
example of Figure 8.8, modified from [7].

Figure 8.8 A simplified fire heater with two MVs (stream inlet temperature Tin and input heat duty Q)
and a CV (heating coil output temperature, COT).

Figure 8.9 shows the step response curve for the fired heater.

Figure 8.9 Step-response curve for a fired heater

Figures 8.10 and 8.11 demonstrate the continuing feedback corrections of the predicted CV responses
based on measured CV values to minimize the prediction errors of CVs at the end of each sampling
period of 1 minute.

In the middle plot of Figure 8.10, we see the initial CV prediction (dark black curve) deviates from its
measured value (dark square point) at 12:01. The online feedback correction shifts the CV prediction
curve downward to match the measured CV value at 12:01 in the bottom plot. The black “real process”
in the bottom plot also shows that the deviation of the initial CV prediction only exists within a sampling
period of 1 minute. At the end of a sampling period of 1 minute, that is, at 12:01, the online feedback
correction based on the CV measured value completely eliminates the deviation.

Figure 8.11 repeats the same online feedback correction process, making the corrected CV prediction at
12:02 equal to the CV measured value.

Figure 8.10 Online feedback correction of CV prediction based on measured value from 12:00 to 12:01.

Figure 8.11 Online feedback correction of CV prediction based on measured value from 12:01 to 12:02.

Because the multivariable dynamic model based on step-response tests are data-driven and is not 100
percent accurate, APC strategy includes the online feedback corrections of initial CV predictions based
on CV measured values to eliminate the CV prediction errors at the end of each sampling period. This
approach reconciles the model-based predictions to the process measurements, and then feeds the
information back to update the model predictions into the future [2]. This results in the robustness to
the multivariable dynamic model in predicting accurately CV responses to changes in MVs, and this
accurate model prediction capability represents the first source of benefits of APC.

8.1.2b Steady-State Economic Optimization to Determine MV and CV Targets to Minimize Cost and
Maximize Profit

The second source of benefits of APC results from the steady-state optimization to determine the MV
and CV targets to minimize the cost and maximize the profit. Under the constraints of the lower and
upper limits of all MVs and CVs, the DMC strategy typically minimizes a linear objective function of the
form [7]:

 Min φ = Cost1 x ∆MV1 + Cost2 x ∆MV2 +……. + Costi x ∆MVi (8.5)

where Costi is essentially the steady-state gain:

 Costi = (∆

∆
)∆ (𝑗 ≠ 𝑖) (8.6)

To minimize cost and maximize profit, we may write the objective function as

 φ= Cost – Profit

 = + (steady-state change in feed/utilities) * ($ cost of feed/utilities)
- (steady-state change in production) * ($ value of products) (8.7)

For the copolymerization example, we write:

 φ= Cost – Profit

 = {∆Flow_MMA x (cost of Flow_MMA) + ∆Flow_VA x (cost of Flow_VA) + ∆Flow_INIT x (cost of INIT) +
∆Flow_Transf x (cost of Transf) + ∆Tjkt x (cost of Tjkt)}

- {(∆()

∆(_)
)(∆Flow_MMA) + (∆()

∆(_)
) (∆Flow_VA) +(∆()

∆()
)(∆Flow_INIT)

+(∆()

∆()
)(∆Flow) + (

∆()

∆
)(∆Tjkt)}*($ value of polymer)

 ={(cost of Flow_MMA) – (∆()

∆(_)
) ∗ ($ value of polymer)} ∗ ∆Flow_MMA +

{(cost of Flow_VA) – (∆()

∆(_)
) ∗ ($ value of polymer)} ∗ ∆Flow_VA +

{(cost of Flow_INIT) – (∆()

∆(_)
) ∗ ($ value of polymer)} ∗ ∆Flow_INIT +

{(cost of Flow_Transf) – (∆()

∆(_)
) ∗ ($ value of polymer)} ∗ ∆Flow_Transf +

{(cost of Tjkt) – ((∆(Polymer))/(∆(Flow_VA)))*($ value of polymer)}* ∆Flow_VA

 = ∑ [cost of 𝑀𝑉 , −
∆()

∆()
∗ ($𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟)]

 * (∆𝑀𝑉 ,)

 =∑ 𝐶𝑜𝑠𝑡 ∗ ∆MV , (8.8)

 where the subscript SS represents steady state, and

 𝐶𝑜𝑠𝑡 = = (∆

∆
)∆ (𝑗 ≠ 𝑖) = cost of 𝑀𝑉 , −

∆()

∆()
∗ ($𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟) (8.9)

We call 𝐶𝑜𝑠𝑡 the steady-state LP cost that minimizes the objective function φ (= cost – profit) by linear
programming (LP). This minimization is constrained by the lower and upper limits of all MVs and CVs.

Figure 8.12 illustrates an Excel calculation of the steady-state LP costs (LP_Cost) based on the steady-
state gains in Eq. (8.3), assuming the cost of 𝑀𝑉 , (𝑖 = 1 to 5) to be insignificant when compared to
the profit of polymer product (if this is not true, we can enter the cost of of 𝑀𝑉 , , 𝑖 = 1 to 5,

into the spreadsheet). We also assume the profit of 1 kg/hr of polymer product to be $1. Figure 8.13
shows the calculation formulas for the LP_Cost.

Figure 8.12 Excel calculation of steady-state LP costs.

Figure 8.13 Formulas for Excel calculation of steady-state LP costs.

We wish to minimize the objective function φ (=cost –profit) following Eq. (8.8). Based on the calculated
steady-state LP costs, Costi, in Figure 8.12, should we move a specific MVi toward its lower limit or upper
limit? In other words, what is the MVi target value based on steady-state optimization to minimize cost
and maximize profit? The resulting MVi target value appears in Table 8.1. We note that the CVj target
value is to maximize the polymer production within the given lower and upper limits.

Table 8.1 Recommended MVi target value based on steady-state
optimization to minimize cost and maximize profit

This example illustrates how DMC uses the steady-state optimization to identify the economic optimum
steady-state MV and CV target values to minimize cost and maximize profit, which represents the
second source of benefits of APC.

8.1.2c Determination of Future MV Moves to Minimize the Least-Squares Errors between Predicted
and Desired Economic Optimum Target Values of CVs

Having identified the economic optimum steady-state MV and CV targets, the DMC strategy determines
a set of future MV adjustments that will drive the process to the CV to its desired economic optimum
operating point without violating the lower and upper limits of MVs and CVs. Figure 8.14 shows the
open-loop CV prediction reflecting the effects of past MV changes, and the error between the predicted
CV value and its setpoint or the economic optimum target value [7]. The desired future response of each
CV is to have it reach its setpoint or economic optimum, steady-state target value. Figure 8.15 illustrates
the desired future CV response that is defined by the mirror image of the CV prediction about the
setpoint or economic optimum, steady-state target value [2]. Figure 8.16 displays the development of
MV moves to minimize the least-squares errors between the predicted and desired values of CVs. We
will demonstrate this step quantitatively in Section 8.2.12 below. Depending on the time to steady state,
sampling period, and controller execution interval, the DMC strategy calculates 8 to 14 future moves of

each MV extending approximately one-half of the time to steady state into the future (see Section
8.2.7). This step of dynamic control execution to reach economic optimum, steady-state MV and CV
targets represents the third source of benefits of APC.

Figure 8.14 The open-loop CV prediction reflecting the effects of past MV changes and the shaded area
of errors between the CV prediction and its setpoint or economic optimum target value

Figure 8.15 An illustration of the desired future CV response that best fits the mirror image of the CV
prediction about the setpoint. The shaded area represents the CV errors.

Figure 8.16 An illustration of the development of MV moves to minimize the lease-squares errors
between predicted and desired values of CVs

To summarize, in Sections 8.1.2a to 8.1.2c, we have introduced three aspects of the DMC strategy that
represent the sources of benefits of APC: (1) model CV prediction and reconciliation to online
measurements: continuing reconciliation of model-based predictions to the process measurements and
feedback correction to update the model predictions to the future; (2) steady-state economic
optimization: steady-state economic optimization to determine MV and CV targets to minimize cost and
maximize profit; and (3) dynamic control execution to reach MV and CV targets: determination of future
MV moves to minimize the least-squares errors between predicted and desired economic optimum
target values of CVs. In Figure 8.17, we have modified a diagram in [7] to illustrate these three sources
of benefits of APC in the context of the DMCplus control structure.

Figure 8.17 The Aspen DMCplus control structure illustrating three sources of benefits of APC [7]. Used
with permission from Aspen Technology, Inc.

Figure 8.18 The Aspen DMC3 control structure [7]. Used with permission from Aspen Technology, Inc.

Figure 8.18 shows the Aspen DMC3 control structure taken from the DMC3 online help that extends the
DMC control structure to provide more robust dynamic control. We note the five key blocks or
controller applications in the figure. We follow the DMC3 online help to briefly describe these blocks or
controller applications below.

(1) The “plant” (“process”) block or controller application: The “plant” stage of application
development occurs in the controller deployment stage, where we specify input/output (or MV/CV)
connection parameters to prepare the controller for online operation.

(2) The “model” block or controller application: It represents the “controller model” that we will discuss
in detail beginning in Section 8.1.3.

(3) The “SS (steady-state) optimizer” block or controller application: It performs the “steady-state
economic optimization” to find the MV and CV targets, as we illustrated in Section 8.1.2b. In other
words, the SS optimizer determines the best steady-state operating point for the plant, subject to the
constraints for MVs and CVs.

(4) The “controller or path optimizer” block or controller application: It represents “the dynamic
control execution” to reach MV and CV targets, or externally specified MV and CV targets that we will
discuss more in Section 8.1.6d below. This application develops the move plan to take the plant from its
current operating point to the economic optimum steady-state targets or externally specified targets
with minimum least-squares errors, while respecting MV and CV constraints.

(5) The “filter” block or controller application: It compares the model predictions of CVs with the actual
measured CV values at each execution. The filter application helps us understand the current prediction
errors by estimating the size of unmeasured disturbances that enter the plant. This comparison tells us
where the process is currently operating, and which direction the CVs will go if the MVs remain
constant. Disturbance and dynamic state estimate from the filter are then passed to the optimizer.

8.1.3 Linear Modeling for Dynamic Matrix Control (DMC)

8.1.3a Step-Response Model

We use a simple step-response curve of Figure 8.19 to develop a linear matrix-based dynamic process
model. In the figure, the MV has a unit step change at time zero, that is, ∆MV0= 1.

Figure 8.19 Representation of a continuous step response curve by a series of discrete values
CV0, CV1, CV2….at time t = 1,2,3, … minute for a unit step change of MV at time zero, ∆MV0= 1.

Based on Figure 8.19, we write the following relationships:

 ∆CV1 = CV1 – CV0 = 1*∆MV0 = a1*∆MV0

 ∆CV2= CV2 – CV0 = 3*∆MV0 = a2*∆MV0

 ∆CV3 = CV3 – CV0 = 4.3*∆MV0 = a3*∆MV0 (8.10)

 ∆CV4= CV4 – CV0 = 5*∆MV0 = a4*∆MV0

 ∆CV5 = CV5 – CV0 = 5*∆MV0 = a5*∆MV0

We illustrate two characteristics of the linearity of the process model in Figures 8.20 and 8.21.

Figure 8.20 An illustration of the model linearity, i.e., preservation of scale, with reference to Figure 8.19

Figure 8.21 An illustration of the superposition principle of model linearity, adding the CV response
curve for ∆MV2 to the CV response curve for ∆MV0

The first characteristic is the preservation of scale, which suggests that if we increase the step change of
MV at time zero by four times, that is, ∆MV0= 1 to ∆MV0= 4, ∆CVi (i = 1 to 5, ….) will also increase four
times, as seen in Figure 8.20. The second characteristic is the superposition principle; in Figure 8.21, we
add the CV response curve for ∆MV2 to the CV response curve for ∆MV0. Extending Eq. (8.11), we write
the following relationship for Figure 8.21:

 ∆CV1 = CV1 – CV0 = 1*∆MV0 = a1*∆MV0= (1)*(1) =1 (8.11a)

 ∆CV2= CV2 – CV0 = 3*∆MV0 + 1*∆MV1 = a2*∆MV0 + a1*∆MV1= 3*(1) +1*(0) = 3 (8.11b)

 ∆CV3 = CV3 – CV0 = 4.3*∆MV0 + 3*∆MV1 + 1*∆MV2 = a3*∆MV0 + a2*∆MV1+ a1*∆MV2

= 4.3*(1) +3*(0) + 1*(-2) = 2.3 (8.11c)

 ∆CV4 = CV4 – CV0 = 5*∆MV0 +4.3*∆MV1 + 3*∆MV2
= a4*∆MV0 + a3*∆MV1 + a2*∆MV2 = 5*(1) + 4.3*(0) +3*(-2) = -1 (8.11d)

 ∆CV5 = CV5 – CV0 = 5*∆MV0 +5*∆MV1 + 4.3*∆MV2 = a5*∆MV0 + a4*∆MV1 + a3*∆MV2
= 5*(1) + 5*(0) +4.3*(-2) = -3.6 (8.11e)

 ∆CV6 = CV6 – CV0 = 5*∆MV0 +5*∆MV1 + 4.3*∆MV2 = a6*∆MV0 + a5*∆MV1 + a4*∆MV2
= 5*(1) + 5*(0) +5*(-2) = -5 (8.11f)

 ∆CV7 = CV7 – CV0 = 5*∆MV0 +5*∆MV1 + 5*∆MV2 = a7*∆MV0 + a6*∆MV1 + a5*∆MV2
= 5*(1) + 5*(0) +5*(-2) = -5 (8.11g)

We may re-write Eq. (8.11a-g) in a matrix form:

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0
3 1 0

4.3 3 1
5 4.3 3
5 5 4.3
5 5 5
5 5 5 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎 0 0
𝑎 𝑎 0
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉

 (8.12)

For this example, a4 = a5 = a6 = a7, implying that the process reaches its steady state when time t = 5 min.
Additionally, ∆𝑀𝑉 = ∆𝑀𝑉 = ∆𝑀𝑉 = ∆𝑀𝑉 = 0.

We write the time-dependent or dynamic linear matrix equation, Eq. (8.12), in a general matrix form
that represents the step-response model:

 ∆CV = A * ∆MV (8.13)

 Eq. (8.13) is the foundational model for dynamic matrix control (DMC). It represents three classes of
problems.

 Prediction: Knowing the model matrix A and MV move vector ∆MV, calculate the resulting CV
change vector ∆CV.

 Control: Knowing the control change vector ∆CV and the model matrix A, find the required MV
move vector ∆MV.

 Identification or modeling: Knowing the MV move vector and the resulting CV change vector,
find the corresponding model matrix A.

8.1.3b Finite-Impulse Response (FIR) Model

Figure 8.22 illustrates that in actual practice, there could be missing input data for MV for a certain time
duration, and discontinuous CV response curve with CV instrument failure. The figure shows only three
slices of valid MV-CV response curves. We call the process of identifying slices of good continuous MV-
CV response curves without any instrument failure or missing data as “data slicing”. We show below
how to modify our modeling equations, (8.11a) to (8.11g), to represent discontinuous MV-CV response
curves.

Figure 8.22 An illustration of discontinuous MV-CV response curves with missing MV input data and CV
instrument failure, resulting in three slices of valid MV-CV response curves

First, we write Eqs. (8.11b) and (8.11a) as follows.

 CV2 – CV0 = a2*∆MV0 + a1*∆MV1 (8.11b)

 CV1 – CV0 = a1*∆MV0 (8.11a)

Subtracting Eq. (8.11b) by Eq. (8.11a), to remove CV0 and we get

 CV2 – CV1 = a1*∆MV1 + (a2 – a1)*∆MV0 (8.14a)

Next, we write Eqs. (8.11c) and (8.11b) as follows:

 CV3 – CV0 = a3*∆MV0 + a2*∆MV1+ a1*∆MV2 (8.11c)

 CV2 – CV0 = a2*∆MV0 + a1*∆MV1 (8.11b)

Subtracting Eq. (8.11c) by Eq. (8.11b) gives

 CV3 – CV2 = a1*∆MV2 + (a2 –a1) *∆MV1 + (a3 –a2)* ∆MV0 (8.14b)

Following the same procedure, we can get:

 CV4 – CV3 = a1*∆MV3 + (a2 –a1) *∆MV2 + (a3 –a2)* ∆MV1 + (a4 –a3)*∆MV0 (8.14c)

 CV5 – CV4 = a1*∆MV4 + (a2 –a1) *∆MV3 + (a3 –a2)* ∆MV2 + (a4 –a3)*∆MV1 + (a5-a4)*∆MV0 (8.14d)

For convenience, let us define a new set of model coefficients bi as follows:

 b1 = a1 b2 =a2 –a1 b3 = a3 – a2 b4 = a4 –a3 b5 = a5 – a4 (8.15)

We also write

 əCVi = CVi – CVi-1 (8.16)

which applies to any slice of continuous CV response curve with two neighboring CV values, CV i and CVi-

1. Eq. (8.16) is different from Eq. (8.11),

 ∆CVi = CVi – CV0 (8.11)

which assumes a continuous CV response curve from CV0 to CVi.

Applying Eqs. (8.15) and (8.16) to Eqs. (8.11a), (8.14a) to (8.14d) gives the following “impulse form” of
our model equations:

 əCV1 = b1*∆MV0
əCV2 = b1*∆MV1 + b2 * ∆MV0
əCV3 = b1*∆MV2 + b2 * ∆MV1 + b3 *∆MV0 (8.17)
əCV4 = b1*∆MV3 + b2 * ∆MV2 + b3 *∆MV1 + b4 *∆MV0
əCV5 = b1*∆MV4 + b2 * ∆MV3+ b3 *∆MV2 + b4 *∆MV1 + b5 *∆MV0

We write the resulting “impulse form” of our dynamic matrix model equation as follows:

⎣
⎢
⎢
⎢
⎡
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉 ⎦

⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎡
𝑏 0 0 0 0
𝑏 𝑏 0 0 0
𝑏 𝑏 𝑏 0 0
𝑏 𝑏 𝑏 𝑏 0
𝑏 𝑏 𝑏 𝑏 𝑏 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉 ⎦

⎥
⎥
⎥
⎤

 (8.18)

In a matrix form, Eq. (8.18) becomes

 əCV = B * ∆MV (8.19)

Eq. (8.19) represents the finite impulse response (FIR) form of the linear model equation for dynamic
matrix control. We can extend Eq. (8.19) to allow more than one manipulated variable to vary at the
same time to give Eq. (8.20).

To identify the model coefficients bi,j or matrix B, we convert Eq.(8.20) to a residual form involving the
error residual ri,j:

We typically find the values of the model coefficients bi,j or matrix B, by minimizing the sum of the
squared residual error terms:

 𝑀𝑖𝑛 ∑ 𝑟 , = 𝑀𝑖𝑛 (𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 ,) (8.22)

To summarize, the finite impulse response (FIR) model identification procedure discussed so far has
incorporated effective means to handle several practical issues for model-predictive control in the real
world: (1) The data slicing permits the use of discontinuous MV-CV response curves with missing MV
input data and CV instrument failure; (2) The procedure works with the incremental or “delta” world
(ə𝐶𝑉 or ∆𝐶𝑉), thus not requiring the process to be at a steady state; and (3) The approach allows for
continuous updates of model coefficients when changing multiple manipulated variables at the same
time. These features represent significant advances of the finite impulse-response (FIR) model over the
step-response modeling approach.

8.1.4 Model Evaluation and Useful Tools

In our hands-on workshop WS8.1, Section 8.2, we will go through the details of applying several tools to
evaluate how accurate our model prediction is and how robust our model response is to disturbances
Section 8.2.9 demonstrates uncertainty and correlation analysis of the model, and Section 8.2.11
illustrates a five-step procedure to collinearity analysis of the model. In this section, we introduce some
basic concepts and tools relating to collinearity analysis.

8.1.4a Relative Gain Array (RGA)

We introduce the concept of relative gain array (RGA) [8,9,10] by considering the liquid level in a tank
shown in Figure 8.23.

 Figure 8.23 Mixing of a hot water stream with a cold water stream in a tank

Here, we control the tank temperature T and total tank liquid flow mt (GPM) by manipulating the inlet
flow rates of cold water mc (GPM) and hot water mh (GPM). We assume that the liquid level setpoint
corresponds to 50% tank-full level with mt = 11.6 GPM, and the temperature setpoint is T=24.4°C. The
steady-state flow rates are mc = 9.61 GPM, and mh = 1.99 GPM.

We wish to find a proper pairing of two control variables (T and mt) with two manipulated variables (mc
and mh). In other words, we are interested in the proper pairing of a simple process with two control

variables (T and mt) and two manipulated variables (mc and mh). See Figure 8.24 for a simple
representation of the current example.

Figure 8.24 A simplified diagram of a 2x2 water-mixing process

The corresponding balance equations are:

 T = f1(mc, mh) = (8.23)

 mt = f2(mc, mh) = mc + mh (8.24)

Around steady state, we write ∆T and ∆mt in terms of open-loop gains Kij:

∆T = ə

ə
∆mc + ə

ə
∆mh = K11∆mc + K12∆mh (8.25)

∆mt = ə

ə
∆mc + = ə

ə
∆mh = K21∆mc + K22∆mh (8.26)

By substituting Eqs. (8.23) and (8.24) into Eqs. (8.25) and (8.26), we find:

 K11 = [mh (Tc – Th)]/ m K12 = = [mc (Th– Tc)]/ m K21 = K22 = 1 (8.27)

In addition to open-loop gains, we introduce closed-loop gains K defined as:

 K = ə

ə
 K = ə

ə
 (8.28)

 K = ə

ə
 K = ə

ə

Basically, K represents a measure of how manipulated variable mc affects control variable T if control
variable mt is held constant (∆mt =0) and under closed-loop control. Specifically, when ∆mt = 0, Eq.
(8.26) gives

 0 = K21∆mc + K22∆mh -> ∆mh = - ∆𝑚 (8.29)

Substituting Eq. (8.29) into Eq. (8.25) gives

 ∆T = 𝐾 − ∆m (8.30)

When control variable mt is held constant (∆mt =0)，Eq. (8.30) gives the relationship for the closed-loop
gain K :

 K = ə

ə
 = 𝐾 − (8.31)

Likewise, we can develop the following expressions [10, pp. 554-556]:

 K = ə

ə
 = (8.32)

 K = ə

ə
 = (8.33）

 K = ə

ə
= （8.34）

The ratio of Kij to K is called a relative gain, denoted by ᨂ :

 ᨂ = (8.35)

Based on Eqs. (8.27), and the defining relationships for Eqs. (8.27) and (8.31) to (8.34), we can write a
relative gain array (RGA) as follows (with mh= 1.99GPM, mc=9.61GPM, and mt=11.6 GPM):

 ᨂ =
ᨂ ᨂ

ᨂ ᨂ
 =

m m⁄ m m⁄

m m⁄ m m⁄
 =

−
T

m

m m
0.172 0.828
0.828 0.172

 (8.36)

RGA has seveal useful properties [8,9,10] that help in choosing a specific manipulated variable that has
the most impact on a given control variable.

 Property 1: The rows and columns of the RGA sum to 1.0.
 Property 2: Always pair the manipulated and control variables on positive RGA elements that are

closest to 1.0.
 Property 3: Pairing on negative RGA elements results in either an unstable system or in an

inverse responding system (a system that initially responds in the opposite direction to its final
steady-state response when its input is changed).

In Eq. (8.36), the relative gain element pairing T and mh, and pairing mt and mc, 0.828, is close to 1.0.
Property 2 suggests that T (tank liquid temperature) should be controlled by manipulating mh (hot water
flow rate), and mt (total tank liquid flow rate, initially at 11.6 GPM, and hence the liquid tank level)
should be controlled by manipulating mc (cold water flow rate, 9.61 GPM). This pairing is consistent with
physical intuitions, as a higher temperature difference of the hot water mean that hot water flow can
change the tank liquid temperature faster than cold water flow, and the larger cold water flow can
change the tank liquid level quicker than the smaller hot water flow.

Next, we wish to extend the concept of RGA for application to the steady-state gain matrix, such as Eqs.
(8.3) and (8.4). In practice, the steady-state gain matrix is typically not a square matrix with an equal
number of independent (manipulated, and feedforward/disturbance) variables, and dependent
(controlled) variables. To handle this situation, DMC3 calculates the RGAs for all 2x2 submatrices in the
model and highlights any issues.

Bristol [8], McAvoy [9, pp. 31-33], and Smith and Corripio [10, pp. 561-562] explain how to develop the
RGA from an n x n steady-state gain matrix, denoted by K, based on matrix operations. Specifically, we
find the RGA by obtaining the transpose of the inverse of the steady-state gain matrix [that is, (K-1)T],
and multiply each term of the resulting matrix by the corresponding term in the original matrix, K. The

terms thus obtained are the relative gains. Let us illustrate this calculation procedure by an example
from McAvoy [9, pp. 31-33]. We consider the following steady-state gain matrix relationship:

 CV = K * MV (8.37)

𝐶𝑉
𝐶𝑉
𝐶𝑉

=
2.662 8.351 8.351

0.3816 −0.5586 −0.5586
0 11.896 −0.3511

∗
𝑀𝑉
𝑀𝑉
𝑀𝑉

 (8.38)

There are many online matrix calculators (e.g., https://matrixcalc.org/en/) to calculate the inverse and
transpose. We find:

 K-1 =
0.1195 1.787 0

2.341𝑥10 −0.01633 0.08165
0.07931 −0.5532 −0.08165

 (8.39)

 (K-1)T =
0.1195 2.341𝑥10 0.07931
1.787 −0.01633 −0.5532

0 0.08165 −0.08165

 (8.40)

Multiplying each term of the resulting matrix (K-1)T, Eq. (8.40), by the corresponding term in the original
matrix, K, Eq. (8.38), is a matrix operation called Hadamard product, for which online calculators are
available (e.g., https://keisan.casio.com/exec/system/15157205321124). We find the resulting RGA as:

 ᨂ= [(K-1)T* K]Hadamard =
0.318 0.0195 0.663
0.682 0.00913 0.309

0 0.971 0.0287

We note that the Hadamard product matrix elements result from multiplying each term of Eq. (8.40) by
the corresponding term in the original K matrix in Eq. (8.38); for example,

 ᨂ11 = 2.662 x 0.1195 = 0.318 ᨂ12 = 8.351 x 2.341𝑥10 = 0.0195

8.1.4b Ill-Conditioned Model Matrices and Collinear System

As a part of model evaluation, DMC3 applies a collinearity analysis tool to identify and repair ill-
conditioned model matrices [11]. This section introduces the concepts of conditioned number and
collinear system and relates them to the RGA.

For an n x n steady-state gain matrix K, we may decompose it into a product of three matrices:

 K = U *ᨂ* VT (8.41)

where U is n x k, ᨂ is k x k, and V is n x k. Matrix ᨂ is diagonal, with elements λ1, λ1… λk being the positive
square roots of ᨂ ,ᨂ ,ᨂ …. , which are nonzero eigenvalues of KT*K or of K*KT. The values λ1, λ1… λk
are called the singular values of matrix K. This matrix decomposition process is called singular value
decomposition (SVD). Section A.2.5.3 of Appendix A, “Matrix Algebra in Multivariate Data Analytics and
Model-Predictive Control”, gives the details of SVD, including the meaning of matrices U and V.

Let us use the SVD of three simple matrices to illustrate the concept of condition number and an ill-
conditioned system. We use an online SVD calculator to obtain the numerical results (e.g.,
https://keisan.casio.com/exec/system/15076953160460).

(1) K = 1 0
0 1

 = U *ᨂ* VT = −1 0
0 −1

∗
1 0
0 1

∗
−1 0
0 −1

The ᨂ matrix is diagonal, and its diagonal elemnts (λ1, λ1… λk) are singular number. The condition
number is the ratio of th largest diagonal element to the smallest diagonal element. For case (1), the
condition numer is (1/1) or 1.0.

(2) K = 1 0.96
0.96 1

 = U *ᨂ* VT = −0.7071 −0.7071
0.7071 −0.7071

∗
0.041 0

0 1.96
∗

−0.7071 0.7071
−0.7071 −0.7071

For case (2), the condition numer is (1.96/0.04) or 49.

(3) K = 1 0.96
0.96 1

 = U *ᨂ* VT = 0.7071 −0.7071
−0.7071 −0.7071

∗
0 0
0 2

∗
0.7071 −0.7071

−0.7071 −0.7071

For case (3), the condition numer is (2/0) or ∞ .

McAvoy [9, p. 181] suggests that a gain matrix with a condition number close to, greater than or equal to
50 indicates the system to be nearly singular or ill-conditioned. This includes cases (2) and (3) above.

In a patent assigned to AspenTech, Zheng et. al [11] define a process model with an n x m steady-state
gain matrix to be collinear by looking at the maximum and minimum singular values resulting from SVD
of the gain matrix. In particular, we consider a square (n = m) submatrix of the gain matrix, and define
two terms: (1) Not collinear: If the submatrix has a rank of m (see Section A.2.1, Appendix A for rank),
then the given system has a full rank and the gain matrix is “not collinear”; (2) Collinear or perfectly
collinear: If the submatrix has a rank smaller than m, and the singular value ᨂ =0, then the system is
“collinear or perfectly collinear”.

The collinearity analysis tool within DMC3 identifies and repairs ill-conditioned model matrices [11].
When dealing with collinearity, we can focus on square submatrices because, if an n x m matrix is
collinear (when n > m), then all its m x m submatrices must be collinear [11]. In particular, the tool
calculates the RGA for all 2 x 2 submatrices in the model and highlights possible issues.

DMC3 suggests the following RGA thresholds for each MV-CV pair:

 RGA =1 Ideal performance; complete correlation
 RGA <5 Good correlation between the MV-CV pair
 RGA <8 Reasonable and acceptable correlation between the MV-CV pair
 RGA >8 Possible inconsistent gain; collinearity issue
 RGA >20 Nearly collinear system; review and repair

Section 8.2.11 gives a hands-on workshop for the model evaluation by collinearity analysis,

8.1.5 Open-Loop Prediction, Prediction Error Filtering and Prediction Update for Steady-State
Variables

In Section 8.1.2a(3), we presented an example of the open-loop prediction for a fired heater model and
introduced the concept of continuing reconciliation of model-based predictions to the process
measurements and feedback correction to update the model predictions to the future that is one of the
three sources of benefits of APC. In Section 8.2.12, we demonstrate this open-loop prediction in our
hands-on workshop. Here, we look at three types of prediction errors that are calculated on each DMC3
controller execution which we have applied in real industrial projects.

(1) Prediction Error (PREDER)

The prediction error, also called model bias, is the difference between the model prediction and the
actual measured CV value at each controller execution:

 Prediction error (Model bias) = CVpred - CVactual (8.42)

We use the value of this error to shift the future CV prediction vector up or down to match the current
CV value, as illustrated previously in Figures 8.10 and 8.11 for the online feedback correction of CV
prediction based on measured value.

(2) Accumulated Prediction Error (ACPRER)

Referring to Figure 8.25, we define the accumulated prediction error as the integral of the time-
dependent error E(t) from the last prediction initialization to the current time:

 Accumulated prediction error =∫ 𝐸(𝑡)𝑑𝑡 (8.43)

 Figure 8.25 An illustration of accumulated prediction error

This integrated prediction error represents the ultimate bias that must be added to the model predicted
value of a dependent variable to match its process response. In general, we prefer to monitor the
accumulated prediction error, instead of the prediction error, to get a better idea of time-correlated
errors.

(3) Average Prediction Error (AVPRER) and Prediction Error Filtering

The concept of average prediction error is related to the noise or model-plant mismatch that affects the
controller negatively. Values of average prediction error on the same order of magnitude as the noise
band of the CV measurement suggest that prediction errors are caused primarily by measurement noise,
which could lead to excessive MV movement and possibly valve wear. Values of average prediction error
outside the noise band indicate a potential model-plant mismatch, and significant model-plant
mismatch could cause cycling or instability in CV response. Additionally, unmeasured disturbances could
lead to unexpected MV moves. To mitigate these effects, we typically apply filtering or smoothing to the
prediction error.

The average prediction error is a “filtered” value of the absolute value of the prediction error or model
bias. The typical filter used is a first-order exponential filter with a filter factor equal to 0.8 to 0.99
(DMC3 use a filter factor of 0.965), which is set to 0.0 upon filter initialization. The reader may refer to
[12] for an introduction to exponential filter. We note that an exponential filter is also called an
“exponentially weighted moving average (EWMA) filter”, or just “exponential moving average (EMA)
filter”.

Nonlinear controllers in DMC3 uses an extended Kalman filter algorithm [13] for prediction error or
model bias filtering.

(4) Prediction Update for Control Variable Values

In Section 8.1.2a(3), Figures 8.9 to 8.11, we illustrated the “preceding” process for prediction update to
control variable values: (1) update the CV predictions from the previous controller execution cycle based
on the changes in MVs; (2) compute the prediction errors for CVs; (3) shift the CV predictions by
prediction errors to make the current CV predictions match the current CV measurements; and (4) do
this online correction for each CV at the beginning of each controller execution cycle.

8.1.6 Concepts and Parameters in Steady-State Economic Optimization and Dynamic Controller
Simulation

In Section 8.1.2b, we illustrated the steady-state (SS) economic optimization to determine the MV and
CV targets to minimize cost and optimize profit for the copolymerization problem. In this section, we
introduce additional concepts and parameters that are relevant to SS optimization and the subsequent
dynamic controller simulation steps. These concepts and parameters are key to developing and fine-
tuning both linear and nonlinear multivariable model-predictive controllers using Aspen DMCplus and
Aspen DMC3. The same concepts and parameters are equally important to Aspen Nonlinear Controller
for polyolefin applications.

8.1.6a Variable Limits and Feasible Solution

Figure 8.26 illustrates the concept of variable limits. Take MV as an example. The upper and lower
operating limits, or simply the upper and lower limits, define the control range over which the MV may
be moved by the controller. The upper and lower validity limits specify the prediction range over which
the MV may be used for prediction. If the operating limits are set outside the validity limits, the MV is
downgraded to FF status.

The upper and lower engineering limits define the commissioned range and are used to clamp the
operating limits if the operating limits are set outside the engineering limits but within the validity limits.
Engineering limits outside the validity limits are clamped at the validity limits without downgrading the
MV to FF status.

Figure 8.26 An illustration of variable limits [7]. Used with permission from Aspen Technology, Inc.

The SS (steady state) optimizer performs a validity check using the current measurement, limits, tuning
parameters, and provides economic optimum MV and CV targets to the path optimizer for dynamic
controller simulation. A feasible solution is defined as a solution where all CV steady-state targets are at
or within their operating limits. We note that MV steady-state targets are always maintained within
their operating limits.

How does the SS optimizer know which CV operating limits are the least important and which could be
changed slightly, if necessary, to find a feasible solution? The SS optimizer uses two sets of parameters
to allow the control engineer to specify the relative importance of CV operating limits: (1) CV limit
ranking, and (2) steady-state equal concern error (SS ECE), which are discussed below.

8.1.6b CV Limit Ranking Method to Handle Steady-State Feasibility

Aspen DMC3 Builder assigns a relative ranking to each CV operating limit to characterize the order of
priority of that limit, and the steady-state economic optimization satisfies CV limits in a ranked order.
The software checks for the limit for feasibility in order of increasing rank. Specifically, a CV limit with a
smaller numerical ranking is more important than another CV limit with a larger numerical ranking, e.g.,
a CV limit with rank 1 is more important than another CV limit with rank 999; and the former CV limit
must not be violated, while the latter CV limit could be relaxed if appropriate.

DMC3 Builder recognizes the following possible ranks: (1) rank 0: All CV’s have the same rank, have rank
0 and we consider trade-off with MV constraints (not recommended in practice); (2) rank 1-999 (see
more below): all CV limits go through a standard feasibility check; (3) rank 1000: a special “soft target”
constraint which is solved in the economic optimization only (not in the feasibility calculation); and (4)
rank 9999: the CV limit is not used in steady-state economic optimization.

The CV limit ranking results from consulting with experienced plant operators and engineers, who
typically know the relative important of each CV limit. When it is not possible to clearly define the
relative ranking of a CV limit, we could consider assigning the CV limit into the following suggested rank
between 1 and 999 [7]: (1) safety and environmental limits (e.g., stack NOx emissions; safety valve
controller output; heater tubeskin temperature, etc.) : rank 1 to 99; (2) integrating or ramp variable
(Section 8.1.1.1c): rank 100 to 199; (3) model validity requirements (e.g., control valve outputs; column
flooding limit, etc.) : rank 200 to 299; (4) product quality specifications (fractionator boiling points;
product impurity specifications, etc.) : rank 300 to 399; and (5) economic optimization soft targets that
cannot be uniquely defined: rank 1000.

Figure 8.27 illustrates the CV ranking method to handle steady-state feasibility for CV limits of different
ranks. We satisfy the more important constraints (lower numerical ranks) first, while relaxing the less

important constraints (larger numerical ranks) to find a feasible solution. In the figure, line B (CV2U,
representing CV2 upper operating limit, of rank 100) and line C (CV1L, representing CV1 lower operating
limit, of rank 200) are both satisfied and intersect at point F. We could find a feasible solution if we
could relax the constraint of line A (CV3U, representing CV3 upper operating limit, of rank 300) by
moving line A to line A’ which satisfies the feasible solution at point F. The distance between lines A and
A’ represents the relaxed amount required to make a constraint feasible, for which we call a constraint
give-up (ε).

Figure 8.27 Achieving steady-state feasibility for CV limits of different ranks by satisfying constraints
CV2U (CV2, upper operating limit of rank 100; line B) and CV1L (CV1 lower operating limit of rank 200, line

C), while relaxing the constraint of CV3U (shifting CV3 upper operating limit of rank 300 from line A to
line A’).

Figure 8.28 shows another example about constraint give-up when the CV limit ranks are equal. In the
figure, line B (CV2U, representing CV2 upper operating limit) and line C (CV3U, representing CV3 upper
operating limit) are both satisfied and intersect at point F. We move the constraint of line A (CV1L,
representing CV1 lower operating limit) to line A’ which satisfies the feasible solution at point F. The
distance between lines A and A’ represents the relaxed amount required to make the constraint CV1L
feasible. This is the constraint give-up (ε) for CV1L.

Figure 8.28 Achieving steady-state feasibility for CV limits of the same rank by satisfying constraints
CV2U and CV3U, while relaxing the constraint CV1L (shifting CV1 lower operating limit from line A to line

A’)

8.1.6c Steady-State Equal Concern Error (SS ECE) to Handle Steady-State Feasibility

For the copolymerization problem, assuming the CV limits to be of an equal rank, what magnitude of
error in each of the CVs should get an equal level of attention or concern from the control engineer? Let
us consider Table 8.2, in which we quantify the CV error that is 10% of the difference between the upper
and lower operating limits.

Table 8.2 Magnitude of error in each of the CVs

CV Measurement
(current value)

Lower operating
limit (LPL)

Upper operating
limit (UPL)

(UPL- LPL)x10%
deviation

Polymer, kg/hr 23.3 0 30 3 kg/hr
Mol_Wt. 35000 34500 35500 100
T_Rx, °C 85 70 100 3.0 °C
Conc_MMA, mole
fraction

0.56 0.55 0.60 0.005 mole
fraction

In terms of engineering units, we see that for each CV, an error above the UPL or below the LPL with a
magnitude larger than the value displayed in the last column of Table 8.2 should require the control
engineer an equal level of attention or concern to take appropriate corrective action.

DMC3 Builder includes a steady-state parameter, called steady-state equal concern error (SS ECE), to
handle the infeasibility of potential violations of multiple CV limits of an equal rank. The SS ECE factors
allow the control engineer to specify the “standard” or “reference” amount of error for a given CV.
These are then used to balance movement (error) in one CV against movement (error) in another CV. A
small SS ECE for a CV means that this CV has a smaller tolerance threshold to any deviation from its
upper or lower operating limit, and the control engineer must give sufficient attention or concern to the
resulting potential infeasibility. For example, if the SS ECE for CV1 is less than the SS ECE for CV2, and
both have the same engineering unit, then satisfying the CV1 limit constraint is more important than
satisfying the CV2 limit constraint.

Figure 8.29 gives an example of using SS ECE to resolve a set of infeasible CV limits. In the figure, line A
(CV2L, representing CV1 lower operating limit) has a smaller steady-state ECE of SS Low Concern of 0.01,
and must be satisfied. Line B (CV2U, representing CV2 upper operating limit) has a larger steady-state
ECE of SS High Concern of 1, and could be relaxed. We move the less important constraint of line B to
line B’ which satisfies the feasible solution at point F. The distance between lines B and B’ represents the
relaxed amount required to make the constraint CV2U feasible. This is the constraint give-up (ε) for
CV2L.

 Figure 8.29 Achieving steady-state feasibility for CV limits of the same rank by satisfying constraints
CV1L with a smaller SS ECE of 0.01, while relaxing the constraint CV2U of a larger SS ECE of 1 and shifting

CV2 upper operating limit from line B to line B’.

To resolve a set of infeasible CV limits of an equal rank, DMC3 Builder provides two algorithms: (1) LP
(linear programming) solution; and (2) QP (quadratic programming) solution. We consider only the LP
solution here. Specifically, assume that ε1, ε2, ε3, …... are the amounts of constraint give-up, illustrated in
Figures 8.27 and 8.28, to make a CV limit feasible. We restrict the give-ups, εi, to be positive or zero (zero
means that a feasible solution exists). For each constraint give-up, we assign a weight or weighting
factor Wi indicating the relative importance of satisfying i-th CV limit. The LP solution includes the
following linear minimization objective function plus the linear CV limit constraint:

 Min φ = ε1* W1 + ε2* W2 + ……… (8.44)

subject to the following CV limit constraints in a vector form

 CV ≤ CVmax + ε1 (8.45)

 CV ≥ CVmin – ε2 (8.46)

The weight or weighting factor, Wi, is a positive number, typically from 1 to 106; the higher its value, the
more important it is to satisfy the upper or lower limit constraint for CVi.

In applying the LP algorithm to resolve the infeasible CV limits, DMC3 Builder specifically relates the
weighting factor Wi (varying from 1 to 106) to the corresponding SS ECEi (varying from 1 to 10-6) by the
relationship:

 SS ECEi = 1/Wi (8.47)

Suppose that it is very important to satisfy the i-th CV limit by setting the weighting factor W i to 106, Eq.
(8.47) suggests that the corresponding SS ECE for the i-th CV limit, SS ECEi, is 10-6. We note that in doing
a SS Optimizer calculation (simulation), we need only the relative values of ECEs (low concern and high
concern) for all CVs, not their specific numerical values in engineering units. As such, we could specify

the ECEs for CV limits as 1, 0.1, 0.01, 0.001, ...…., with smaller ECE values (higher weighting factors)
indicating that it is more important to satisfy the corresponding upper or lower CV limit.

For steady-state economic optimization (SS Optimizer), we need to specify both the limit ranks and the
ECEs. These include: (1) the SS Low Concern, SS Low Rank, SS High Concern and SS High Rank for each
CV; and (2) Validity, Engineering and Operator Limits (Low and High) for each MV and each CV.

8.1.6d Dynamic Equal Concern Errors for CV Limits in Dynamic Controller Simulation

Having completed the steady-state economic optimization via the SS Optimizer and identified the
economic optimum, MV and CV targets, DMC3 Builder continues with dynamic controller simulation to
determine a series of MV moves to drive the MV and CV to their target values through the Path
Optimizer. In this step, a key tuning parameter in dynamic controller simulation is the dynamic equal
concern error, or dynamic ECE. Basically, dynamic ECEs indicate the level of concern by the control
engineer for dynamic deviations from the stead-state CV targets. As with steady-state ECEs, it is the
relative values of the dynamic ECEs that determine how tight a CV is controlled to its steady-state target,
and not the value of the dynamic ECE itself. We can minimize the deviation of a CV from its steady-state
target by reducing the dynamic ECE. This is done at the expense of more errors on the other CVs and
more movements for the MVs.

Figure 8.30 illustrates the concept of dynamic ECEs in three different regions: below the lower operating
limit (LPL), above the upper operating limit (UPL), and between the LPL and UPL.

Figure 8.30 Dynamic equal concern errors for CV limits [7]. Used with permission from Aspen
Technology, Inc.

First, DMC3 Builder specifies a dynamic ECE called “Dynamic low concern” for CV values below the
“Operator low limit”, and a dynamic ECE called “Dynamic high concern” for CV values above the
“Operator high limit”. Next, we see in the figure a narrow transition zone to the right of Operator low
limit, called lower transition zone or “Dynamic low zone”, in which the weight (dashed line) drops and
the Dynamic low concern (solid line) increases; we also see a narrow transition zone to the left of the
Operator high limit, called upper transition zone or “Dynamic high zone”, in which the weight (dashed
line) increases and the Dynamic high concern (solid line) drops. The transition zones help to avoid

“chatter” when ECEs are different in the three different regions noted above and displayed in the figure.
Thirdly, we see in the figure a middle region between the right boundary line of the lower transition
zone or “Dynamic low zone”, and the left boundary line of the upper transition zone or “Dynamic high
zone”. While we see a label “Dynamic middle concern” in this middle region, this ECE has no real
significance and is being ignored in the DMC3 dynamic controller simulation. This follows because within
this middle region, the CV value is always between its LPL and UPL, and the control engineer sees no
chance for the CV to deviate from its limits.

In the DMC3 control structure of Figure 8.18, we see that the path optimizer may determine a series of
CV moves to drive the MVs and CVs to their economic optimum, steady-state targets obtained by the SS
optimizer. Additionally, the figure shows that the path optimizer may also determine a series of MV
moves to drive a specific CV to an external target value specified by the control engineer (instead of the
target value determined by the SS optimizer, that is, the economic optimum, steady-state target). DMC3
treats an external target for a CV the same as a CV constraint and includes it in the feasibility checks by
the SS optimizer. Additionally, when doing a dynamic controller simulation through the path optimizer,
DMC3 Builder includes a dynamic ECE for the external target, called Dynamic Target Concern. This is the
concern associated with the dynamic move plan target for a CV. It defines how far the output can drift
dynamically from its steady-state target before you get concerned. An increase in this value will allow
the output more freedom to deviate dynamically from the steady-state target. A decrease will drive the
output closer to the steady-state target dynamically.

To summarize, for dynamic controller simulation, we need to specify both the limit ranks and the ECEs.
These include: (1) SS Low Concern, Dynamic Low Concern, SS High Concern, Dynamic High Concern, and
SS Low Rank, SS High Rank, Dynamic Low Zone, and Dynamic High Zone for each CV; (2) Validity,
Engineering and Operator Limits (Low and High) for each MV and each CV; and (3) Dynamic Target
Concern, if there is an external target for a specific CV.

8.1.6e Move Suppression for MV

A key parameter for dynamic controller simulation via path optimizer is the move suppression for MVs.
Move suppression parameter affects how aggressively the controller will move the MVs to achieve
control objectives. A larger value means more suppression, i.e., less MV movement.

Figure 8.31 illustrates the trade-off between: (1) minimizing CV error from its steady-state economic
optimum target by an aggressive MV movement by specifying a small move suppression; and (2)
minimizing MV move size by specifying a large move suppression, resulting in increasing CV error from
its SS optimization target. Figure 8.32 compares the impacts of small and large move suppression
parameters on the MV move size in response to CV setpoint change from 310°C to 350°C.

Figure 8.31 The trade-off between minimizing CV error from its steady-state economic optimum target
by an aggressive MV movement by specifying a small move suppression, and minimizing MV move size

by specifying a large move suppression

Figure 8.32 Comparing the impacts of small and large move suppression parameters on
the MV move size in response to CV setpoint change from 310°C to 350°C.

There are several sources of qualitative information that can help a control engineer determine the
appropriate value of move suppression to use in a dynamic controller simulation: (1) experience during
step testing to develop the controller model; (2) comfort level of the control engineer for how fast an
MV can be moved; (3) the capability of the exiting PID loop to track CV setpoint changes; (4) the type of
disturbances for which the MV must compensate; and (5) settings for similar controllers which have
demonstrated success.

Additionally, we may apply a multi-level strategy to initialize the move suppression parameters. We start
by applying a move suppression value of x (say, 0.1) for a flow setpoint MV. We then specify a move
suppression value of 2x (say, 0.2) for a temperature setpoint MV, and of 4x (say, 0.4) for a pressure
setpoint MV and a feed rate setpoint MV. The larger values of move suppression for the pressure
setpoint MV and feed rate setpoint MV imply that we do not want both the pressure and feed rate
setpoints move quickly.

Finally, we note that move suppression is the most straightforward handle on dynamic controller
performance. ECE tuning has a relatively narrow range where it affects dynamic controller performance,
and it sometimes could give unpredictable results for disturbances affecting more than one CV at a time.

In the next section, we present a hands-on workshop to illustrate all the concepts and parameters
introduced so far. We also use the workshop to demonstrate the practical tips in applying DMC3 Builder
to the model-predictive control of a copolymerization process.

8.2 Workshop WS8.1 Development and Application of a Predictive Controller Model for a
Copolymerization Process

8.2.1 Objective

The objective of this workshop is to teach the reader to use the DMC3 Builder for a multivariable
dynamic matrix control (DMC) Project, specifically the development and applications of a predictive

controller model for a solution copolymerization reactor based on data from plant step tests. We focus
on the identification of a dynamic process model using the modeling tools within DMC3 Builder, and the
use of the resulting predictive controller model to optimize the polymer production rate.

8.2.2 A Copolymerization Reactor

Figure 8.33 shows a simplified flowsheet of a solution copolymerization reactor system.

Figure 8.33 A simplified flowsheet of a solution copolymerization reactor system

There are two monomers, methyl methacrylate (MMA) and vinyl acetate (VA), an initiator (INITIATO),
and a chain-transfer agent (TRANSF).The process is define in more detail in [31,33,23,24] Figure 8.33
shows five manipulated (independent) variables, and four control (dependent) variables.

8.2.3 Starting the DMC3 Builder Program: Creating a New Project

Start Aspen DMC3 Builder and choose “New”. Figure 8.34 illustrates the resulting screen to choose one
of the two project types: (1) DMC project, which includes DMC3 controller, Aspen Watch for controller
performance monitoring, and a complete set of adaptive control tools; and (2) APC project, which
includes DMCplus controller and nonlinear controller, Aspen Watch, and some adaptive control tools if
licensed.

Figure 8.34 Selection of project type and related software tools

For controlling the production rate, and product concentration and qualities (such as polymer density
and melt index) of polyolefins, we recommend choosing APC project and using the nonlinear controller,
as both polymer density and melt index have noninear dependencies on key manipulated variables.

For controlling the polymer production rate, molecular weight, and concentration of monomer in the
polymer, we can use a linear multivariable model-predictive control, such as DMCplus controller under
APC Project or its newer version, DMC3 controller under DMC3 Project. For now, we choose DMC3
Project, and complete the project name and the working folder location, as in Figure 8.35. After clicking
OK, we see the interface layout of Figure 8.36.

Figure 8.35 Specifying project name and working folder location

Figure 8.36 DMC3 interface layout: Tool ribbons (top), navigation workflow buttons (bottom left)- datasets,
controllers, composite and online; navigation tree area (left “white” column), and workspace (middle).

8.2.4 DMC3 Builder Task One: Data Processing for Developing a Master Model- Import Process Data,
Merge the Datasets and Mark and Delete Bad Data Slices

DMC3 Builder can perform six key tasks: (1) Master Model: data processing and model identification
(ID); (2) Configuration: configuring the steady-state optimizer and dynamic controller; (3) Optimization:
performing the steady-state optimization; (4) Simulation: including five types of simulation, namely,
controller, optimizer, filter, model, and preview dynamics; (5) Calculations: performing online
calculations and transformations; and (6) Deployment: performing controller deployment. We begin
with task one, data processing to develop the master model, below

From the “Import” tool ribbon on the top left, we choose “Dataset”. We then select the collect file
WS8.1-1.clc within our working folder and click on the Open button. See Figures 8.37 and 8.38.

Figure 8.37 Important dataset, collect file WS8.1-1.clc.

We see in Figure 8.38 that the first collect file has 9 tags, a sample period of 60 sec, an interpolation
span of 5 min and a total of 2640 samples collected from 10/1/1996 07:14:00 to 10/3/1996 03:13:00.
We click “Import” to upload the data into the project. In general, an interpolation span of 5 to 10
minutes would be sufficient for most problems.

Figure 8.38 Contents of the first collect file

Before the software import the data into the project, an “Interpolate Dataset” window shows up. We
click on “Start” button to interpolate any bad and missing data slices longer than 5 minutes in duration.
We then click on “Close” button to conclude the interpolation analysis. The analysis results in the
message “0 of 9 vectors (variables) have been interpolated”. We do not show the screen images of this
straightforward step.

Figure 8.39 displays the first dataset in the Datasets view and trend plots. The software will
automatically show the first three in the view (which happen to be all manipulated variables,
Flow_MMA, Flow_VA, and Init), but we choose to add the remaining two manipulated variables (Transf
and T_JKT) to display. Of particular significance in the displayed plot are the stepwise changes in all five
manipulated variables within the total duration of step tests.

Figure 8.39 A display of the first dataset for stepwise changes in
five manipulated variables during step tests

We repeat the same process to import the second collect file, WS8.1-2.clc. Figure 8.40 illustrates the key
features of the second collect file. Its list of vectors to import is identical to that in Figure 8.38. A display
of the five manipulated variables is similar to Figure 8.39. Figure 8.41 displays the continuous changes in
all four controlled (dependent) variables within the duration of step tests.

Figure 8.40 Contents of second collect file.

Figure 8.41 A display of the second dataset for continuous changes in
four control variables during step tests

Next, we follow the path: tool ribbons -> dataset actions -> merge -> create new dataset: name - WS8_1
-> OK. See Figure 8.42.

Figure 8.42 Merge two datasets into a new dataset, WS8_1

Figure 8.43 illustrates the merged datasets. We note that the software has automatically highlighted in
grey the section of date and time within the duration of the dataset that contains bad/missing values.
When we choose to use our mouse to highlight the grey section, it will become green and activate the
data slicing tools on the top ribbon buttons. See Figure 8.44.

Figure 8.43 Merged dataset WS8_1

Figure 8.44 Using a mouse to highlight the bad/missing data section to
activate the data slicing tools in the ribbon buttons

We then click on the “Mark Bad” ribbon button, and see the input window of Figure 8.45, in which we
apply global slicing tool to remove bad dataset section of all vectors (variables) with missing data and
click the OK button.

Figure 8.45 Global slicing of bad dataset section of all vectors (variables) with missing data

8.2.5 Create Manipulated Variable (MV) and Control Variable (CV) Lists

On the top tool ribbon, we choose Manage Lists to build: (1) MV (manipulated variable) list –
Flow_MMA, Flow_VA, Init, Transf, and T_Jkt; and (2) CV (control variable) list - Polymer, Mol_Wt, T_Rx
and Conc_MMA. Use the Add (+) and Delete (-) buttons to create a new list or delete an existing list,
respectively. After creating a list, choose the desired variable (vector) from the right-top list and use the
arrow key to move it to the list on the right-button section. See Figures 8.46 and 8.47 for the MV and CV
lists.

Figure 8.46 Manipulated variable list, MV

Figure 8.47 Control variable list, CV.

We pause to present an important note. Our manipulated variables are independent variables that the
operator can change. A control problem may include additional independent variables, called
feedforward variables (FF), that impact the process, but the operator cannot change them directly. If our
dataset from plant step tests includes the time-dependent change profile of feedforward vectors
(variables), we should include those FF vectors to the end of the independent variable list. For our
current problem, we would include any FF variables to the end of the MV list in Figure 8.46 and place
those FF variables after the reactor cooling jacket temperature variable, T_Jkt.

8.2.6 DMC3 Builder Task One: Model Identification (ID) for Developing Master Model - Setting up the
Model ID

We click on Create Model button located at the far right of the tool ribbons to start building the dynamic
controller model using the dataset, WS8.1_1. In the Identify Model-Specify Structure input form, we
enter model name, Copolymerization, specify a Time to Steady State of 90 minutes, and choose the five
MVs as input variables, and the four CVs as output variables. See Figure 8.48. Click OK to see the Case
Editor Screen of Figure 8.49.

Figure 8.48 Controller model specification

Figure 8.49 Case editor screen.

On the left column of the navigation tree for Copolymerization controller, we click on All Variables
within Master Model to see a listing of dataset and input and output variables, as illustrated in Figure
8.50.

Figure 8.50 Dataset and input and output variables

Next, we click on Parameter Trials of the Case Views on the tool ribbons (see Figure 8.50) to start
specifying the trial cases, focusing on FIR trials (simulation runs) with the parameters listed in Table 8.3.

Table 8.3 Parameters for FIR trial cases, WS8.1

Time to Steady State, min Number of Coefficients Smoothing Factor
30 30 5
60 60 5
90 90 5

120 120 5

When we click on Parameter Trials, the software automatically creates the cases with “Time to Steady
State (TTSS)” equal to 30, 60 and 90 min. Make sure to check the boxes for Master, Prediction,
Uncertainty and Time Uncertainty for the 90-min case. We also need to click on the “+” button next to
FIR Trials to add the new case with a TTSS of 120 min. See Figure 8.51.

Figure 8.51 List of trial cases

As our sampling period (data collection interval) is 1 min (Figure 8.48), the software assumes a controller
execution interval of 1 min and gives the Number of Model Coefficients equal to the TTSS according to
Eq. (8.48):

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑚𝑖𝑛
 = ,

 x

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 𝑃𝑒𝑟𝑖𝑜𝑑, 𝑚𝑖𝑛

 (8.48)

Model coefficients are required to model faster responses. For example, if the controller execution
interval is 0.5 min, with the TTSS (= 90 min) and sampling period (= 1 min) remain the same, Eq. (8.48)
means the number of model coefficients is 180. The number of model coefficients also determines the
number of future control moves being calculated by DMC3 Builder. See Table 8.4. We note that the
larger the number of model coefficients, the smaller the controller execution interval and the larger the
number of control moves calculated. Understanding this relationship is key to applying control to
respond to fast-changing independent disturbances in the system.

Table 8.4 Relationship between the number of model coefficients
and the number of control moves calculated

Number of model
coefficients

30 45 60 75 90 105 120

Number of control
moves calculated

8 9 10 11 12 13 14

The third parameter, Smoothing Factor, is used to smooth the data and apply the penalty for change
between successive FIR model coefficients. The default value of 5 is acceptable in most cases.

We now move to Case Actions within the tool buttons and click on the Identify button to run the model
identification (ID). Figure 8.52 shows the window display of the progress of the FIR model identification.
We click “Close” when seeing the message of “Solution Complete”. Figure 8.53 shows the identified

smoothed and unsmoothed model curves for each TTSS

Figure 8.52 Window display of the progress of the FIR model identification

 Figure 8.53 Identified smoothed and unsmoothed model response curves:
“fir S5, U90” means finite-impulse response; smoothing factor = 5; TTSS = 90 min.

8.2.7 Guidelines for Selecting Model Parameters

In Section 8.2.6, we have previously discussed the number of model coefficients in relation to Eq. (8.48),
the sampling period and the controller execution interval. We indicate that the use of a smoothing
factor of 5 is always a good practice. How do we then choose the third parameter, the time to steady
state (TTSS)?

We choose the TTSS based on the slowest responses in the model, and all model responses should reach
steady state at the selected TTSS. We extend faster response curves to match the selected TTSS.

Figures 8.54a to 8.54d compare the finite-impulse response curves at TTSS = 30, 60, 90 and 120 min and
with a smoothing factor of 5. The comparison confirms our selection of master model with a TTSS of 90
min for all control variables (Polymer, Mol_Wt, T_Rx and Conc_MA) to reach their steady-state values. In
general, a control variable will continue to change past a chosen TTSS value that is too short; and a large

TTSS will cause the smoothed and unsmoothed response curves of a control variable to drift apart at the
end.

(a) fir S5 U30: finite-impulse response -> S5 =smoothing factor of 5, U30 = TTSS of 30 min. MOL_WT and
CONC_MMA (y-axis) continue to increase past TTSS of 30 min (x-axis). T_RX continues to drop past TTSS

of 30 min. Pay attention to the red curve that ends at 30 min.

(b) fir S5 U60: TTSS of 60 min. MOL_WT and CONC_MMA continue to increase past TTSS of 60 min.
T_RX continues to drop past TTSS of 60 min.

(c) fir S5 U90: TTSS of 90 min. POLYMER, MOL_WT, T_RX and CONC_MMA appear to reach their
steady-state values and do not change much past TTSS of 90 min.

(d) fir S5 U120: TTSS of 120 min appears to be too long as all dependent variables have already reached
their steady-state values around TTSS of 90 min.

Figure 8.54(a)-(d) Evaluation of the selection of time to steady state (TTSS).

8.2.8 Uncertainty and Correlation Plots of the Master Model

We display the master model with a TTSS of 90 min by following the path on the navigation tree:
Copolymerization Model ->Master Model -> Cases Folder ->All Variables and click on the “Frequency
Uncertainty” button on the tool ribbons. Figure 8.55 shows the resulting frequency-domain uncertainty
plot. In each response plot, the shaded area above and below the dark average response curve indicates
a two-sigma confidence region that includes 95.4% of all data points. The narrower the shaded area, the
more accurate the average response curve is. For example, the model response plots of Mol_Wt and

Conc_MMA to changes in Flow_MMA contain very narrow two-sigma confidence region and the quality
of these model response plots is graded “excellent” or “A”. By contrast, the wide shaded two-sigma
region for the model response plot of T_Rx to changes in Flow_MMA and in Transf indicates a plot of
poor quality with a grade of “C”. We see plots of very poor quality with large shaded two-sigma region
for the model response plot of Polymer to changes in Transf with a grade of D.

Likewise, Figure 8.56 shows the time-domain uncertainty plot. For each input/output variable pair, we
see the shaded two-sigma confidence region, and the corresponding model grade from A to D. Both
frequency-domain and time-domain uncertainty plots result in essentially identical model grades.

Figure 8.55 Frequency domain uncertainty plot for the master model at a TTSS of 90 min

Figure 8.56 Time domain uncertainty plot for the master model with a TTSS of 90 min

The correlation plots show how much an input variable or MV correlates with another input variable.
The correlation coefficient is a statistical measure of the strength of the relationship between the
relative movements of two variables. The values range between -1.0 and 1.0. ... A correlation of -1.0
shows a perfect negative correlation, while a correlation of 1.0 shows a perfect positive correlation. In
Figure 8.57, both x-axis and y-axis represent input variables or MVs. We see the value of the correlation
coefficient between two input variables on the upper right corner of each plot, with values between 0
and 0.28, indicating a relatively minor positive correlation.

Figure 8.57 Correlation plot for the master model at a TTSS of 90 min

8.2.9 DMC3 Builder Task One: Building the Controller Model for Developing the Master Model

Before creating the final controller model, we need to check the steady-state gain of each input-output
pair and investigate which changes in an input variable have a notable impact on a specific output
variable. Specifically, we copy the steady-state gain values of all input-output pairs by following the
path: Controllers ->Copolymerization -> Master Model ->Case Folder -> All Variables -> Right-click within
the workspace of model response curves ->Copy gains. See Figures 8.58 and 8.59.

Figure 8.58 Copying steady-state gains of model response curves.

Figure 8.59 Steady-state gains of model response curves with a TTSS of 90 min

Figure 8.60 gives the explicit ratio elements of the steady-state gain matrix of Figure 8.23.

Figure 8.60 Explicit ratio elements of the steady-state gain matrix

Comparing the magnitudes of the steady-state gain values in each CV column, we conclude that all input
variables or MV rows have a notable influence on the “polymer molecular weight” column. Additionally,
we note the following:

 The mass flow rate of the chain-transfer agent, Transf, has the least influence on the polymer
mass flow rate, Polymer, with a gain of 0.05762.

 Both mass flow rates of MMA and VA, that is, Flow_MMA and Flow_VA, have the smallest
influences on the reactor exit temperature, T_Rx with gains of -0.03789 and 0.02761.

 The mass flow rate of the chain-transfer agent, Transf, has the least influence on the
concentration or mole fraction of monomer MMA in the polymer product, Conc_MMA with a
gain of -0.00138.

We eliminate those MVs that have the least influence on a specific CV with smallest steady-state gain
values and click on “Mask Selection” to disable copying those response curves over to the final master
model. For example, we mask the mass flow rate of transfer agent, Transf, as a MV for controlling the
mole fraction of MMA in the polymer product, Conc_MMA, by highlighting the corresponding response
curve, right-click to show the selection menu, and then choose “Mask Selection”. See Figures 8.61 and
8.62.

Figure 8.61 Eliminating the model response curve of a selected input-output pair
from the final master model by Mark Selection.

Figure 8.62 A display of four highlighted response curves that are eliminated
in the final maser model after Mask Selection

8.2.10 DMC3 Builder Task One: Creating a Controller Model

The first step to create a controller model is to define the various trial runs as the Master trial. We
confirm our previous selection illustrated in Figure 8.53. We click on Master Model in the navigation
tree and see the Model views in the tool ribbons. Click on Update Curve within Model Operations in the
tool ribbons. See Figure 8.63. After clicking on Update Curves, we see a model update report. Be sure to
choose “Allow overwrite of all null models in the master”, and “Overwrite all curve operations” (see
Figure 8.64). Clicking OK will generate the Master Model response curves of Figure 8.65.

Figure 8.63 Master Model view waiting for Update Curves to copy the Master Case response curves
with a TTSS of 90 min to the empty model panel

Figure 8.64 Model update report after clicking on Update Curve.

Figure 8.65 Updated final master model with a TTSS of 90 min.

8.2.11 Identification of Dead Time in Model Response Curves

We enlarge the model response curve between Flow_VA and Mol_Wt by double-clicking on the curve.
The enlarged curve appears to show a dead time of about 9 min before Mol_Wt begins to change after
Flow_VA changes. We identify the dead time by following the path: Highlight the model curve -> Right-
click to open the menu for curve operations -> Click on Curve Operations (see Figure 8.66) -> Shift the
curve by -9 min and update chart (see Figure 8.67)-> Then shift the curve by +9 min and update chart
(see Figure 8.68) -> Update curve.

Figure 8.66 Access the menu for curve operations

Figure 8.67 Shifting the model curve by -9 min and updating chart.

Figure 8.68 Shifting the model curve by 9 min and updating chart.

Figure 8.69 shows the model response curves resulting from this curve operation to identify the dead
time between output variable Mol_Wt and input variable Flow_VA. Note the dark blue triangular on the
lower right corner of the response curve plot between these variables.

Figure 8.69 Model response plot with a blue triangular on the lower right corner of a plot indicating
having completed a curve operation

Following the same procedure, we identify the dead times of other input-output pairs. Figure 8.70
shows the resulting model response curves.

Figure 8.70 Model response curves after curve operations for dead times.

8.2.12 Collinearity Analysis

Always perform collinearity analysis (discussed in Sections 8.1.4a and 8.1.4b) on the master model
before its deployment. The collinearity analysis identifies and repairs ill-conditioned model matrices. It
can identify sub-models from a model matrix that are nearly collinear or highly nonlinear. A collinearity
analysis includes the following four steps:

Step 1. Select variables and specify options – We choose MVs and CVs to be analyzed and specify the
gain analysis options, such as RGA (relative gain analysis) threshold, singular value analysis, allowable
gain changes, etc.

Step 2. Analyze and determine relationships – We analyze the model and determine which CV-MV pairs
have collinearity trouble and specify confidence limits for the gains on individual model response curves.

Step 3. Create groups – We create groups using MV-CV curves that do not have square relationships
(2x2, 3x3, etc.).

Step 4. Repair groups and update model – We repair gains for the square and non-square groups by
either collinearizing or un-collinearizing the groups.

We explain and demonstrate the details of each step below.

Step 1. Select Variables and Specify Options.

We begin by going to the Controller navigation tree and choose Copolymerization -> Master Model. On
the top tool buttons, we click on “Collinearity” within “Model Operations”. See Figure 8.71. We
immediately see a dialog: “Do you want to use collinearity repair wizard?” We choose “No” in order to
use the collinearity repair dialog. See Figure 8.72.

Figure 8.71 Activate the collinearity analysis within model operations.

Figure 8.72 Choose the collinearity repair dialog by clicking on “No”.

We then see “Select Variables –Copolymerization” and select all MVs and CVs for analysis. Click OK to
proceed to the Collinearity Analysis window. See Figure 8.73. We note that if our list of MVs includes
feedforward variables, we do not choose them in the collinearity analysis.

Figure 8.73 Select variables for collinearity analysis.

Next, we see the “Collinearity Analysis –Copolymerization” window, displaying the top toolbar for
collinearity analysis buttons. We click on “Options” and see the window of “Collinearity Options”, as
shown in Figure 8.74. We note that the default settings specify the use of RGA with a relative gain
threshold of 10, a large threshold of 50 and a small threshold of 1. These default settings will suffice for
our model. We click OK on the “Collinearity Options” window to accept these settings, and then see the
display of the results of the collinearity analysis of Figure 8.75. In the figure, we see the total number of
submatrices as 1. This follows because we have 5 MVs and 4 CVs, and a 5x4 gain matrix; and RGA applies
only to a single 4x4 square submatrix of the 5x4 gain matrix.

Figure 8.74 Collinearity analysis options with default settings:
Relative gain analysis (RGA) or singular value analysis (SVA).

Step 2. Analyze and Determine Relationships

Figure 8.75 Screen display of the results of collinearity analysis

Figure 8.75 shows that there are two collinear systems, as indicated by the shaded MV-CV pairs:
(Flow_VA)-(MOL-WT) with a gain of 21.15 and (T_JKT)-(MOL_WT) with a gain of 21.03; and (FLOW_VA)-
(CONC_MMA) with a gain of -0.03412, and (T_JKT)-(CONC_MMA) with a gain of -0.03391.

Step 3. Create Groups

Next, we click on CV names, MOL_WT and CONC_MMA, and on MV names, FLOW_VA and T_JKT to
select these variables to form “Parallel Groups”. This results in a red triangle on the top right corner of
the selected variable name. See Figure 8.76.

Figure 8.76 Choosing the MV and CV to form parallel groups and the resulting red triangles on the top
right corners of the variable names

We then click on the “Create Group” button to the top tool bar for collinearity analysis and see the
display of “Edit Parallel Groups” screen of Figure 8.77. Clicking on the “Edit” button displayed in Figure
8.77 will show the screen of Figure 8.78.

Figure 8.77 Display of the “Edit Parallel Groups” screen

Figure 8.78 Creating parallel groups, choosing the default, FLOW_VA, as the pivot, and clicking on
“Recalculate” to determine the required gain changes to collinearize the MVs.

Step 4. Repair Groups and Update Model

We click “OK” in the “Create Parallel Group” folder in Figure 8.78, followed by clicking on “Repair
Square” in the top tool bar for collinearity analysis to fix the gain matrix for both remaining square
submatrix groups, and the parallel group defined in the previous task. This leads to Figures 8.79 and
8.80, which show the relative gains and the (model) gains, respectively.

Figure 8.79 Display of relative gains after clicking on “Repair Square”

Figure 8.80 Display of (model) gains after clicking on “Repair Square”

We then click on “Repair” followed by “Start”. Figure 8.81 shows the Start and Finish of RGA (relative
gain array) repair.

Figure 8.81 Run RGA square repair.

Step 5. Review and Save Gains to the Master Model

Figure 8.82 asks us to apply the recommended changes. Click OK. This leads to Figure 8.83. We place the
mouse inside the figure, right-click to open the options, and choose “Copy Gains”.

Figure 8.82 Display of “Apply Collinearity” and apply gain changes directly.

Figure 8.83 “Copy Gains” of the model after collinearity analysis

The final model gains are as follows:

Before we continue further, we export the current controller application and save it according to the
following path: Controller -> Copolymerization ->Right-click: Export -> Save as WS8.1a.dmc3application
(see Figure 8.84).

 Figure 8.84 Export and save the controller model as WS8.1a.dmc3application.

8.2.13 Open-Loop Prediction and Prediction Error (Model Bias)

We first identify the units and ranges of MVs and CVs in our dataset before continuing with open-loop
prediction. Following the path: Controllers ->Copolymerization -> Master Model -> Cases Folder ->All
variables, we see the units and ranges of MVs and CVs displayed in Figure 8.85.

Figure 8.85 Units and ranges of MVs and CVs in copolymerization controller model.

To proceed with predictions, we follow the path: Controller->Copolymerization ->Master Model ->Top
ribbons: Master Model Actions ->Compare -> Compare predictions -> See Figure 8.86 -> Generate
predictions-> Close -> Top ribbons: Zoom-In ->Figure 8.87. We note from Figure 8.85 from the the
dataset, the polymer production rate, POLYMER, varies from 12.297 to 31.843 kg/hr. This is the range of
POLYMER in Figure 8.87. To understand Figure 8.87, we note the difference between the prediction
(blue) and measurement (red) gives the prediction error (pink). In the figure, we should read the positive
and negative values for the prediction error beginning from the baseline of zero prediction error at 20
kg/hr. Figure 8.88 shows the prediction plot for all four CVs.

A significant result from the prediction analysis is the scatter plot. Predictions should be unbiased over
the entire dataset range. It is important to review the scatter plot. Figure 8.89 illustrates that the scatter
plots for all four CVs in our copolymerization controller appear to be acceptable.

Figure 9.86 Setup for prediction run

Figure 8.87 Comparison of CV prediction with measurement and illustration of prediction error

Figure 8.88 Prediction plots for all four CVs

Figure 8.89 Scatter plots for all four CVs

8.2.14 DMC3 Builder Task 2: Configuration – Model Configuration

The model configuration task involves the specifications of: (1) feedback filters for prediction errors
(discussed previously in Section 8.1.5 for prediction error filtering); (2) subcontrollers; (3) test groups;
and (4) composite participation. See Figure 8.90.

Aspen DMC3 allows a controller to be subdivided into multiple units of MVs and CVs for operational
convenience in turning multiple variables ON or OFF at the same time. These units of MVs and CVs are
known as subcontrollers. For example, we may classify a large DMC3 controller for an ethylene
production train to have the following subcontrollers: (1) ethylene cracked gas compressor and quench;
(2) cold-box and demethanizer, refrigeration compressors; and (3) de-ethanizer and C2 splitter. If
subcontrollers are used, every MV in the controller must be a member of one and only one

subcontroller. Every CV in the controller must be a member of at least one subcontroller, although a CV
may belong to more than one subcontroller. Feedfirwards do n0t belong to subcontrollers. Our current
woekshop deals with a small controller and does not have subcontrollers.

Figure 8.90 Model configuration task in DMC3.

must be a member of at least one subcontroller, although a CV may belong to more than one
subcontroller. Feedforwards do not belong to subcontrollers. Our current workshop deals with a small
controller, and does not have subcontrollers.

Aspen DMC3 SmartStep application uses primitive process models to predict the behavior of the tested
process. When the tester application automatically steps an independent variable, it also keeps
dependent variables within their prescribed limits. The result is a constrained step test where all
constraints are honored. A SmartStep application uses the concept of test groups to help
maximize testing efficiency. A test group consists of MVs and CVs for which step tests are performed.
The current workshop does not involve a SmartStep application with test groups.

The last DMC3 model configuration application involves composite controllers. An Aspen DMC3
composite application facilitates the coordinated action of multiple DMC3 controller applications. It
works by providing consistently calculated steady-state MV and CV targets to participating controllers. A
Composite application is typically used in the following scenarios: (1) a large part of the unit is under the
control of several controller applications; and (2) controllers on separate processes, with significantly
different times to steady-state, are linked by common constraints. A DMC3 composite application
utilizes the same steady-state optimization technology that is embedded in FIR controller applications.
The composite suite variable set is a superset of all MVs, FFs and CVs in all participating controllers. The
steady-state solution obtained from the DMC3 composite application, therefore, honors the constraints
and utilizes the MVs of all the participating controllers. Our current workshop does not include
composite application.

Figure 8.91 illustrates that we specify the default option of “full feedback “of prediction error (model
bias), in which we calculate the difference between the current measurement and the current
prediction to calculate a bias that is applied to each element of the prediction error. This is exactly what
we previously demonstrated in Figures 8.9 to 8.11, Section 8.1.2a. Figure 8.91 also shows the options of
“First order” and “Moving average” filters, which were previously explained in Section 8.1.5 for
prediction error filtering. Lastly, the check boxes in the option of “Intermittent” in Figure 8.91 refers to

those CVs for which a new measurement is not available in each controller execution cycle. This is
typically the case of a discretely sampled variable, such as composition from a stream analyzer.

Figure 8.91 Specification of “full feedback” option for prediction error feedback in model configuration.

8.2.15 DMC3 Builder Task 2: Configuration – Configuring the Steady-State Optimization

We follow Section 8.1.6a-b to configure the steady-state optimizer. Figure 8.92 illustrates the interface
to configure the SS optimizer. Figures 8.93a-b show the input entries for MVs and CVs for the steady-
state simulator, respectively.

Figure 8.92 Configuration of the steady-state optimizer

Figure 8.93a Input entries for MVs for steady-state simulator

Figure 8.93b Input entries for CVs for steady-state simulator

8.2.16 DMC3 Builder Task 3: Optimization – Performing the Steady-State Optimization

We initialize the SS optimizer tuning by clicking on “Initialize Tuning” button. We choose the dataset
WS8_1, uncheck “initialize dynamic tuning”, and click “OK”, following by clicking on “Calculate” button
(see Figure 8.94). This results of CV targets from the SS optimization appear in Figure 8.95.

Figure 8.94 Initialize optimizer tuning and calculate.

Figure 8.95 MV results of steady-state optimization using the current configuration and tuning

Figure 8.96 CV results of steady-state optimization using the current configuration and tuning

8.2.17 DMC3 Builder Task 4: Simulation – Configuring and Simulating the Dynamic Controller

We follow Section 8.1.6c-e to configure the dynamic controller. Figures 8.97a-c shows how to initialize
the controller simulation. Figures 8.98a-c show the input entries for MVs and CVs, including operating
values and tuning values. After completing the entries displayed in Figures 8.97a-c, we save the
simulation file as WS8.1_BaseCase.dmc3application.

Figure 8.97 Initialize the controller simulation

Figure 8.97a Input entries for controller simulation –part 1.

Figure 8.97b Input entries for controller simulation –part 2.

Figure 8.97c Input entries for controller simulation –part 3.

Before we make the controller simulation, we save this simulation file as
WS8.1_BaseCase.dmc3application. Saving the input entries for the base case is essential, as it allows us
to return to these initial specifications later if necessary. We note that when running the controller
simulation forward in time, DMC Builder has no provision to let the controller rewind in time to its initial
specifications.

With this controller model, we can proceed to fine-tune the controller to optimize the polymer
production, improve product quality, and compensate for disturbances and setpoint changes, etc.

8.2.18 DMC3 Builder Task 4: Simulation –Dynamic Controller Applications to Polymer Production and
Setpoint Changes

To increase the polymer production, we save the base case as a new file, WS8.1-1.dmc3application.
There are many ways to increase the polymer production from its current value. We illustrate an
approach in Figures 8.98a-b, which show the controller input entries to raise the polymer production to
40 kg/hr, while satisfying all the constraints. This involves setting the higher engineering and validity
limits of initiator mass flow INIT to 1.5 kg/hr, the higher engineering and validity limits of chain transfer

agent mass flow TRANSF to 6 kg/hr, and the lower engineering and validity limits of polymer mass flow
POLYMER to 40 kg/hr.

Figure 8.98a Input entries for controller simulation increasing polymer production to 40 kg/hr – part 1.

Figure 8.98b Input entries for controller simulation increasing polymer production to 40 kg/hr – part 2.

We save the converged simulation file as WS8.1-2.dmc3application.

Next, we wish to raise the polymer molecular weight to 36,000, while keeping the polymer production
to 40 kg/hr, and controlling the concentration of MMA in the polymer product to 0.2. We can achieve
this setpoint change by referring to the input entries of Figure 8.89a, and raising the operator and
validity high limits of polymer molecular weight MOL_WT to 36,000, while keeping other input entries
unchanged. Running the simulation quickly reaches the new polymer molecular weight target value of
36,000. See Figure 8.99. We save the resulting simulation file as WS8.1-3.dmc3application.

Figure 8.99 Input entries for controller simulation increasing the polymer molecular weight MOL_WT to
36,000 while keeping the concentration of MMA in the product CONC_MMA at 0.2

This concludes the current “long” workshop of introducing DMC3 for a copolymerization problem. We
covered the DMC3 tasks of (1) master model, (2) configuration, (3) optimization, and (4) simulation.
Interested readers may refer to training courses offered by Aspen Technology, Inc. for an introduction to
the additional tasks of (5) calculations (performing online calculations and variable transformations),
and (6) deployment (performing controller deployment).

8.3 Model-Predictive Control of Nonlinear Polyolefin Processes

8.3.1 Challenges of Developing Nonlinear Predictive Modeling for Polyolefin Process Control

In Section 1.4.2, we review the observations by Turner and his colleagues [14,15] of the significant
deficiencies in applying the conventional neural networks to model-predictive control of polymer
processes, particularly with grade changes. Specifically, we mention that: (1) Conventional neural
network architectures intrinsically contain regions where the partial derivative of a dependent variable
(a process variable, PV) with respect to an independent variable (a manipulative variable, MV) becomes
zero, and the resulting zero model gain would lead to an infinite controller gain; and (2) conventional
neural network models cannot cope with the extrapolative demands of predictive control during
polymer grade transitions. These two deficiencies are only two of the ten reasons that Turner and his
colleagues [14,15] speak against applying conventional neural network models to model-predictive
control of polymer processes. In a 2020 article, Bindlish [18] has demonstrated a controller output
variable that has a steady-state gain inversion (changing signs from positive to negative, or from
negative to positive) in a nonlinear model-predictive control of a DOW chemical process.

In analyzing what must be done for model-based control of polymer processes, Bausa [19] describes
that the nonlinearities in a polymer process occur mainly during the grade change. A model that was
identified for a special grade often does not predict the steady-state gains correctly when considering
other polymer qualities such as melt index, which typically varies nonlinearly with process independent
variables.

Bausa [19] says that it is a logical step to extend the linear model-predictive control algorithms gradually
with nonlinear model characteristics. Figure 8.100 illustrates two approaches to do this. The Wiener
approach multiplies the linear dynamic model output with a nonlinear steady-state function or mapping

to yield the output prediction; the Hammerstein approach connects the output from a nonlinear steady-
state function or mapping with a linear dynamic model to produce the output prediction. Jeong et. al
[20] have demonstrated a nonlinear model-predictive controller using a Wiener model for an
experimental continuous methyl methacrylate polymerization reactor. We note that in applying a
Wiener model, the linear dynamic model is typically a multi-input and multi-output (MIMO) model,
while the nonlinear steady-state function or mapping is typically a multi-input single-output (MISO)
model. For example, the single output could be the melt index of a polyolefin product, while the
multiple inputs could be the hydrogen mass flow rate, flow rate ratios of ethylene to hydrogen, and
butane to hydrogen, etc.

Figure 8.100 (a) The Wiener model; (b) The Hammerstein model.

8.3.2 Nonlinear Steady-State Mapping by State-Space Bounded Derivative Network (SS-BDN)

8.3.2a Possible Gain Inversion and Non-Monotonic Behavior of Conventional Neural Networks

We refer the reader to reference [17] and many online tutorials about conventional neural networks,
and will not repeat those readily available, basic materials in this text. We briefly review the relevant
features of a conventional neural network that is essential to demonstrating its deficiencies for polymer
process control applications.

Figure 8.101 illustrates the foundation of a neural network, the neuron, or node (sometimes called a
processing element). We represent the inputs to the j-th node as an input vector, a, with components ai
(i = 1 to n). The node manipulates these inputs, or activities, to give the output, bj, which can then form
a part of the input to other nodes. In the figure, we see that the j-th node transfers the i-th input a i to
the j-th output bj through a weight factor wij and a transfer function f(xj). Tj is the internal threshold for
node j.

Figure 8.101 The processing element (neuron or node) of a neural network.

In polymer process control using neural network models, input components ai could represent the
independent variables such as hydrogen mass flow rate, flow rate ratios of ethylene to hydrogen, and of
butane to hydrogen, etc.; while the output bj could be a dependent variable, such as the polymer melt
index. Depending on the type of transfer function f(xj) being used, we may find that the partial
derivative of an output or a dependent variable bj with respect to an input component or an
independent variable ai may change sign from positive to negative, or from negative to positive.
According to Eqs. (8.3) and (8.4), these partial derivatives represent elements of the steady-state gain
matrix. We call this sign change as a steady-state gain inversion.

Consider, for example, a popular transfer function, f(xj) = tanh(xj), the hyperbolic tangent function. We
review some basic calculus for the hyperbolic tangent function here.

Define:

cosh x =
e + e

2
 sinh x =

e − e

2

tanh x =
sinh x

cosh x
=

e − e

e + e
 sech x =

1

cosh x
=

2

e + e
 csch x =

1

sinh x
=

2

e − e

Let u = f(x), we write the derivatives as follows:

d

dx
(sinh u) = cosh u

du

dx

d

dx
(cosh u) = sinh u

du

dx

d

 dx
(tanh u) = (sech u)

du

dx
 (8.49)

Figure 8.102 illustrates the hyperbolic tangent function and its derivative. While the hyperbolic tangent
function monotonically increases with increasing xj, its derivative value changes from monotonically
positive when xj is negative to monotonically negative when xj is positive. Therefore, using the
hyperbolic tangent transfer function could lead to a change in the sign of the partial derivative of
dependent variable bj with respect to independent variable xj, resulting in a gain inversion.

Figure 8.102 The hyperbolic tangent transfer function and its derivative.

What type of transfer function do we need to avoid possible gain inversion? We want to choose a
transfer function whose derivative varies monotonically. Consider, for example, the analytical integral of
a standard hyperbolic tangent transfer function as our new transfer function [14,15]:

tanh(𝑎𝑥) 𝑑𝑥 =
1

𝑎
ln[cosh(𝑎𝑥)] + 𝑐 ⟹

(𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

ln (cosh 𝑢)
 (8.50)

d

dx
[ln(cosh u)] =

1

cosh u
sinh u

du

dx
= tanh u

du

dx
 (8.51)

Figure 8.103 illustrates the transfer function log(cosh u), Eq. (8.50) and its derivative, Eq. (8.51). While
the function itself is always positive in value, its derivative monotonically increases with increasing
independent variable xj. Therefore, there is no concern for possible gain inversion.

Figure 8.103 The transfer function log(coshu) and its derivative

8.3.2b State-Space Bounded Derivative Network (SS-BDN)

As discussed in [15,16], the SS-BDN is essentially the analytical integral of a neural network. Based on Eq.
(8.50) - (8.51), we illustrate the general model architecture of a SS-BDN based on the analytical integral
of a neural network based on a hyperbolic tangent transfer function. Figure 8.104 shows the model
architecture.

Figure 8.104 Architecture of the state-space bounded derivative network

We wish to use this architecture to demonstrate that the partial derivative of the dependent variable y
with respect to independent variables xk is always bounded (hence the name of bounded derivative
network). Based on Figure 8.104, we write:

Applying ln[cosh(ax)] = atanh(ax) and setting i = k, we can write:

Eqs. (8.51) and (8.52) show the key features of the SS-BDN for nonlinear steady-state mapping that
ensures the partial derivative of the dependent variable with respect to independent variables remain
bounded. Additionally, as demonstrated in Figure 8.103, the choice of the transfer function within the
network makes the values of the partial derivative monotonically increasing with increasing values of
the independent variable. Both features are essential to the success of applying the Wiener model,
Figure 8.100a, to polymer process control [15,16].

8.4 WS8.2 Development of a Nonlinear Predictive Controller Model for a Polypropylene Process

8.4.1 Objective

The objective of this workshop is to demonstrate how to use the DMC3 Builder to develop a nonlinear
model-predictive controller for a polypropylene process based on the Wiener model of Figure 100a. This
model consists of a linear state-space dynamic model for the process dynamics integrated with a
nonlinear state-space bounded derivative network (SS-BDN) for polymer quality control. The goal of the
controller is to control the polymer melt index and density. We also simulate the controller performing a
transition from a melt index of 1 to a melt index of 10 at a constant density of 920 kg/m3.

8.4.2 Starting an APC Project and Choosing Nonlinear Controllers, and Data Preprocessing

Figure 8.105 shows the selection of APC Project and DMCplus, State-Space and Nonlinear Controllers.
We save the project as “PP Quality Control”. From the “Import” tool ribbon on the top left, we choose
“Dataset”, and select the text file, WS8.2.txt within our working folder. We then click on the Open
button. See Figures 8.106 and 8.107.

Figure 8.105 Selection of APC Project and DMCplus, State-Space and Nonlinear Controllers.

Figure 8.106 Import dataset, WS8.2.txt

Figure 8.107 Contents of imported dataset

In Figure 8.107, we see the following variables: (1) CVs – MI_Lab, MI_Inst, Density_Lab and Density_Inst;
(2) MVs – H2_C2 and C4_C2; and (3) DVs: Temp and C2_Partial_Pressure. We click on Import displayed
in Figure 8.107, and see an “Interpolate Dataset” window. We click on “Start” button to interpolate any
bad and missing data slices longer than 5 minutes in duration. We then clock the “Close” button to
complete the interpolation analysis. We see the message that “0 of 8 vectors (variables) have been
interpolated”. We do not show the screen images of these simple steps.

Following the interpolation step, we see the vector (variable) summary and the corresponding trend
plot. The software automatically shows the first three CVs (MI_Lab, MI_Int, and Density_Lab), and we
choose the fourth CV (Density_Inst). See Figure 8.108. We also display the MVs (H2_C2 and C4_C2) and
DVs (Temp and C2_Partial_Pressure). See Figure 8.109.

Figure 8.108 A display of the CVs

Figure 8.109 A display of the MVs and DVs

Reviewing the trend plots of Figures 8.108 and 8.109, we see no need to do data slicing, as there is no
bad data slice.

Next, we click on “Manage Lists” button on the top tool ribbon and follow Figures 8.46 and 8.47 to
create the MV and CV lists. See Figures 8.110 and 8.111.

Figure 8.110 Manipulated variables, MVs

Figure 8.111 Controlled variables, CVs

8.4.3 Aspen Nonlinear Controller: Task 1 - Model Identification
8.4.3a Step-Response Plot

At the far right of the tool ribbons, we click on “Create Model” button. In “Model Type Selection”, we
choose “Nonlinear”. See Figure 8.112. Clicking on OK gives the “Identify Model” inputs. See Figure 8.113.

Figure 8.112 Selection of model type

Figure 8.113 “identify Model” inputs

Clicking on “Options” displayed in Figure 8.113 gives the default specifications of Figure 8.114. We
accept these specifications and click on “OK”. We then click on “Identify” shown in Figure 8.113. This
results in the step-response plot of Figure 8.115, which represents the first type of plot under “model
views” button on the top tool ribbon.

Figure 8.114 Model identification options

Figure 8.115 Step response curves of a nonlinear polypropylene process

The step-response curve of a nonlinear polymer process is quite different from that of a linear process
(e.g., Figure 8.53). For example, when H2_C2, a MV, increases, the affected MI_Lab, a CV, also increases,
but it displays three response curves of increasing values from colors in red to blue and then to green.
By contrast, when MV C4_C2 increases, the affected CVs, Density_Lab and Density_Inst, show three
response curves of decreasing values from colors in red to blue and then to green. These responses
depend on the operating point or values of the MVs, the direction of the change and the step size of the
change in MV. In particular, the three response curves in the figure represent the time-dependent
change of a chosen CV to a change of a chosen MV with its magnititue equal to the default step size of 1
(red curve), two times the step size (blue curve) and three times the step size (green curve).
Additionally, putting the mouse inside the response curve box for a selected CV-MV pair, right-click to
open the menu and select “details”, we see a detailed plot of the MI_Lab-H2_C2 response curve in
Figure 8.116.

Figure 8.116 Showing the details of the MI_Lab-H2_C2 step response curve

8.4.3b I/O Response Plot

Next, we click on the I/O button on the top tool ribbon to generate an I/O plot which represents the
response of each output as each input is moved from its lower limit to its upper limit. See Figure 9.117
for the resulting I/O plot and Figure 8.118 for a detailed MI_Lab-H2_C2 I/O plot. In the I/O plot, the
limits are either the validity limits, or the minimum and maximum values for that input from the current
dataset. We see in Figure 8.117 that as MV C4_C2 increases, both Density_Lab and Density_Inst
decrease. Table 8.5 summarizes the positive or negative sign of ∆CV/∆MV or ∆CV/∆DV for CVs (MI_Lab,
MI_Inst, Density_Lab and Density_Inst) and MVs (H2_C2, C4_C2) or DVs (Temp, C2_Partial_Pressure).

Figure 8.117 The I/O response curve of a nonlinear polypropylene process

Figure 8.118 Showing the details of the MI_Lab-H2_C2 I/O response curve

Table 8.5 Positive or negative sign of ∆CV/∆MV or ∆CV/∆DV

8.4.3c Gain Plot

Finally, we click on the “Gain” button on the top tool ribbon to generate a gain plot of Figure 8.119
which represents the amount of gain for each input/output pair as each input increases from its lower
limit to its upper limit. Figure 8.120 presents a detailed MI_Lab-H2_C2 I/O plot.

Figure 8.119 The gain plot of a nonlinear polypropylene plot.

Figure 8.120 Showing the details of the MI_Lab-H2_C2 gain curve

8.4.4 Aspen Nonlinear Controller: Task 1 – Model Identification; Building the Nonlinear State-Space
Bounded Derivative Network (SS-BDN)

8.4.4a Configure Dynamics and Output States

On the top tool ribbon, we click on “Build Models” button. We see an “Edit MISO Models” window and
hit the “Configuration” button. This results in Figure 8.121, displaying the default model type, “Model
Identified”. We replace each model type of our output variable (CV) by BDN through the drop-down
menu. This leads to Figure 8.122. We see the “Inputs” button in Figure 8.122. Clicking on the “Inputs and
specifying the inputs affecting each output, we see Figure 8.123. Next, we hit the “Deadtimes” and
specify the initial Deadtimes in number of sample periods. These dead times are to model nonlinearity
in the initial process response during changes. See Figure 8.124. We click on each output variable,

followed by hitting the “Identify Deadtimes” button and keeping the default parameters, and then click
on “Identify” to identify Deadtimes. See Figure 8.125. Repeat this step for all four output variables
(MI_Lab, MI_Inst, Density_Lab and Density_Inst).

Having identified the Deadtimes, we click on “Configure” button displayed in Figures 8.121 to 125. This
leads to Figure 8.126, in which we configure within the “Dynamics” tab, the filter time constants for
input variables (He_C2, C4_C2, Temp, C2_Partial_Pressure) for output variable MI_Lab. We repeat this
step for output variables MI-Inst, Density_Lab, and Density_Inst. Next, we switch to the “Output States”
tab within “Configure” step, and configure one output states, one for each filter, as illustrated in Figure
8.127. We repeat this step for output variables MI-Inst, Density_Lab, and Density_Inst.

Figure 8.121 Displaying available model types

Figure 8.122 Choosing the model type, bounded derivative network (BDN)

Figure 8.123 Specifying the input variables affecting each output

Figure 8.124 Specifying the dead times: “2” refers to the number of sample periods (called index value)

Figure 8.125 Identify for Deadtimes for MI_Lab. Repeat this step for all four output variables.

Figure 8.126 Configure the filter time constants for input variables (He_C2, C4_C2, Temp,
C2_Partial_Pressure) for output variable MI_Lab

Figure 8.127 Configure the output states for each filter for input variables (He_C2, C4_C2, Temp,
C2_Partial_Pressure) for output variable MI_Lab

8.4.4b Build Model with Gain Constraints

This step features a significant ability of the BDN to build a model based on specified gain constraints to
avoid incorrect gain inversion discussed in Section 8.3.2a. Based on Figure 8.117 and Table 8.5 in Section
8.4.3b, we can specify the corresponding gain constraints.

We specify the steady-state gain constraints by continuing the “Configure” step, and clicking on “Steady
State tab displayed in Figure 8.127, corresponding to output or CV, MI_Lab. This gives Figure 8.128, in
which we specify a Min Gain of 0 and a Max Gain of 10000 for a positive gain; and a Min Gain of -10000
and a Max Gain of 0 for a negative gain following Table 8.5. We then select “Identify” to build the BDN
model for the MI-Lab. Figure 8.129 shows the resulting comparison between the nonlinear BDN model
prediction and plant data for MI-Lab. For an average MI_Lab value of 4, the root-mean-squared error
(RMSE) between the model prediction and plant data is only 0.0221, or approximately 0.55%.

Figure 8.128 Specify the steady-state gain constraints for MI-Lab following Table 8.5

Figure 8.129 Comparison between nonlinear BDN model prediction with plant data
for MI_Lab with a “Max Gain” of 10000

Figure 8.130 shows the specification of steady-state gain constraints for Density_Lab, following Table
8.5, and Figure 8.131 compares the predicted Density_Lab values from the nonlinear BDN model with
plant data. For an average value of Density_Lab of 918, the RMSE between the model prediction and
plant data is only 0.007485, or approximately 0.008154%.

Figure 8.130 Specify the steady-state gain constraints for Density-Lab following Table 8.5

Figure 8.131 Comparison between nonlinear BDN model prediction with plant data for Density_Lab with
a “Min Gain” for C4_C2 of -10000, and a “Max Gain” for the remaining inputs of +10000.

Following the steady-state gain constraints of Table 8.5 and repeating the same procedure to identify
the models for MI_Inst and Density_Inst, we get essentially identical comparison curves as in Figures
8.129 for MI and 8.131 for Density.

8.4.4c Fine-Tune Steady-State BDN Gains

Referring to Figure 8.128, we narrow the range of the steady-state BDN gain by lowering the “Max Gain”
for all four inputs from 10000 to 100 and run the BDN regression again. This results in Figure 8.132, in
which the error between the model prediction and plant data of MI_Lab drops from 0.022068413 to
0.010037448. Likewise, referring to Figure 8.130 for Density_Lab, we change the “Min Gain” for C4_C2
to -100, and the “Max Gain” for the remaining three inputs to 100, and run the BDN regression. We find
that the resulting error between the model prediction and plant data of Density_Lab shows no
improvement.

Figure 8.132 Comparison between nonlinear BDN model prediction with plant data for MI_Lab with a
“Max Gain” of 100

After configuring and identifying the SS-BDN model, we see the “OK” status of the model identification,
as seen in Figure 8.133. We also see the resulting steady-state gain plot of Figure 8.134.

Figure 8.133 Status” OK” indicating completion of the SS-BDN model identification

Figure 8.134 Steady-state gain plot of the SS-BDN model

Table 8.6 shows the resulting steady-state gain for the SS-BDN model. In practice, we only pay attention
to the columns of MI_Lab and Density_Lab. We do not need to develop the model for MI_Inst and
Density_Inst.

 Table 8.6 Steady-state gains of the SS-BDN model

8.4.4d Generate Model Predictions

Next, we apply the SS-BDN model to predict the MI_Lab and Density_Lab, and compare the predictions
with plant data. We click on “Generate Predictions” on the top tool ribbons, and choose dataset WS82.
See Figure 8.135. The resulting comparison appears in Figure 8.136.

Figure 8.135 Select dataset to compare with model predictions

Figure 8.136 Generated model predictions of MI_Lab and Density_Lab.

8.4.5 Aspen Nonlinear Controller: Task 2 – Configuration – Model Configuration

MV/DV↓ CV→ MI_Lab MI_Inst Density_Lab Density_Inst
H2_C2 29.1 29.1 14.4 14.4

C4_C2 2.42 2.42 -23.7 -23.7
Temp 0.088 0.088 0.44 0.44
C2_Partial_Pressure 0.59 0.59 0.18 0.18

As discussed in Section 8.2.14, the model configuration task involves the specifications of feedback
filters for prediction errors, based on prediction error filtering covered in Section 8.1.5. We click on the
“Feedback Filter” button within the top tool ribbons, followed by “Fine Tune” button to fine-tune the
feedback filter. See Figures 8.137 and 8.138.

Figure 8.137 Choosing the default feedback filter

Figure 8.138 Fine-tune the feedback filter

8.4.6 Aspen Nonlinear Controller: Task 2 – Configuring and Runnng the Steady-State Optimiation

We follow Figure 8.92 to configure the steady-state optimizer. Figure 8.139 specifies the inputs and
outputs to configure the optimizer. Figures 8.140a-b show the input entries for MVs and CVs for the
steady-state simulator, respectvely. In Figure 8.140a, we set the initially LP costs for MVs based on the
negative values of the steady-state gains reported in Table 8.6. We do this by following the example
illustrated in Figure 8.12 and Table 8.1. We note that in Table 8.6, in the MI_Lab column, all gains are
positive; in the Density_Lab column, the gain ∆(Density_Lab)/∆(C4_C2) is negative. In the following, we
choose the negative values of the steady-state gains in the Density_Lab column of Table 8.6 as our initial
LP costs, except that we change the gain value for ∆(Density_Lab)/∆(C4_C2) from -23.7 to -5 (hence, the
LP cost becomes +5 for MV or input C4_C2 in Figure 8.140a). As discussed in Section 8.1.2b and Table
8.1, an input or a MV with a positive LP cost means that to minimize cost and maximize profit, we tend
to move the MV towards its lower operating limit. By contrast, we tend to move a MV with a negative LP
cost towards its upper operating limit. We will explore the impact of having different initial LP costs on
the resulting steady-state targets of MVs and CVs.

Figure 8.139 Inputs and outputs for steady-state optimization

Figure 8.140a Specifications of MVs for steady-state simulator.

Figure 8.140b Specifications of CVs for steady-state simulator

Next, we click on the “Constraints” button, and see the display of Figure 8.141. We are to calculate the
steady-state targets of CVs and MVs.

Figure 8.141 Current constraints of MVs and CVs for steady-state optimization

We initialize the steady-state optimizer calculation by specifying th dataset WS82 and cancelling the
initialization of the dynamic tuning. See Figure 8.142.

Figure 8.142 Initialize steady-state optimizer by specifying the dataset

Figure 8.143 Steady-state values obtained by the steady-state optimizer

We now explore the impact of using the negative values of the steady-state gains in the MI_Lab column
of Table 8.6 as our initial LP costs. Figure 8.144 shows the specifications MVs for steady-state simulator.
The specifications for the CV are identical to those displayed in Figure 8.140b. Following the same
procedure as in Figures 8.141 to 8.142, we find the results of steady-state values obtained by the
steady-state optimizer in Figure 8.145, which are different from those displayed in Figure 8.143. This
comparison demonstrates that the initial LP cost specifications affect the resulting steady-state targets
for both MVs and CVs.

In Table 8,6, between the negative values of Density_Lab column and of MI_Lab column, which set of
values should we use as initial LP costs displayed in Figures 8.143 and 8.145? We suggest choosing the
set of initial LP costs that gives us the steady-state target values of CV that are close to our intended
controller operation.

Figure 8.142 Specifications of MVs for steady-state simulator

Figure 8.143 Steady-state values obtained by the steady-state optimizer

8.4.7 Aspen Nonlinear Controller: Task 3 – Configuring and Simulating the Dynamic Controller with
Setpoint Changes

We follow Figure 8.97 to initialize the controller simulation. Figure 8.144a-b show the inputs for MVs
and CVs, including the operating values and tuning values. We save the resulting simulation file as
WS8.2_BaseCase_BDN.dmc3application.

Figure 8.144a Initial MV specifications of controller simulation

Figure 8.144b Initial CV specifications of controller simulation

We wish to simulate the transition control of CV values of MI_Lab and MI_Inst from 2.7 to 1.5, while
keeping both Density_Lab and Density_Inst between a lower operating limit of 938 kg/m3 and an upper
operating limit of 940 kg/m3. Based on Figure 8.134 and Table 8.6, we expect the following changes to
the MVs: C2_H2 and C4_C2 values to increase toward their upper operating limit, and temp and
C2_Partial_Pressure values remain essentially unchanged.

We lower the initial move suppression of both MVs, C2_H2 and C4_C2, from 1 to 0.2, to speed up the
increase of both MVs. We also increase the initial move suppression of MV, Temp, from 1 to 5, to slow
down the change in Temp.

Figure 8.145 shows the changes of our MV and CV specifications.

Figure 8.145 Changes to selected MV and CV tuning parameters for
MI and Density transition control

Figure 8.146 shows the results after CV stead-state values reach their operating limits, that is, at a MI-
Lab value of 1.5, and a Density-Lab value of 925 kg/m3. We note that during the simulation, the
controller runs in a true closed-loop fashion, with measurement data received as follows: (1) For MVs,
the setpoint calculated by the move plan is transferred to the measurement value; and (2) For CVs, the
prediction for the next cycle is transferred to the measurement value. Therefore, the measurements of
all variables do not become stale.

Figure 9.146 Results after CV steady-state values reach their operating limits

The top plot in Figure 8.147 shows that the closed-loop MI_Lab prediction (in red) continues to decrease
downward and approach the calculated steady-state target (the upper operating limit) of 1.5 (in green);
the bottom plot in Figure 8.147 shows that the closed-loop Density_Lab prediction (in red) continues to
increase upward and approach the calculated steady-state target (the lower operating limit) of 925
kg/m3. We will not show the remaining simulation cycle in which the closed-loop prediction values
match the calculated steady-state targets.

Figure 8.147 Controller simulation plot showing the closed-loop precitions (in red)
approach the claculated steady-state targets (in greed) of CVs.

This concludes the current workshop. We save the project as PP Density and MI Control_Final.

8.5 Aspen Maestro for Automating the Model-Building Workflow

Aspen DMC3 V12 has added a powerful tool to automate the model-building process for model-
predictive control. We recommend the reader to take time to view the on-demand webinar by Kalafatis
and Reis [21] to see how embedding AI into DMC3 can greatly speed up the model-building process and
improve the model- prediction accuracy. However, we emphasize that to truly understand the concepts
and know-hows behind each step of this automated model-building process, the reader should first
become familiar with the fundamentals and practice we cover in Sections 8.1 and 8.2.

Figures 8.148a-d [21] show the screen image of the four steps of the automated model-building process
using Aspen Maestro which is an integrated part of DMC3 V12 and later versions. Note that we have
purposed removed a part of the step-response curves on the right side of the figure to clearly show the
Aspen Maestro workflow steps.

Step 1. Select variables: Figure 8.148a; follow Sections 8.2.2 to 8.2.4. Note the new “Maestro Model”
button next to the “Select Variables” button in DMC3 V12 on the left of top tool buttons.

Step 2. Data mining: Figure 8.148b; automate Section 8.2.5, data slicing - this step explores data slices
used to create the model. Select one of the four available options in the sensitivity scale (PID, low,
medium and high) and view the data slicing results. A high sensitivity scale tends to include the best
independent moves available to each input or manipulated variable. Note the new “Data Mining” button
in DMC3 V12 on the left of top tool buttons.

Figure 9.148a Step 1 of Aspen Maestro model workflow for DMC3 – Select variables

Figure 9.148b Step 2 pf Aspen Maestro model workflow for DMC3 –Data mining.

Step 3a. Data analysis – Correlation detection Figure 8.148c – input correlation detection. This step
quantifies how much an input variable or a MV correlates with another input variable. Clusters of input

variables inside a circle represent highly correlated variables with correlation coefficients close to -1.0 to
1.0. A correlation of -1.0 shows a perfect negative correlation, while a correlation of 1.0 shows a perfect
positive correlation. See Section 8.2.8 and Figure 8.57. The plot also identifies input variables with no or
minimum correlation.

Figure 8.148c Step 3a pf Aspen Maestro model workflow for DMC3 –Input correlation detection.

Step 3b. Transform detection. Figure 8.148d. This figure shows an example of transforming dependent
variable measurements into a piecewise linear representation, that is, correlating the measurement data
into connected multiple straight-line segments with different slopes. Aspen Maestro automates the
development of transforms in DMC3 to deal with nonlinear dependent variable measurements and
configures transforms to re-scale the data. For example, Aspen Maestro includes the well-known linear
valve output transform and parabolic valve output transform introduced in Perry’s Chemical Engineers’
Handbook, 5th edition, that relates the fraction of maximum flow rate, Q, to fraction of valve stem travel,
L, with a valve transform parameter ꭤ (0 < ꭤ ≤ 1) according to Eqs. (8.53) and (8.54):

 𝑄 =
ꭤ (ꭤ)

 (linear) (8.53)

 𝑄 =
ꭤ (ꭤ)

 (parabolic) (8.54)

Figure 8.148d Step 3b of Aspen Maestro model workflow for DMC3 –Transform detection.

Figure 8.149 shows a plot of valve output transforms, displaying both linear and parabolic valves, Eqs.
(8.53) and (8.54).

Figure 8.149 An illustration of linear and parabolic valve output transformations included in Aspen
Maestro. Used with permission from Aspen Tehnology. Inc.

Step 4. Create Model. Figure 8.150 shows the model results based on previous selections of data mining
(data slicing) and data analysis. Aspen Maestro automatically selects the best model curves to generate
the final model, and we can transfer the resulting model to the controller view.

Figure 8.150 Step 4 of Aspen Maestro model workflow for DMC3 –create model.

This concludes our illustration of Aspen Maestro for automating the model-building process. In Chapter
10, we will further illustrate embedding AI into DMC3 by using deep learning neural networks (such as
LSTM (long short-term memory) recurrent networks (see Section 10.4.2b), and GRU (gated recurrent
networks) (see Section 10.4.2c) to develop soft sensors or IQ inferential for process and product quality
variables that are not measured frequently.

8.6 Conclusion

In conclusion, this chapter systematically unpacks the complexities and potentials of advanced process
control (APC) and model-predictive control (MPC) within polyolefin manufacturing. Through the careful
delineation of APC concepts, the exploration of dynamic and nonlinear control models, and the
integration of AI technologies, it lays a foundational and advanced understanding essential for both
newcomers and seasoned experts in the field. The practical workshops and discussions provided not
only illuminate the path toward developing sophisticated control systems but also highlight the
significant impact such technologies can have on improving process efficiencies, optimization, and
sustainability in the chemical processing industry.For future work stemming from this study, it would be
advantageous to explore the integration of first principles with model predictive control to enhance the

robustness and efficiency of the system [24]. Ultimately, this chapter advocates for the embracement of
APC and MPC as transformative tools in the polyolefin production process, promising a future of
enhanced industrial performance and innovation.

This chapter is published with Wiley publication in the book Integrated Process Modeling, Advanced
Control and Data Analytics for Optimizing Polyolefin Manufacturing by Liu & Sharma. [26-38]

8.7 Bibliography

1. Camacho, E. F.; Bordons, C. (2007). Model-predictive control. 2nd edition, Springer-Verlag, London,
United Kingdom.

2. Lahiri, S. K. (2017). Multivariable Predictive Control: Applications in Industry. Wiley, New York.

3. Stephanopoulos, G. (1983). Chemical Process Control: An Introduction to Theory and Practice,
Prentice-Hall, Englewood Cliffs, New Jersey.

4. Cutler, C. R.; Ramaker, B. L. (1979). Dynamic Matrix Control – A Computer Control Algorithm. AIChE
National Meeting, Houston, Texas.

5. Liu, Y. A.; Chang, A. F.; Pashikanti, K. (2018). Petroleum Refinery Process Modeling: Integrated
Optimization Tools and Applications. Wiley-VCH, Weinheim, Germany.

6. Sadeghbeigi, R. (2000). Fluid Catalytic Cracking Handbook: Design, Operation and Troubleshooting of
FCC Facilities. 2nd edition, Gulf Publishing Company, Houston, TX.

7. Aspen Technology, Inc. (2016), Training course APC125, “Introduction to Aspen DMC3 Builder:
Modeling and Building Controllers for Industrial Processes”.

8. Bristol, E. (1966).” On a Measure of Interaction for Multivariable Process Control”, IEEE Trans. Autom.
Control. AC-11, 133.

9. McAvoy, T. J. (1983). Interaction Analysis. Instrument Society of America, Research Triangle Park, NC.

10. Smith, C. A.; Corripio, A. B. (1997). Principles and Practice of Automatic Process Control. 2nd edition,
Wiley, New York, NY.

11. Zhang, Q.; Harmse, M. J.; Rasmussen, K.; McIntyre, B. (2007). “Methods and Articles for Detecting,
Verifying, and Repairing Collinearity in a Model or Subsets of a Model”. U. S. patent no. 7,231,264 B2,
assigned to Aspen Technology, Cambridge, MA.

12. Stanley, G., “Exponential Filter”, Greg Stanley and Associates,
(https://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/Filtering/Exponential-
Filter/exponential-filter.htm), accessed December 16, 2021.

13. Becker, A., “Kalman Filter Tutorial, https://www.kalmanfilter.net/default.aspx, accessed December
16, 2021.

14. Turner, P.; Guiver, J.; Lines, B. (2003). Introducing the Bounded Derivative Network for Commercial
Transition Control. Proceedings of American Control Conference, Denver, Colorado, June 4-6, p. 5400.

15. Turner, P.; Guiver, J. (2005). Introducing the Bounded Derivative Network - Superceding the
Application of Neural Networks in Control. Intern. J. Control, 15, 407.

16. Donat, J. S.; Bhat, N.; McAvoy (1991). Neural-Net Based Model-Predictive Control. Intern. J. Control,
54, 1453.

17. Baughman, D. R.; Liu, Y. A. (1995). Chapter 5, “Forecasting, Modeling and Control” in Neural
Networks in Bioprocessing and Chemical Engineering, Academic Press, Inc., San Diego, CA.

18. Bindlish, R. (2020). Nonlinear Model-predictive control of an Industrial Process with Steady-State
Gain Inversion. Comput. Chem. Eng., 135, 106739.

19. Bausa, J. (2007). Model-Based Operation of Polymer Processes – What Has to Be Done? Macromol
Symp., 259, 42.

20. Jeong, B.-G.; Yoo, Y.-K.; Rhee, H.-K. (2001). Nonlinear Model-predictive control Using a Wiener
Model for a Continuous Methyl Methacrylate Polymerization Reactor. Ind. Eng. Chem. Res., 40, 5968.

21. Kalafatis, A.; Reis, L. Revolutionize APC Model Building and Make More Accurate Predictions with
Embedded AI. AspenTech on-Demand Webinar, December 10, 2020.
https://www.aspentech.com/en/resources/on-demand-webinars/revolutionize-apc-model-building-
and-make-more-accurate-predictions-with-embedded-ai, accessed May 22, 2022.

22. Kalafatis, A.; Embedding AI in APC – Current Capabilities, Direction and Roadmap. AspenTech
Optimize Conference 21 (Virtual)- The Future Starts with Industrial AI. May 21, 2021.

23. Sharma, N., & Liu, Y. A. (2019). 110th anniversary: an effective methodology for kinetic parameter
estimation for modeling commercial polyolefin processes from plant data using efficient simulation
software tools. Industrial & Engineering Chemistry Research, 58(31), 14209-14226.
https://doi.org/10.1021/acs.iecr.9b02277

24. Sharma, N., & Liu, Y. A. (2022). A hybrid science-guided machine learning approach for modeling
chemical processes: A review. AIChE Journal, 68(5), e17609. https://doi.org/10.1002/aic.17609

25. Nguyen, X. D. J., Sharma, N., Liu, Y. A., Lee, Y., & McDowell, C. C. (2023). Analyzing the occurrence of
foaming in batch fermentation processes using multiway partial least square approaches. AIChE
Journal, 69(12), e18250. https://doi.org/10.1002/aic.18250

26. Liu, Y. A., & Sharma, N. (2023). Integrated Process Modeling, Advanced Control and Data Analytics
for Optimizing Polyolefin Manufacturing. Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831

27. 28. Liu, Y. A., & Sharma, N. (2023). Introduction to Integrated Process Modeling, Advanced Control,
and Data Analytics in Optimizing Polyolefin Manufacturing. In Integrated Process Modeling, Advanced
Control and Data Analytics for Optimizing Polyolefin Manufacturing (Chapter 1, pp. 1-40). Wiley-VCH
GmbH. https://doi.org/10.1002/9783527843831.ch1

29. Liu, Y. A., & Sharma, N. (2023). Selection of Property Methods and Estimation of Physical Properties
for Polymer Process Modeling. In Integrated Process Modeling, Advanced Control and Data Analytics
for Optimizing Polyolefin Manufacturing (Chapter 2, pp. 41-86). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch2

30. Liu, Y. A., & Sharma, N. (2023). Reactor Modeling, Convergence Tips, and Data-Fit Tool. In Integrated
Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing
(Chapter 3, pp. 87-114). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch3

31. Liu, Y. A., & Sharma, N. (2023). Free Radical Polymerizations: LDPE and EVA. In Integrated Process
Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing (Chapter 4,
pp. 115-162). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch4

32. Liu, Y. A., & Sharma, N. (2023). Ziegler–Natta Polymerization: HDPE , PP , LLDPE, and EPDM. In
Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin
Manufacturing. (Chapter 5, pp. 163-265). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch5

33. Liu, Y. A., & Sharma, N. (2023). Free Radical and Ionic Polymerizations: PS and SBS Rubber. In
Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin
Manufacturing. (Chapter 6, pp. 267-319). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch6

34. Liu, Y. A., & Sharma, N. (2023). Improved Polymer Process Operability and Control Through Steady-
State and Dynamic Simulation Models. In Integrated Process Modeling, Advanced Control and Data
Analytics for Optimizing Polyolefin Manufacturing. (Chapter 7, pp. 321-379). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch7

35. Liu, Y. A., & Sharma, N. (2023). Model-Predictive Control of Polyolefin Processes. In Integrated
Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing.
(Chapter 8, pp. 381-476). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch8

36. Liu, Y. A., & Sharma, N. .2023. Application of Multivariate Statistics to Optimizing Polyolefin
Manufacturing. In Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing
Polyolefin Manufacturing (Chapter 9, pp. 477-531). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch9

37. Liu, Y. A., & Sharma, N. (2023). Applications of Machine Learning to Optimizing Polyolefin
Manufacturing. In Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing
Polyolefin Manufacturing. (Chapter 10, pp. 553-650). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch10.

38. Liu, Y. A., & Sharma, N. (2023). A Hybrid Science-Guided Machine Learning Approach for Modeling
Chemical and Polymer Processes. In Integrated Process Modeling, Advanced Control and Data
Analytics for Optimizing Polyolefin Manufacturing. (Chapter 11, pp. 651-698). Wiley-VCH GmbH.
https://doi.org/10.1002/9783527843831.ch11

39. Sharma, N. and Liu, Y., 2019, November. Polyolefin Process Modeling and Monitoring. In 2019 AIChE
Annual Meeting. AIChE.

40. Sharma, N. and Liu, Y., 2020, November. Polyolefin Process Improvement Using Machine Learning.
In 2020 Virtual AIChE Annual Meeting. AIChE

41. Sharma, N., 2022, November. Polyolefin Property Estimation using Process Modeling and Machine
Learning in Industry. In 2022 AIChE Annual Meeting. AIChE.

42. Lee, W. and Weekman Jr, V.W., 1976. Advanced control practice in the chemical process industry: A
view from industry. AIChE Journal, 22(1), pp.27-38.

43. Alford, J.S., 2006. Bioprocess control: Advances and challenges. Computers & Chemical
Engineering, 30(10-12), pp.1464-1475.

44. Sharma, N., SANDESH, D.S., Chowdhury, R., Pant, A. and Mediratta, G., SHPP Global Technologies BV,
2023. Process and apparatus for precipitation of poly (phenylene ether). U.S. Patent 11,802,184.

