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Abstract 

This chapter presents an in-depth exploration of model-predictive control (MPC) or advanced process 
control (APC) techniques in the optimization of polyolefin manufacturing processes. Drawing on the 
foundational motivations outlined in previous discussions, it highlights the pivotal role of APC in 
enhancing industrial efficiency and innovation. Through a comprehensive introduction to the basic 
concepts and tools of APC, including definitions of manipulated variables (MV), 
feedforward/disturbance variables (FF/DV), controlled variables (CV), and the intricacies of multivariable 
dynamic models, this work delineates the advantages of APC over traditional proportional-integral-
derivative (PID) control systems. It further elucidates the mechanisms through which APC achieves its 
benefits, such as model CV prediction, economic optimization, and dynamic control execution, 
leveraging Aspen DMCplus and DMC3 control structures for illustration. 

The chapter provides a detailed walkthrough of developing a dynamic matrix controller model for a 
copolymerization process utilizing Aspen DMC3 Builder, transitioning to the formulation and control of 
nonlinear processes. It addresses the challenges inherent in constructing nonlinear dynamic models for 
polymerization process control, introduces the Wiener model for nonlinear processes, and discusses the 
state-space, bounded derivative network (SS-BDN) for nonlinear controller modeling. A hands-on 
workshop for the development of a nonlinear model-predictive control (NMPC) of a polypropylene 
process is presented, culminating in an overview of recent advancements in MPC with embedded AI 
technologies. 

Serving both as a primer for newcomers and a sophisticated reference for experienced practitioners and 
scholars, this work underscores the transformative potential of APC integrated with AI in the polyolefin 
production sphere. It advocates for the systematic adoption of these advanced control strategies to 
realize significant improvements in process efficiency, optimization, and innovation within the chemical 
processing industries. 

This is a preprint version of a chapter from our book - Integrated Process Modeling, Advanced Control 
and Data Analytics for Optimizing Polyolefin Manufacturing. Please cite the original work if referenced 
[26,35] 

 

8.1 Introduction to Advanced Process Control (APC) 

This chapter covers the fundamentals and practice of model-predictive control (MPC), or advanced 
process control (APC), of polyolefin processes.  The motivation for this chapter appeared previously in 
Chapter 1, Section 1.4.2, discussing the industrial and potential applications of advanced process control 
to optimizing polyolefin manufacturing. 

We begin by introducing the basic concepts and tools of APC in Section 8.1. Specifically, Section 8.1.1 
presents some basic definitions, including manipulated variable (MV), feedforward/disturbance (FF/DV) 



variables, controlled variable (CV), unit-step response curve, and integrating (ramp) variable. Section 
8.1.2 explains the multivariable dynamic model, and the key differences between conventional 
proportional-integral-derivative (PID) control and APC. This subsection describes where the benefits of 
APC come from, including model CV prediction and reconciliation to online measurements, steady-state 
economic optimization to identify MV and CV targets, and dynamic control execution to reach MV and 
CV targets. This subsection presents the Aspen DMCplus control structure illustrating the three sources 
of benefits of APC, and the Aspen DMC3 (third-generation dynamic matric control) control structure. 
Section 8.1.3 introduces linear modeling of dynamic matrix control (DMC), step-response model, and 
finite-impulse response (FIR) model.  Section 8.1.4 covers model evaluation and useful tools, including 
the concepts of relative gain array, ill-conditioned model matrices and collinear systems, open-loop 
predictions, prediction error filtering, and prediction update. Section 8.1.6 presents the important 
concepts and parameters in steady-state economic optimization and dynamic controller simulation. This 
is a key subsection that a beginner in APC should fully understand to develop and fine-tune advanced 
process controllers.   

Section 8.2 presents a hands-on workshop for the step-by-step development of a dynamic matrix 
controller model for a copolymerization process using Aspen DMC3 Builder.  

Section 8.3 introduces the MPC of nonlinear processes. Specifically, Section 8.3.1 discusses the 
challenges of developing nonlinear dynamic models for polymerization process control. Section 8.3.2 
explains the concept of the Wiener model for nonlinear processes. Section 8.3.3 introduces the state-
space, bounded derivative network (SS-BDN) for developing a nonlinear controller model of polyolefin 
processes.  

Section 8.4 presents a hands-on workshop for the step-by-step development of a nonlinear model-
predictive control (NMPC) of a polypropylene process. Section 8.5 discusses the new development of 
model-predictive control with embedded AI, and Section 8.6 gives the bibliography. 

 

8.1.1 Some Basic Definitions                                                                                                                                                          
8.1.1a Independent and Dependent Variables 

We begin by introducing the basic concepts of advanced process control [1,2,3,4]. Process control and 
monitoring are pivotal elements in ensuring the efficiency and safety of both chemical [42] and 
bioprocesses [25,43]. This study specifically zeroes in on the intricacies and challenges associated with 
polymer processes, underscoring the critical importance of advanced process management strategies in 
this domain. Figure 8.1 illustrates a simplified flowsheet of a solution copolymerization process. There 
are two monomers, methyl methacrylate (MMA) and vinyl acetate (VA), an initiator (INITIATO), and a 
chain-transfer agent (TRANSFER). The reactor has a cooling jacket with a cooling water (CW) stream as 
the cooling medium. Process details for the polymer processes are described in [31,33,39-41]. 

A similar practical application of model predictive control in polymerization has been showcased by [44] 
to control the reaction process to control the temperature and concentration for the polymer 
precipitation process. 



We define independent variables as those causal variables whose values are not affected by or are 
independent of any other variables in the process. We classify the independent variables into two 
categories: 

(1) Manipulated variables (MVs) - variables that the operator can change, particularly:  

 the setpoint to regulate a controller, labelled by *.SP, such as FMMA.SP, for the setpoint for the 
mass flow rate of monomer MMA, FMMA; and  

 the valve position (% open) to regulate a control valve, labelled by *.VP, such as FVA.VP for the 
valve position for the control valve for monomer mass flow rate, FVA. 

(2) Feedforward/Disturbance variables (FFs/DVs) – variables that impact the process, but cannot be 
adjusted directly, such as: 

 the temperature of cooling water through the cooling jacket of the reactor, which depends on 
an upstream cooling tower system, and varies with seasonal weather. 

 Unmeasured temperature of a feed stream, which acts as a disturbance variable. 

 

 

Figure 8.1 A simplified flowsheet of a solution copolymerization process. 

We define dependent variables as those variables whose dynamic behavior could be fully described by 
changes in independent variables over time, particularly control variables (CVs), labelled by *.PV, such as 
polymer production rate, POLYMER.PV, that are typically maintained at a constant value, or between 
high and low limits. We note that in a process, there are many dependent variables, but we only choose 
those important ones as CVs. 

For the copolymerization example of Figure 8.1, we consider the following variables: 

 MVs: mass flow rates (kg/hr) of monomer MMA and VA, initiator and chain-transfer agent 
(represented by Flow_MMA.SP, Flow_VA.SP, Init.SP and Transf.SP), and temperature of the 
cooling jacket, T_Jkt.SP. 



 CVs: polymer production rate (kg/hr), polymer molecular weight, reactor exit temperature (°C) 
and mole fraction of monomer MMA in the polymer product (represented by Polymer.PV, 
Mol_Wt.PV, T_Rx.PV, and Conc_MMA.PV). 

 There is no FF/DV in this example. 

8.1.1b Unit-Step Response Curve: Time to Steady State and Steady-State Gain 

Figure 8.2 illustrates the step-response curve for a 2MV-1CV process, in which CV1 varies as a response 
to a step change of one unit of MV1. At time t = 12 hr, CV1 no longer changes and reaches its steady-state 
value of 1.25 unit. We call the time of 12 hr as the time to steady state (Tss), and the ratio of the changes 
in values of CV1 to MV1 at steady state, that is, ∆CV1, ss /∆MV1, ss of 1.25/1.0, as the steady-state gain (SS 
gain).  

 

Figure 8.2 A step response curve for CV1 in a 2MV-1CV process with a step change in MV1.                                                                 
Note the steady-state gain (∆CV1, ss /∆MV1, ss) and the time to steady state (Tss) 

8.1.1c Integrating Variable (Ramp Variable) 

Liquid level in a storage vessel with both steady inlet and exit flows is a typical ramp variable or 
integrating variable. Let us consider a cylindrical storage vessel with inlet and exit liquid volumetric flow 
rates Fi and Fo m3/hr, respectively, a cross-sectional area A m2, a liquid height of h m, and a liquid 
volume V m3.  See Figure 8.3.  

 

Figure 8.3 Liquid level in a storage tank 

A simple volume balance gives: 

                                                 dV/dt = A dh/dt = Fi – Fo                                        (8.1) 



                                                   h = ( ) ∫ [𝐹𝑖 − 𝐹𝑜]𝑑𝑡                                           (8.2) 

Based on Eq. (8.2), we call the liquid level h an integrating variable or a ramp variable. 

If the flow rate entering the vessel Fi is increased and the exit flow rate Fo is held fixed, the liquid level in 
the vessel increases. The flow exiting the vessel must be increased by the same amount to “balance the 
level”. Therefore, the level exhibits an integrating or a ramp response to changes to the inlet flow rate. 

Figure 8.4 illustrates that for an integrating or ramp variable, the step response curve has a constant 
steady-state rate of change or slope of ∆(CV1)/∆(MV1), instead of a constant steady-state value as in 
Figure 8.2, and the “traditional” time to steady state Tss does not exist. 

 

Figure 8.4 A step-response curve for CV1 in a 1MV-1CV integrating process with a step change in MV1.                                                                 

In addition to liquid level, we can cite examples for other pressure and temperature integrating 
variables. An example is the material imbalance ramp representing the pressure in a hydroprocessing 
reactor, for which the hydrogen pressure is a measure of the hydrogen consumption [5]. If the make-up 
hydrogen flow does not equal to the amount of hydrogen consumed in the reactor, then the pressure 
either rise or fall. In this case, the pressure is a measure of the hydrogen material balance. Additionally, 
an example of an energy imbalance ramp is the dense-bed temperature in a fluid catalytic cracking (FCC) 
regenerator when the unit operates in a partial combustion mode [6]. This happens when the reactor 
temperature controller is operating in an automatic mode and continually changing the carbon balance 
on the catalyst. Breaking the reactor temperature controller will eliminate the ramp behavior in this 
case. 

8.1.2 Where do the benefits of APC come from? 

We describe three sources of the benefits of APC in this section. 

8.1.2a Online Reconciliation of Model-Based Predictions to the Process Measurements to Provide 
Robustness to the Multivariable Dynamic Step-Response Model 

(1) Multivariable Dynamic Model 

Extending the step-response model of Figure 8.2 to a system of multiple independent and dependent 
variables, we can develop a multivariable step-response model to represent the time-dependent 



changes of control variables (CVs) to changes in manipulated variables (MVs) and 
feedforward/disturbance variables (FF/DVs). Workshop 8.1 in Section 8.2 gives the details of the 
development a multivariable predictive controller model for our copolymerization process of Figure 8.1.  

Figure 8.5 shows the resulting multivariable step-response model. In the plot, each column represents a 
dependent variable or a CV, and each row represents an independent variable, a MV or a FF/DV. We 
typically arrange a FF/DV, if available, as a bottom row in the plot. For the copolymerization example, all 
4 columns are CVs, and all 5 rows are MVs, and there is no FF/DV. Note that in the plot, MV Flow_MMA 
has a negligible impact on CV T_RX, and the model does not show any step-response curve for the MV-
CV pair, as the corresponding steady-state gains become negligible. The same is true for three other MV-
CV pairs with no step-response curve. 

 

Figure 8.5 A multivariable step-response model for the copolymerization process. 

In Figure 8.5, the number at the upper right corner of each step-response curve block represents the 
steady-state gain discussed in Figure 8.2. We can organize the displayed steady-state gains for all step-
response curve blocks in a steady-state gain matrix, Eqs. (8.3): 

       

 

This matrix represents the relationship in Eq. (8.4), which we will use below in introducing the steady-
state optimization to obtain MV and CV targets to minimize the operating cost and maximize product 
profit: 



                     

(2) Key Differences between Traditional PID Control and Advanced Process Control  

Figure 8.6 compares the traditional PID control and advanced process control (APC). A key difference 
between the two is that the traditional PID control aims at keeping a CV at its setpoint, while the APC 
maintains a CV between its specified lower and upper limits. Thus, an operator of an APC system is to 
specify the lower and upper limits of a CV, but not its setpoint. 

 

 

Figure 8.6 A comparison of traditional PID control (top) and advanced process control (bottom). 

From a control point of view, as long as MVs are within their lower and upper limits, and the predicted 
value of the CV from the dynamic process model is also within its lower and upper limits, then there is 
no need to vary the CV value and the corresponding values of MVs that affect this CV. This minimizes the 
frequency of adjusting the MVs that impact a chosen CV, thus greatly minimizing the fluctuations of CVs 
and enhancing the operational stability of the control system. Figure 8.7 illustrates two facts: (1) APC 
could typically reduce the fluctuations of CVs by 30% or more; and (2) through a steady-state 
optimization step that we will discuss further below, APC typically operates at or near the lower or 
upper limits of CVs that minimize the steady-state operating cost and maximize the product profit, 
called the economic optimum variable target. 



 

 

Figure 8.7 Reduced variable fluctuations and increased profit by operating                                                                      
at economic optimum variable target 

(3) Continuing Reconciliation of Model-Based Predictions to the Process Measurements and Feedback 
Correction to Update the Model Predictions to the Future [2] 

We illustrate a key aspect of predictive modeling of APC that makes it less sensitive to modeling errors 
and more accurate in predicting future CV response. Specifically, we consider a simple fire heater 
example of Figure 8.8, modified from [7]. 

 

Figure 8.8 A simplified fire heater with two MVs (stream inlet temperature Tin and input heat duty Q) 
and a CV (heating coil output temperature, COT). 

Figure 8.9 shows the step response curve for the fired heater. 

 



Figure 8.9 Step-response curve for a fired heater 

Figures 8.10 and 8.11 demonstrate the continuing feedback corrections of the predicted CV responses 
based on measured CV values to minimize the prediction errors of CVs at the end of each sampling 
period of 1 minute.  

In the middle plot of Figure 8.10, we see the initial CV prediction (dark black curve) deviates from its 
measured value (dark square point) at 12:01. The online feedback correction shifts the CV prediction 
curve downward to match the measured CV value at 12:01 in the bottom plot. The black “real process” 
in the bottom plot also shows that the deviation of the initial CV prediction only exists within a sampling 
period of 1 minute. At the end of a sampling period of 1 minute, that is, at 12:01, the online feedback 
correction based on the CV measured value completely eliminates the deviation. 

Figure 8.11 repeats the same online feedback correction process, making the corrected CV prediction at 
12:02 equal to the CV measured value.

 

Figure 8.10 Online feedback correction of CV prediction based on measured value from 12:00 to 12:01. 



 

Figure 8.11 Online feedback correction of CV prediction based on measured value from 12:01 to 12:02. 

Because the multivariable dynamic model based on step-response tests are data-driven and is not 100 
percent accurate, APC strategy includes the online feedback corrections of initial CV predictions based 
on CV measured values to eliminate the CV prediction errors at the end of each sampling period.  This 
approach reconciles the model-based predictions to the process measurements, and then feeds the 
information back to update the model predictions into the future [2]. This results in the robustness to 
the multivariable dynamic model in predicting accurately CV responses to changes in MVs, and this 
accurate model prediction capability represents the first source of benefits of APC. 

8.1.2b Steady-State Economic Optimization to Determine MV and CV Targets to Minimize Cost and 
Maximize Profit 

The second source of benefits of APC results from the steady-state optimization to determine the MV 
and CV targets to minimize the cost and maximize the profit. Under the constraints of the lower and 
upper limits of all MVs and CVs, the DMC strategy typically minimizes a linear objective function of the 
form [7]: 

               Min φ = Cost1 x ∆MV1 + Cost2 x ∆MV2 +……. + Costi x ∆MVi                          (8.5) 

where Costi   is essentially the steady-state gain: 

                                            Costi  = ( ∆

∆
)∆   (𝑗 ≠ 𝑖)                                                    (8.6) 

To minimize cost and maximize profit, we may write the objective function as 

                       φ= Cost – Profit 

                         = + (steady-state change in feed/utilities) * ($ cost of feed/utilities)                                                
- (steady-state change in production) * ($ value of products)           (8.7)                                                                 



For the copolymerization example, we write: 

         φ= Cost – Profit 

                        = {∆Flow_MMA x (cost of Flow_MMA) + ∆Flow_VA x (cost of Flow_VA) + ∆Flow_INIT x (cost of INIT) + 
∆Flow_Transf x (cost of Transf) + ∆Tjkt x (cost of Tjkt)}                                                                                                             

- {( ∆( )

∆( _ )
)(∆Flow_MMA) + (∆( )

∆( _ )
) (∆Flow_VA) +( ∆( )

∆( )
)(∆Flow_INIT)                              

+(∆( )

∆( )
)(∆Flow ) + (

∆( )

∆
)(∆Tjkt)}*($ value of polymer) 

                           ={(cost of Flow_MMA) – ( ∆( )

∆( _ )
) ∗ ($ value of polymer)} ∗ ∆Flow_MMA +                                           

{(cost of Flow_VA) – ( ∆( )

∆( _ )
) ∗ ($ value of polymer)} ∗ ∆Flow_VA   +                                                      

{(cost of Flow_INIT) – ( ∆( )

∆( _ )
) ∗ ($ value of polymer)} ∗ ∆Flow_INIT +                                                                

{(cost of Flow_Transf) – ( ∆( )

∆( _ )
) ∗ ($ value of polymer)} ∗ ∆Flow_Transf +                                           

{(cost of Tjkt) – ( (∆(Polymer))/(∆(Flow_VA)))*($ value of polymer)}* ∆Flow_VA                                                                                                 

                           = ∑ [ cost of 𝑀𝑉 , −
∆( )

∆( )
∗ ($𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟)]     

  * (∆𝑀𝑉 , ) 

                           =∑ 𝐶𝑜𝑠𝑡 ∗ ∆MV ,                                                                                                                      (8.8) 

    where the subscript SS represents steady state, and         

       𝐶𝑜𝑠𝑡 =  = ( ∆

∆
)∆  (𝑗 ≠ 𝑖)  =  cost of 𝑀𝑉 , −

∆( )

∆( )
∗ ($𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟)       (8.9)                                             

We call 𝐶𝑜𝑠𝑡  the steady-state LP cost that minimizes the objective function φ (= cost – profit) by linear 
programming (LP). This minimization is constrained by the lower and upper limits of all MVs and CVs. 

Figure 8.12 illustrates an Excel calculation of the steady-state LP costs (LP_Cost) based on the steady-
state gains in Eq. (8.3), assuming the cost of 𝑀𝑉 ,  (𝑖 = 1 to 5) to be insignificant when compared to 
the profit of polymer product (if this is not true, we can enter the cost of of 𝑀𝑉 ,  , 𝑖 = 1 to 5,

into the spreadsheet). We also assume the profit of 1 kg/hr of polymer product to be $1. Figure 8.13 
shows the calculation formulas for the LP_Cost. 

 

Figure 8.12 Excel calculation of steady-state LP costs. 



 

 

Figure 8.13 Formulas for Excel calculation of steady-state LP costs. 

We wish to minimize the objective function φ (=cost –profit) following Eq. (8.8). Based on the calculated 
steady-state LP costs, Costi, in Figure 8.12, should we move a specific MVi toward its lower limit or upper 
limit? In other words, what is the MVi target value based on steady-state optimization to minimize cost 
and maximize profit? The resulting MVi target value appears in Table 8.1. We note that the CVj target 
value is to maximize the polymer production within the given lower and upper limits. 

Table 8.1 Recommended MVi target value based on steady-state                                                                        
optimization to minimize cost and maximize profit 

 

This example illustrates how DMC uses the steady-state optimization to identify the economic optimum 
steady-state MV and CV target values to minimize cost and maximize profit, which represents the 
second source of benefits of APC.  

8.1.2c Determination of Future MV Moves to Minimize the Least-Squares Errors between Predicted 
and Desired Economic Optimum Target Values of CVs  

Having identified the economic optimum steady-state MV and CV targets, the DMC strategy determines 
a set of future MV adjustments that will drive the process to the CV to its desired economic optimum 
operating point without violating the lower and upper limits of MVs and CVs. Figure 8.14 shows the 
open-loop CV prediction reflecting the effects of past MV changes, and the error between the predicted 
CV value and its setpoint or the economic optimum target value [7]. The desired future response of each 
CV is to have it reach its setpoint or economic optimum, steady-state target value. Figure 8.15 illustrates 
the desired future CV response that is defined by the mirror image of the CV prediction about the 
setpoint or economic optimum, steady-state target value [2].  Figure 8.16 displays the development of 
MV moves to minimize the least-squares errors between the predicted and desired values of CVs. We 
will demonstrate this step quantitatively in Section 8.2.12 below. Depending on the time to steady state, 
sampling period, and controller execution interval, the DMC strategy calculates 8 to 14 future moves of 



each MV extending approximately one-half of the time to steady state into the future (see Section 
8.2.7). This step of dynamic control execution to reach economic optimum, steady-state MV and CV 
targets represents the third source of benefits of APC. 

 

Figure 8.14 The open-loop CV prediction reflecting the effects of past MV changes and the shaded area 
of errors between the CV prediction and its setpoint or economic optimum target value 

 

Figure 8.15 An illustration of the desired future CV response that best fits the mirror image of the CV 
prediction about the setpoint. The shaded area represents the CV errors. 

 

Figure 8.16 An illustration of the development of MV moves to minimize the lease-squares errors                                          
between predicted and desired values of CVs 



To summarize, in Sections 8.1.2a to 8.1.2c, we have introduced three aspects of the DMC strategy that 
represent the sources of benefits of APC: (1) model CV prediction and reconciliation to online 
measurements: continuing reconciliation of model-based predictions to the process measurements and 
feedback correction to update the model predictions to the future; (2) steady-state economic 
optimization: steady-state economic optimization to determine MV and CV targets to minimize cost and 
maximize profit; and (3) dynamic control execution to reach MV and CV targets: determination of future 
MV moves to minimize the least-squares errors between predicted and desired economic optimum 
target values of CVs. In Figure 8.17, we have modified a diagram in [7] to illustrate these three sources 
of benefits of APC in the context of the DMCplus control structure. 

 

Figure 8.17 The Aspen DMCplus control structure illustrating three sources of benefits of APC [7]. Used 
with permission from Aspen Technology, Inc. 

 

Figure 8.18 The Aspen DMC3 control structure [7]. Used with permission from Aspen Technology, Inc. 

Figure 8.18 shows the Aspen DMC3 control structure taken from the DMC3 online help that extends the 
DMC control structure to provide more robust dynamic control.  We note the five key blocks or 
controller applications in the figure. We follow the DMC3 online help to briefly describe these blocks or 
controller applications below. 



(1) The “plant” (“process”) block or controller application: The “plant” stage of application 
development occurs in the controller deployment stage, where we specify input/output (or MV/CV) 
connection parameters to prepare the controller for online operation. 

(2) The “model” block or controller application: It represents the “controller model” that we will discuss 
in detail beginning in Section 8.1.3.  

(3) The “SS (steady-state) optimizer” block or controller application: It performs the “steady-state 
economic optimization” to find the MV and CV targets, as we illustrated in Section 8.1.2b.  In other 
words, the SS optimizer determines the best steady-state operating point for the plant, subject to the 
constraints for MVs and CVs. 

(4) The “controller or path optimizer” block or controller application: It represents “the dynamic 
control execution” to reach MV and CV targets, or externally specified MV and CV targets that we will 
discuss more in Section 8.1.6d below.  This application develops the move plan to take the plant from its 
current operating point to the economic optimum steady-state targets or externally specified targets 
with minimum least-squares errors, while respecting MV and CV constraints.  

(5) The “filter” block or controller application: It compares the model predictions of CVs with the actual 
measured CV values at each execution. The filter application helps us understand the current prediction 
errors by estimating the size of unmeasured disturbances that enter the plant. This comparison tells us 
where the process is currently operating, and which direction the CVs will go if the MVs remain 
constant. Disturbance and dynamic state estimate from the filter are then passed to the optimizer. 

8.1.3 Linear Modeling for Dynamic Matrix Control (DMC) 

8.1.3a Step-Response Model 

We use a simple step-response curve of Figure 8.19 to develop a linear matrix-based dynamic process 
model. In the figure, the MV has a unit step change at time zero, that is, ∆MV0= 1. 

 

Figure 8.19 Representation of a continuous step response curve by a series of discrete values                                                                                 
CV0, CV1, CV2….at time t = 1,2,3, … minute for a unit step change of MV at time zero, ∆MV0= 1. 

Based on Figure 8.19, we write the following relationships: 

                                                   ∆CV1 = CV1 – CV0 = 1*∆MV0 = a1*∆MV0 

                                                   ∆CV2= CV2 – CV0 = 3*∆MV0 = a2*∆MV0 

                                                                                ∆CV3 = CV3 – CV0 = 4.3*∆MV0 = a3*∆MV0                                     (8.10) 



                                                   ∆CV4= CV4 – CV0 = 5*∆MV0 = a4*∆MV0 

                                                   ∆CV5 = CV5 – CV0 = 5*∆MV0 = a5*∆MV0 

We illustrate two characteristics of the linearity of the process model in Figures 8.20 and 8.21.  

 

Figure 8.20 An illustration of the model linearity, i.e., preservation of scale, with reference to Figure 8.19 

 

Figure 8.21 An illustration of the superposition principle of model linearity, adding the CV response 
curve for ∆MV2 to the CV response curve for ∆MV0 

The first characteristic is the preservation of scale, which suggests that if we increase the step change of 
MV at time zero by four times, that is, ∆MV0= 1 to ∆MV0= 4, ∆CVi (i = 1 to 5, ….) will also increase four 
times, as seen in Figure 8.20. The second characteristic is the superposition principle; in Figure 8.21, we 
add the CV response curve for ∆MV2 to the CV response curve for ∆MV0. Extending Eq. (8.11), we write 
the following relationship for Figure 8.21: 

          ∆CV1 = CV1 – CV0 = 1*∆MV0 = a1*∆MV0= (1)*(1) =1                                                        (8.11a) 

          ∆CV2= CV2 – CV0 = 3*∆MV0 + 1*∆MV1 = a2*∆MV0 + a1*∆MV1= 3*(1) +1*(0) = 3       (8.11b) 

                ∆CV3 = CV3 – CV0 = 4.3*∆MV0 + 3*∆MV1 + 1*∆MV2 = a3*∆MV0 + a2*∆MV1+ a1*∆MV2                                                           

=   4.3*(1) +3*(0) + 1*(-2) = 2.3                                                                                (8.11c) 

          ∆CV4 = CV4 – CV0 = 5*∆MV0 +4.3*∆MV1 + 3*∆MV2                                                                                                           
= a4*∆MV0  + a3*∆MV1 + a2*∆MV2  =   5*(1) + 4.3*(0) +3*(-2) = -1                       (8.11d)              



          ∆CV5 = CV5 – CV0 = 5*∆MV0 +5*∆MV1 + 4.3*∆MV2 = a5*∆MV0 + a4*∆MV1 + a3*∆MV2                                          
= 5*(1) + 5*(0) +4.3*(-2) = -3.6                                                                                 (8.11e)                                                                     

          ∆CV6 = CV6 – CV0 = 5*∆MV0 +5*∆MV1 + 4.3*∆MV2 = a6*∆MV0 + a5*∆MV1 + a4*∆MV2                                                 
= 5*(1) + 5*(0) +5*(-2) = -5                                                                                        (8.11f) 

          ∆CV7 = CV7 – CV0 = 5*∆MV0 +5*∆MV1 + 5*∆MV2 = a7*∆MV0 + a6*∆MV1 + a5*∆MV2                                                           
= 5*(1) + 5*(0) +5*(-2) = -5                                                                                           (8.11g) 

We may re-write Eq. (8.11a-g) in a matrix form: 

                                 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉
∆𝐶𝑉 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

   =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0
3 1 0

4.3 3 1
5 4.3 3
5 5 4.3
5 5 5
5 5 5 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉

 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎 0 0
𝑎 𝑎 0
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉

                    (8.12) 

For this example, a4 = a5 = a6 = a7, implying that the process reaches its steady state when time t = 5 min. 
Additionally, ∆𝑀𝑉 =  ∆𝑀𝑉 = ∆𝑀𝑉 =  ∆𝑀𝑉 = 0. 

We write the time-dependent or dynamic linear matrix equation, Eq. (8.12), in a general matrix form 
that represents the step-response model:                   

                                                                                                       ∆CV = A * ∆MV                                                                    (8.13) 

 Eq. (8.13) is the foundational model for dynamic matrix control (DMC). It represents three classes of 
problems. 

 Prediction: Knowing the model matrix A and MV move vector ∆MV, calculate the resulting CV 
change vector ∆CV.   

 Control: Knowing the control change vector ∆CV and the model matrix A, find the required MV 
move vector ∆MV. 

 Identification or modeling: Knowing the MV move vector and the resulting CV change vector, 
find the corresponding model matrix A.                                                                                               

8.1.3b Finite-Impulse Response (FIR) Model 

Figure 8.22 illustrates that in actual practice, there could be missing input data for MV for a certain time 
duration, and discontinuous CV response curve with CV instrument failure. The figure shows only three 
slices of valid MV-CV response curves. We call the process of identifying slices of good continuous MV-
CV response curves without any instrument failure or missing data as “data slicing”. We show below 
how to modify our modeling equations, (8.11a) to (8.11g), to represent discontinuous MV-CV response 
curves. 



 

Figure 8.22 An illustration of discontinuous MV-CV response curves with missing MV input data and CV 
instrument failure, resulting in three slices of valid MV-CV response curves 

First, we write Eqs. (8.11b) and (8.11a) as follows. 

                                             CV2 – CV0 = a2*∆MV0 + a1*∆MV1                                                                      (8.11b) 

                                             CV1 – CV0 = a1*∆MV0                                                                                          (8.11a) 

Subtracting Eq. (8.11b) by Eq. (8.11a), to remove CV0 and we get  

                                            CV2 – CV1 = a1*∆MV1  + (a2 – a1)*∆MV0                                                          (8.14a)                           

Next, we write Eqs. (8.11c) and (8.11b) as follows: 

                                            CV3 – CV0 = a3*∆MV0 + a2*∆MV1+ a1*∆MV2                                                    (8.11c) 

                                                                      CV2 – CV0 = a2*∆MV0 + a1*∆MV1                                                                     (8.11b)                                                                                 

Subtracting Eq. (8.11c) by Eq. (8.11b) gives 

                                           CV3 – CV2 =  a1*∆MV2  +  (a2 –a1) *∆MV1  +  (a3 –a2)* ∆MV0                         (8.14b)    

Following the same procedure, we can get: 

            CV4 – CV3 = a1*∆MV3 +  (a2 –a1) *∆MV2  +  (a3 –a2)* ∆MV1 + (a4 –a3)*∆MV0                                           (8.14c) 

           CV5 – CV4 = a1*∆MV4 + (a2 –a1) *∆MV3  +  (a3 –a2)* ∆MV2 + (a4 –a3)*∆MV1 + (a5-a4)*∆MV0    (8.14d) 

For convenience, let us define a new set of model coefficients bi as follows: 

                             b1 = a1     b2 =a2 –a1     b3 = a3 – a2     b4 = a4 –a3      b5 = a5 – a4                                       (8.15) 

We also write 

                                                               əCVi = CVi – CVi-1                                                                                                        (8.16) 

which applies to any slice of continuous CV response curve with two neighboring CV values, CV i and CVi-

1.   Eq. (8.16) is different from Eq. (8.11),  

                                                             ∆CVi = CVi – CV0                                                                                   (8.11) 

which assumes a continuous CV response curve from CV0 to CVi. 



Applying Eqs. (8.15) and (8.16) to Eqs. (8.11a), (8.14a) to (8.14d) gives the following “impulse form” of 
our model equations: 

                                 əCV1 = b1*∆MV0                                                                                                                                                             
əCV2 = b1*∆MV1 + b2 * ∆MV0                                                                                                                                                
əCV3 = b1*∆MV2 + b2 * ∆MV1 + b3 *∆MV0                                                                      (8.17)                                          
əCV4 = b1*∆MV3 + b2 * ∆MV2 + b3 *∆MV1 +  b4 *∆MV0                                                                                              
əCV5 = b1*∆MV4 + b2 * ∆MV3+ b3 *∆MV2 +  b4 *∆MV1 + b5 *∆MV0 

We write the resulting “impulse form” of our dynamic matrix model equation as follows:                                                                                                                                                                    

                                 

⎣
⎢
⎢
⎢
⎡
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉
ə𝐶𝑉 ⎦

⎥
⎥
⎥
⎤

   = 

⎣
⎢
⎢
⎢
⎡
𝑏 0 0 0 0
𝑏 𝑏 0 0 0
𝑏 𝑏 𝑏 0 0
𝑏 𝑏 𝑏 𝑏 0
𝑏 𝑏 𝑏 𝑏 𝑏 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉
∆𝑀𝑉 ⎦

⎥
⎥
⎥
⎤

                                                                 (8.18) 

In a matrix form, Eq. (8.18) becomes 

                                                                            əCV = B * ∆MV                                                                     (8.19) 

Eq. (8.19) represents the finite impulse response (FIR) form of the linear model equation for dynamic 
matrix control. We can extend Eq. (8.19) to allow more than one manipulated variable to vary at the 
same time to give Eq. (8.20).               

    

To identify the model coefficients bi,j  or matrix B, we convert Eq.(8.20) to a residual form involving the 
error residual ri,j: 

 



We typically find the values of the model coefficients bi,j  or matrix B, by minimizing the sum of the 
squared residual error terms: 

                         𝑀𝑖𝑛 ∑ 𝑟 , =  𝑀𝑖𝑛 (𝑟 , + 𝑟 , + 𝑟 , + 𝑟 ,    + 𝑟 ,  + 𝑟 , + 𝑟 , + 𝑟 , + 𝑟 ,    + 𝑟 , )    (8.22) 

To summarize, the finite impulse response (FIR) model identification procedure discussed so far has 
incorporated effective means to handle several practical issues for model-predictive control in the real 
world: (1) The data slicing permits the use of discontinuous MV-CV response curves with missing MV 
input data and CV instrument failure; (2) The procedure works with the incremental or “delta” world 
(ə𝐶𝑉  or ∆𝐶𝑉 ),  thus not requiring the process to be at a steady state;  and (3) The approach allows for 
continuous updates of model coefficients when changing multiple manipulated variables at the same 
time. These features represent significant advances of the finite impulse-response (FIR) model over the 
step-response modeling approach. 

8.1.4 Model Evaluation and Useful Tools 

In our hands-on workshop WS8.1, Section 8.2, we will go through the details of applying several tools to 
evaluate how accurate our model prediction is and how robust our model response is to disturbances 
Section 8.2.9 demonstrates uncertainty and correlation analysis of the model, and Section 8.2.11 
illustrates a five-step procedure to collinearity analysis of the model. In this section, we introduce some 
basic concepts and tools relating to collinearity analysis. 

8.1.4a Relative Gain Array (RGA) 

We introduce the concept of relative gain array (RGA) [8,9,10] by considering the liquid level in a tank 
shown in Figure 8.23. 

 

                               Figure 8.23 Mixing of a hot water stream with a cold water stream in a tank 

Here, we control the tank temperature T and total tank liquid flow mt (GPM) by manipulating the inlet 
flow rates of cold water mc (GPM) and hot water mh (GPM). We assume that the liquid level setpoint 
corresponds to 50% tank-full level with mt = 11.6 GPM, and the temperature setpoint is T=24.4°C. The 
steady-state flow rates are mc = 9.61 GPM, and mh = 1.99 GPM. 

We wish to find a proper pairing of two control variables (T and mt) with two manipulated variables (mc 
and mh). In other words, we are interested in the proper pairing of a simple process with two control 



variables (T and mt) and two manipulated variables (mc and mh). See Figure 8.24 for a simple 
representation of the current example.  

 

Figure 8.24 A simplified diagram of a 2x2 water-mixing process  

The corresponding balance equations are: 

                                             T = f1(mc, mh) =                                                          (8.23) 

                                            mt = f2(mc, mh) = mc + mh                                                             (8.24) 

Around steady state, we write ∆T and ∆mt in terms of open-loop gains Kij: 

∆T =   ə

ə
∆mc  +    ə

ə
∆mh  = K11∆mc + K12∆mh                                                                        (8.25) 

∆mt =   ə

ə
∆mc  +   =   ə

ə
∆mh  = K21∆mc + K22∆mh                                       (8.26) 

By substituting Eqs. (8.23) and (8.24) into Eqs. (8.25) and (8.26), we find:     

      K11 = [ mh (Tc – Th) ]/ m                     K12 = = [ mc (Th– Tc) ]/ m        K21 = K22 = 1             (8.27) 

In addition to open-loop gains, we introduce closed-loop gains K  defined as: 

                        K  = ə

ə
                      K  =  ə

ə
                                                     (8.28) 

                        K  =  ə

ə
                      K  =  ə

ə
 

Basically,  K  represents a measure of how manipulated variable mc affects control variable T if control 
variable mt  is held constant (∆mt =0) and under closed-loop control. Specifically, when ∆mt = 0, Eq. 
(8.26) gives  

                              0 = K21∆mc + K22∆mh  ->         ∆mh = -   ∆𝑚                                         (8.29)                                                     

Substituting Eq. (8.29) into Eq. (8.25) gives 

                                                            ∆T = 𝐾 − ∆m                                 (8.30) 

When control variable mt  is held constant (∆mt =0)，Eq. (8.30) gives the relationship for the closed-loop 
gain K  : 

                                                              K  =  ə

ə
   =    𝐾 −                (8.31) 



Likewise, we can develop the following expressions [10, pp. 554-556]: 

                                                                 K  =  ə

ə
     =                         (8.32) 

                                                                 K  =  ə

ə
  =                            (8.33） 

                                                                K  =  ə

ə
=                           （8.34） 

The ratio of Kij to K  is called a relative gain, denoted by ᨂ   : 

                                                                          ᨂ  =                                                     (8.35) 

Based on Eqs. (8.27), and the defining relationships for Eqs. (8.27) and (8.31) to (8.34), we can write a 
relative gain array (RGA) as follows (with mh= 1.99GPM, mc=9.61GPM, and mt=11.6 GPM): 

           ᨂ = 
ᨂ ᨂ  

ᨂ  ᨂ  
 =

m m⁄ m m⁄

m m⁄ m m⁄
 =  

−
T

m
  

m m
0.172 0.828
0.828 0.172

               (8.36) 

RGA has seveal useful properties [8,9,10] that help in choosing a specific manipulated variable that has 
the most impact on a given control variable. 

 Property 1: The rows and columns of the RGA sum to 1.0. 
 Property 2: Always pair the manipulated and control variables on positive RGA elements that are 

closest to 1.0. 
 Property 3: Pairing on negative RGA elements results in either an unstable system or in an 

inverse responding system (a system that initially responds in the opposite direction to its final 
steady-state response when its input is changed). 

In Eq. (8.36), the relative gain element pairing T and mh, and pairing mt and mc, 0.828, is close to 1.0. 
Property 2 suggests that T (tank liquid temperature) should be controlled by manipulating mh (hot water 
flow rate), and mt (total tank liquid flow rate, initially at 11.6 GPM, and hence the liquid tank level) 
should be controlled by manipulating mc (cold water flow rate, 9.61 GPM). This pairing is consistent with 
physical intuitions, as a higher temperature difference of the hot water mean that hot water flow can 
change the tank liquid temperature faster than cold water flow, and the larger cold water flow can 
change the tank liquid level quicker than the smaller hot water flow. 

Next, we wish to extend the concept of RGA for application to the steady-state gain matrix, such as Eqs. 
(8.3) and (8.4). In practice, the steady-state gain matrix is typically not a square matrix with an equal 
number of independent (manipulated, and feedforward/disturbance) variables, and dependent 
(controlled) variables.  To handle this situation, DMC3 calculates the RGAs for all 2x2 submatrices in the 
model and highlights any issues. 

Bristol [8], McAvoy [9, pp. 31-33], and Smith and Corripio [10, pp. 561-562] explain how to develop the 
RGA from an n x n steady-state gain matrix, denoted by K, based on matrix operations. Specifically, we 
find the RGA by obtaining the transpose of the inverse of the steady-state gain matrix [that is, (K-1)T], 
and multiply each term of the resulting matrix by the corresponding term in the original matrix, K. The 



terms thus obtained are the relative gains. Let us illustrate this calculation procedure by an example 
from McAvoy [9, pp. 31-33]. We consider the following steady-state gain matrix relationship: 

                                                                      CV = K * MV                                                         (8.37) 

𝐶𝑉
𝐶𝑉
𝐶𝑉

=  
2.662 8.351 8.351

0.3816 −0.5586 −0.5586
0 11.896 −0.3511

∗
𝑀𝑉
𝑀𝑉
𝑀𝑉

                  (8.38) 

There are many online matrix calculators (e.g., https://matrixcalc.org/en/) to calculate the inverse and 
transpose. We find:                                    

                                         K-1 = 
0.1195 1.787 0

2.341𝑥10 −0.01633 0.08165
0.07931 −0.5532 −0.08165

                      (8.39) 

 

                                    (K-1)T = 
0.1195 2.341𝑥10 0.07931
1.787 −0.01633 −0.5532

0 0.08165 −0.08165

                            (8.40) 

Multiplying each term of the resulting matrix (K-1)T, Eq. (8.40), by the corresponding term in the original 
matrix, K, Eq. (8.38), is a matrix operation called Hadamard product, for which online calculators are 
available (e.g., https://keisan.casio.com/exec/system/15157205321124). We find the resulting RGA as: 

                            ᨂ= [ (K-1)T* K]Hadamard =
0.318 0.0195 0.663
0.682 0.00913 0.309

0 0.971 0.0287
 

We note that the Hadamard product matrix elements result from multiplying each term of Eq. (8.40) by 
the corresponding term in the original K matrix in Eq. (8.38); for example, 

                            ᨂ11 = 2.662 x 0.1195 = 0.318             ᨂ12 = 8.351 x 2.341𝑥10 = 0.0195 

8.1.4b Ill-Conditioned Model Matrices and Collinear System 

As a part of model evaluation, DMC3 applies a collinearity analysis tool to identify and repair ill-
conditioned model matrices [11]. This section introduces the concepts of conditioned number and 
collinear system and relates them to the RGA. 

For an n x n steady-state gain matrix K, we may decompose it into a product of three matrices:  

                                                                        K = U *ᨂ* VT                                                                (8.41) 

where U is n x k, ᨂ is k x k, and V is n x k. Matrix ᨂ is diagonal, with elements λ1, λ1… λk being the positive 
square roots of ᨂ ,ᨂ ,ᨂ …. , which are nonzero eigenvalues of KT*K or of K*KT. The values λ1, λ1… λk 
are called the singular values of matrix K. This matrix decomposition process is called singular value 
decomposition (SVD). Section A.2.5.3 of Appendix A, “Matrix Algebra in Multivariate Data Analytics and 
Model-Predictive Control”, gives the details of SVD, including the meaning of matrices U and V.  



Let us use the SVD of three simple matrices to illustrate the concept of condition number and an ill-
conditioned system. We use an online SVD calculator to obtain the numerical results (e.g., 
https://keisan.casio.com/exec/system/15076953160460). 

(1) K = 1 0
0 1

 =   U *ᨂ* VT  = −1 0
0 −1

∗
1 0
0 1

∗
−1 0
0 −1

 

The ᨂ matrix is diagonal, and its diagonal elemnts (λ1, λ1… λk) are singular number. The condition 
number is the ratio of th largest diagonal element to the smallest diagonal element. For case (1), the 
condition numer is (1/1) or 1.0. 

(2) K = 1 0.96
0.96 1

 =   U *ᨂ* VT  = −0.7071 −0.7071
0.7071 −0.7071

∗
0.041 0

0 1.96
∗

−0.7071 0.7071
−0.7071 −0.7071

 

For case (2), the condition numer is (1.96/0.04) or 49. 

(3) K = 1 0.96
0.96 1

 =   U *ᨂ* VT  = 0.7071 −0.7071
−0.7071 −0.7071

∗
0 0
0 2

∗
0.7071 −0.7071

−0.7071 −0.7071
 

For case (3), the condition numer is (2/0) or ∞ . 

McAvoy [9, p. 181] suggests that a gain matrix with a condition number close to, greater than or equal to 
50 indicates the system to be nearly singular or ill-conditioned. This includes cases (2) and (3) above. 

In a patent assigned to AspenTech, Zheng et. al [11] define a process model with an n x m steady-state 
gain matrix to be collinear by looking at the maximum and minimum singular values resulting from SVD 
of the gain matrix. In particular, we consider a square (n = m) submatrix of the gain matrix, and define 
two terms: (1) Not collinear: If the submatrix has a rank of m (see Section A.2.1, Appendix A for rank), 
then the given system has a full rank and the gain matrix is “not collinear”; (2) Collinear or perfectly 
collinear: If the submatrix has a rank smaller than m, and the singular value ᨂ =0, then the system is 
“collinear or perfectly collinear”. 

The collinearity analysis tool within DMC3 identifies and repairs ill-conditioned model matrices [11]. 
When dealing with collinearity, we can focus on square submatrices because, if an n x m matrix is 
collinear (when n > m), then all its m x m submatrices must be collinear [11]. In particular, the tool 
calculates the RGA for all 2 x 2 submatrices in the model and highlights possible issues.  

DMC3 suggests the following RGA thresholds for each MV-CV pair: 

 RGA =1      Ideal performance; complete correlation 
 RGA <5      Good correlation between the MV-CV pair 
 RGA <8      Reasonable and acceptable correlation between the MV-CV pair 
 RGA >8      Possible inconsistent gain; collinearity issue 
 RGA >20    Nearly collinear system; review and repair 

Section 8.2.11 gives a hands-on workshop for the model evaluation by collinearity analysis,  

8.1.5 Open-Loop Prediction, Prediction Error Filtering and Prediction Update for Steady-State 
Variables 



In Section 8.1.2a(3), we presented an example of the open-loop prediction for a fired heater model and 
introduced the concept of continuing reconciliation of model-based predictions to the process 
measurements and feedback correction to update the model predictions to the future that is one of the 
three sources of benefits of APC. In Section 8.2.12, we demonstrate this open-loop prediction in our 
hands-on workshop.  Here, we look at three types of prediction errors that are calculated on each DMC3 
controller execution which we have applied in real industrial projects. 

(1) Prediction Error (PREDER) 

The prediction error, also called model bias, is the difference between the model prediction and the 
actual measured CV value at each controller execution:   

                           Prediction error (Model bias) = CVpred  -  CVactual                            (8.42) 

We use the value of this error to shift the future CV prediction vector up or down to match the current 
CV value, as illustrated previously in Figures 8.10 and 8.11 for the online feedback correction of CV 
prediction based on measured value. 

(2) Accumulated Prediction Error (ACPRER) 

Referring to Figure 8.25, we define the accumulated prediction error as the integral of the time-
dependent error E(t) from the last prediction initialization to the current time: 

                            Accumulated prediction error =∫ 𝐸(𝑡)𝑑𝑡                           (8.43)                            

                                

                                         Figure 8.25 An illustration of accumulated prediction error 

This integrated prediction error represents the ultimate bias that must be added to the model predicted 
value of a dependent variable to match its process response. In general, we prefer to monitor the 
accumulated prediction error, instead of the prediction error, to get a better idea of time-correlated 
errors. 

(3) Average Prediction Error (AVPRER) and Prediction Error Filtering 

The concept of average prediction error is related to the noise or model-plant mismatch that affects the 
controller negatively. Values of average prediction error on the same order of magnitude as the noise 
band of the CV measurement suggest that prediction errors are caused primarily by measurement noise, 
which could lead to excessive MV movement and possibly valve wear. Values of average prediction error 
outside the noise band indicate a potential model-plant mismatch, and significant model-plant 
mismatch could cause cycling or instability in CV response. Additionally, unmeasured disturbances could 
lead to unexpected MV moves. To mitigate these effects, we typically apply filtering or smoothing to the 
prediction error.  



The average prediction error is a “filtered” value of the absolute value of the prediction error or model 
bias. The typical filter used is a first-order exponential filter with a filter factor equal to 0.8 to 0.99 
(DMC3 use a filter factor of 0.965), which is set to 0.0 upon filter initialization. The reader may refer to 
[12] for an introduction to exponential filter. We note that an exponential filter is also called an 
“exponentially weighted moving average (EWMA) filter”, or just “exponential moving average (EMA) 
filter”.   

Nonlinear controllers in DMC3 uses an extended Kalman filter algorithm [13] for prediction error or 
model bias filtering. 

(4) Prediction Update for Control Variable Values 

In Section 8.1.2a(3), Figures 8.9 to 8.11, we illustrated the “preceding” process for prediction update to 
control variable values: (1) update the CV predictions from the previous controller execution cycle based 
on the changes in MVs; (2) compute the prediction errors for CVs; (3) shift the CV predictions by 
prediction errors to make the current CV predictions match the current CV measurements; and (4) do 
this online correction for each CV at the beginning of each controller execution cycle. 

8.1.6 Concepts and Parameters in Steady-State Economic Optimization and Dynamic Controller 
Simulation 

In Section 8.1.2b, we illustrated the steady-state (SS) economic optimization to determine the MV and 
CV targets to minimize cost and optimize profit for the copolymerization problem. In this section, we 
introduce additional concepts and parameters that are relevant to SS optimization and the subsequent 
dynamic controller simulation steps. These concepts and parameters are key to developing and fine-
tuning both linear and nonlinear multivariable model-predictive controllers using Aspen DMCplus and 
Aspen DMC3. The same concepts and parameters are equally important to Aspen Nonlinear Controller 
for polyolefin applications. 

8.1.6a Variable Limits and Feasible Solution 

Figure 8.26 illustrates the concept of variable limits. Take MV as an example. The upper and lower 
operating limits, or simply the upper and lower limits, define the control range over which the MV may 
be moved by the controller. The upper and lower validity limits specify the prediction range over which 
the MV may be used for prediction. If the operating limits are set outside the validity limits, the MV is 
downgraded to FF status. 

The upper and lower engineering limits define the commissioned range and are used to clamp the 
operating limits if the operating limits are set outside the engineering limits but within the validity limits. 
Engineering limits outside the validity limits are clamped at the validity limits without downgrading the 
MV to FF status. 



 

Figure 8.26 An illustration of variable limits [7]. Used with permission from Aspen Technology, Inc. 

The SS (steady state) optimizer performs a validity check using the current measurement, limits, tuning 
parameters, and provides economic optimum MV and CV targets to the path optimizer for dynamic 
controller simulation. A feasible solution is defined as a solution where all CV steady-state targets are at 
or within their operating limits. We note that MV steady-state targets are always maintained within 
their operating limits. 

How does the SS optimizer know which CV operating limits are the least important and which could be 
changed slightly, if necessary, to find a feasible solution? The SS optimizer uses two sets of parameters 
to allow the control engineer to specify the relative importance of CV operating limits: (1) CV limit 
ranking, and (2) steady-state equal concern error (SS ECE), which are discussed below. 

8.1.6b CV Limit Ranking Method to Handle Steady-State Feasibility 

Aspen DMC3 Builder assigns a relative ranking to each CV operating limit to characterize the order of 
priority of that limit, and the steady-state economic optimization satisfies CV limits in a ranked order. 
The software checks for the limit for feasibility in order of increasing rank. Specifically, a CV limit with a 
smaller numerical ranking is more important than another CV limit with a larger numerical ranking, e.g., 
a CV limit with rank 1 is more important than another CV limit with rank 999; and the former CV limit 
must not be violated, while the latter CV limit could be relaxed if appropriate.  

DMC3 Builder recognizes the following possible ranks: (1) rank 0: All CV’s have the same rank, have rank 
0 and we consider trade-off with MV constraints (not recommended in practice); (2) rank 1-999 (see 
more below): all CV limits go through a standard feasibility check; (3) rank 1000: a special “soft target” 
constraint which is solved in the economic optimization only (not in the feasibility calculation); and (4) 
rank 9999: the CV limit is not used in steady-state economic optimization.  

The CV limit ranking results from consulting with experienced plant operators and engineers, who 
typically know the relative important of each CV limit. When it is not possible to clearly define the 
relative ranking of a CV limit, we could consider assigning the CV limit into the following suggested rank 
between 1 and 999 [7]: (1) safety and environmental limits (e.g., stack NOx emissions; safety valve 
controller output; heater tubeskin temperature, etc.) : rank 1 to 99; (2) integrating or ramp variable 
(Section 8.1.1.1c): rank 100 to 199; (3) model validity requirements (e.g., control valve outputs; column 
flooding limit, etc.) : rank 200 to 299; (4) product quality specifications (fractionator boiling points; 
product impurity specifications, etc.) : rank 300 to 399; and (5) economic optimization soft targets that 
cannot be uniquely defined: rank 1000. 

Figure 8.27 illustrates the CV ranking method to handle steady-state feasibility for CV limits of different 
ranks. We satisfy the more important constraints (lower numerical ranks) first, while relaxing the less 



important constraints (larger numerical ranks) to find a feasible solution. In the figure, line B (CV2U, 
representing CV2 upper operating limit, of rank 100) and line C (CV1L, representing CV1 lower operating 
limit, of rank 200) are both satisfied and intersect at point F. We could find a feasible solution if we 
could relax the constraint of line A (CV3U, representing CV3 upper operating limit, of rank 300) by 
moving line A to line A’ which satisfies the feasible solution at point F. The distance between lines A and 
A’ represents the relaxed amount required to make a constraint feasible, for which we call a constraint 
give-up (ε). 

 

Figure 8.27 Achieving steady-state feasibility for CV limits of different ranks by satisfying constraints 
CV2U (CV2, upper operating limit of rank 100; line B) and CV1L (CV1 lower operating limit of rank 200, line 

C), while relaxing the constraint of CV3U (shifting CV3 upper operating limit of rank 300 from line A to 
line A’). 

Figure 8.28 shows another example about constraint give-up when the CV limit ranks are equal. In the 
figure, line B (CV2U, representing CV2 upper operating limit) and line C (CV3U, representing CV3 upper 
operating limit) are both satisfied and intersect at point F. We move the constraint of line A (CV1L, 
representing CV1 lower operating limit) to line A’ which satisfies the feasible solution at point F. The 
distance between lines A and A’ represents the relaxed amount required to make the constraint CV1L 
feasible. This is the constraint give-up (ε) for CV1L. 

 

Figure 8.28 Achieving steady-state feasibility for CV limits of the same rank by satisfying constraints 
CV2U and CV3U, while relaxing the constraint CV1L (shifting CV1 lower operating limit from line A to line 

A’) 

8.1.6c Steady-State Equal Concern Error (SS ECE) to Handle Steady-State Feasibility 



For the copolymerization problem, assuming the CV limits to be of an equal rank, what magnitude of 
error in each of the CVs should get an equal level of attention or concern from the control engineer? Let 
us consider Table 8.2, in which we quantify the CV error that is 10% of the difference between the upper 
and lower operating limits. 

Table 8.2 Magnitude of error in each of the CVs 

CV Measurement 
(current value) 

Lower operating 
limit (LPL) 

Upper operating 
limit (UPL) 

(UPL- LPL)x10%  
deviation 

Polymer, kg/hr 23.3 0 30        3 kg/hr 
Mol_Wt. 35000 34500 35500 100  
T_Rx, °C 85 70 100 3.0 °C 
Conc_MMA, mole 
fraction 

0.56 0.55 0.60 0.005 mole  
fraction 

 

In terms of engineering units, we see that for each CV, an error above the UPL or below the LPL with a 
magnitude larger than the value displayed in the last column of Table 8.2 should require the control 
engineer an equal level of attention or concern to take appropriate corrective action. 

DMC3 Builder includes a steady-state parameter, called steady-state equal concern error (SS ECE), to 
handle the infeasibility of potential violations of multiple CV limits of an equal rank. The SS ECE factors 
allow the control engineer to specify the “standard” or “reference” amount of error for a given CV. 
These are then used to balance movement (error) in one CV against movement (error) in another CV. A 
small SS ECE for a CV means that this CV has a smaller tolerance threshold to any deviation from its 
upper or lower operating limit, and the control engineer must give sufficient attention or concern to the 
resulting potential infeasibility. For example, if the SS ECE for CV1 is less than the SS ECE for CV2, and 
both have the same engineering unit, then satisfying the CV1 limit constraint is more important than 
satisfying the CV2 limit constraint. 

Figure 8.29 gives an example of using SS ECE to resolve a set of infeasible CV limits. In the figure, line A 
(CV2L, representing CV1 lower operating limit) has a smaller steady-state ECE of SS Low Concern of 0.01, 
and must be satisfied.  Line B (CV2U, representing CV2 upper operating limit) has a larger steady-state 
ECE of SS High Concern of 1, and could be relaxed. We move the less important constraint of line B to 
line B’ which satisfies the feasible solution at point F. The distance between lines B and B’ represents the 
relaxed amount required to make the constraint CV2U feasible. This is the constraint give-up (ε) for 
CV2L. 



 

   Figure 8.29 Achieving steady-state feasibility for CV limits of the same rank by satisfying constraints 
CV1L with a smaller SS ECE of 0.01, while relaxing the constraint CV2U of a larger SS ECE of 1 and shifting 

CV2 upper operating limit from line B to line B’. 

To resolve a set of infeasible CV limits of an equal rank, DMC3 Builder provides two algorithms: (1) LP 
(linear programming) solution; and (2) QP (quadratic programming) solution. We consider only the LP 
solution here. Specifically, assume that ε1, ε2, ε3, …... are the amounts of constraint give-up, illustrated in 
Figures 8.27 and 8.28, to make a CV limit feasible. We restrict the give-ups, εi, to be positive or zero (zero 
means that a feasible solution exists). For each constraint give-up, we assign a weight or weighting 
factor Wi indicating the relative importance of satisfying i-th CV limit. The LP solution includes the 
following linear minimization objective function plus the linear CV limit constraint:                               

                                                    Min φ = ε1* W1 + ε2* W2 + ………                         (8.44) 

subject to the following CV limit constraints in a vector form 

                                                     CV ≤ CVmax + ε1                                                                                (8.45) 

                                                     CV ≥ CVmin – ε2                                                                                  (8.46) 

The weight or weighting factor, Wi, is a positive number, typically from 1 to 106; the higher its value, the 
more important it is to satisfy the upper or lower limit constraint for CVi. 

In applying the LP algorithm to resolve the infeasible CV limits, DMC3 Builder specifically relates the 
weighting factor Wi (varying from 1 to 106) to the corresponding SS ECEi (varying from 1 to 10-6) by the 
relationship: 

                                                    SS ECEi = 1/Wi                                                      (8.47) 

Suppose that it is very important to satisfy the i-th CV limit by setting the weighting factor W i to 106, Eq. 
(8.47) suggests that the corresponding SS ECE for the i-th CV limit, SS ECEi, is 10-6. We note that in doing 
a SS Optimizer calculation (simulation), we need only the relative values of ECEs (low concern and high 
concern) for all CVs, not their specific numerical values in engineering units. As such, we could specify 



the ECEs for CV limits as 1, 0.1, 0.01, 0.001,  ...…., with smaller ECE values (higher weighting factors) 
indicating that it is more important to satisfy the corresponding upper or lower CV limit.  

For steady-state economic optimization (SS Optimizer), we need to specify both the limit ranks and the 
ECEs. These include: (1) the SS Low Concern, SS Low Rank, SS High Concern and SS High Rank for each 
CV; and (2) Validity, Engineering and Operator Limits (Low and High) for each MV and each CV.  

8.1.6d Dynamic Equal Concern Errors for CV Limits in Dynamic Controller Simulation 

Having completed the steady-state economic optimization via the SS Optimizer and identified the 
economic optimum, MV and CV targets, DMC3 Builder continues with dynamic controller simulation to 
determine a series of MV moves to drive the MV and CV to their target values through the Path 
Optimizer. In this step, a key tuning parameter in dynamic controller simulation is the dynamic equal 
concern error, or dynamic ECE. Basically, dynamic ECEs indicate the level of concern by the control 
engineer for dynamic deviations from the stead-state CV targets. As with steady-state ECEs, it is the 
relative values of the dynamic ECEs that determine how tight a CV is controlled to its steady-state target, 
and not the value of the dynamic ECE itself. We can minimize the deviation of a CV from its steady-state 
target by reducing the dynamic ECE. This is done at the expense of more errors on the other CVs and 
more movements for the MVs. 

Figure 8.30 illustrates the concept of dynamic ECEs in three different regions: below the lower operating 
limit (LPL), above the upper operating limit (UPL), and between the LPL and UPL.  

 

Figure 8.30 Dynamic equal concern errors for CV limits [7]. Used with permission from Aspen 
Technology, Inc. 

First, DMC3 Builder specifies a dynamic ECE called “Dynamic low concern” for CV values below the 
“Operator low limit”, and a dynamic ECE called “Dynamic high concern” for CV values above the 
“Operator high limit”. Next, we see in the figure a narrow transition zone to the right of Operator low 
limit, called lower transition zone or “Dynamic low zone”, in which the weight (dashed line) drops and 
the Dynamic low concern (solid line) increases; we also see a narrow transition zone to the left of the 
Operator high limit, called upper transition zone or “Dynamic high zone”, in which the weight (dashed 
line) increases and the Dynamic high concern (solid line) drops. The transition zones help to avoid 



“chatter” when ECEs are different in the three different regions noted above and displayed in the figure. 
Thirdly, we see in the figure a middle region between the right boundary line of the lower transition 
zone or “Dynamic low zone”, and the left boundary line of the upper transition zone or “Dynamic high 
zone”. While we see a label “Dynamic middle concern” in this middle region, this ECE has no real 
significance and is being ignored in the DMC3 dynamic controller simulation. This follows because within 
this middle region, the CV value is always between its LPL and UPL, and the control engineer sees no 
chance for the CV to deviate from its limits. 

In the DMC3 control structure of Figure 8.18, we see that the path optimizer may determine a series of 
CV moves to drive the MVs and CVs to their economic optimum, steady-state targets obtained by the SS 
optimizer. Additionally, the figure shows that the path optimizer may also determine a series of MV 
moves to drive a specific CV to an external target value specified by the control engineer (instead of the 
target value determined by the SS optimizer, that is, the economic optimum, steady-state target). DMC3 
treats an external target for a CV the same as a CV constraint and includes it in the feasibility checks by 
the SS optimizer. Additionally, when doing a dynamic controller simulation through the path optimizer, 
DMC3 Builder includes a dynamic ECE for the external target, called Dynamic Target Concern.  This is the 
concern associated with the dynamic move plan target for a CV. It defines how far the output can drift 
dynamically from its steady-state target before you get concerned. An increase in this value will allow 
the output more freedom to deviate dynamically from the steady-state target. A decrease will drive the 
output closer to the steady-state target dynamically. 

To summarize, for dynamic controller simulation, we need to specify both the limit ranks and the ECEs. 
These include: (1) SS Low Concern, Dynamic Low Concern, SS High Concern, Dynamic High Concern, and 
SS Low Rank, SS High Rank, Dynamic Low Zone, and Dynamic High Zone for each CV; (2) Validity, 
Engineering and Operator Limits (Low and High) for each MV and each CV; and (3) Dynamic Target 
Concern, if there is an external target for a specific CV. 

8.1.6e Move Suppression for MV 

A key parameter for dynamic controller simulation via path optimizer is the move suppression for MVs. 
Move suppression parameter affects how aggressively the controller will move the MVs to achieve 
control objectives. A larger value means more suppression, i.e., less MV movement. 

Figure 8.31 illustrates the trade-off between: (1) minimizing CV error from its steady-state economic 
optimum target by an aggressive MV movement by specifying a small move suppression; and (2) 
minimizing MV move size by specifying a large move suppression, resulting in increasing CV error from 
its SS optimization target. Figure 8.32 compares the impacts of small and large move suppression 
parameters on the MV move size in response to CV setpoint change from 310°C to 350°C. 

 



Figure 8.31 The trade-off between minimizing CV error from its steady-state economic optimum target 
by an aggressive MV movement by specifying a small move suppression, and minimizing MV move size 

by specifying a large move suppression 

 

Figure 8.32 Comparing the impacts of small and large move suppression parameters on                                                     
the MV move size in response to CV setpoint change from 310°C to 350°C. 

There are several sources of qualitative information that can help a control engineer determine the 
appropriate value of move suppression to use in a dynamic controller simulation: (1) experience during 
step testing to develop the controller model; (2) comfort level of the control engineer for how fast an 
MV can be moved; (3) the capability of the exiting PID loop to track CV setpoint changes; (4) the type of 
disturbances for which the MV must compensate; and (5) settings for similar controllers which have 
demonstrated success. 

Additionally, we may apply a multi-level strategy to initialize the move suppression parameters. We start 
by applying a move suppression value of x (say, 0.1) for a flow setpoint MV. We then specify a move 
suppression value of 2x (say, 0.2) for a temperature setpoint MV, and of 4x (say, 0.4) for a pressure 
setpoint MV and a feed rate setpoint MV. The larger values of move suppression for the pressure 
setpoint MV and feed rate setpoint MV imply that we do not want both the pressure and feed rate 
setpoints move quickly. 

Finally, we note that move suppression is the most straightforward handle on dynamic controller 
performance. ECE tuning has a relatively narrow range where it affects dynamic controller performance, 
and it sometimes could give unpredictable results for disturbances affecting more than one CV at a time.  

In the next section, we present a hands-on workshop to illustrate all the concepts and parameters 
introduced so far. We also use the workshop to demonstrate the practical tips in applying DMC3 Builder 
to the model-predictive control of a copolymerization process. 

8.2 Workshop WS8.1 Development and Application of a Predictive Controller Model for a 
Copolymerization Process 

8.2.1 Objective 

The objective of this workshop is to teach the reader to use the DMC3 Builder for a multivariable 
dynamic matrix control (DMC) Project, specifically the development and applications of a predictive 



controller model for a solution copolymerization reactor based on data from plant step tests. We focus 
on the identification of a dynamic process model using the modeling tools within DMC3 Builder, and the 
use of the resulting predictive controller model to optimize the polymer production rate. 

8.2.2 A Copolymerization Reactor 

Figure 8.33 shows a simplified flowsheet of a solution copolymerization reactor system. 

 

Figure 8.33 A simplified flowsheet of a solution copolymerization reactor system 

There are two monomers, methyl methacrylate (MMA) and vinyl acetate (VA), an initiator (INITIATO), 
and a chain-transfer agent (TRANSF).The process is define in more detail in [31,33,23,24] Figure 8.33 
shows five manipulated (independent) variables, and four control (dependent) variables. 

8.2.3 Starting the DMC3 Builder Program: Creating a New Project 

Start Aspen DMC3 Builder and choose “New”. Figure 8.34 illustrates the resulting screen to choose one 
of the two project types: (1) DMC project, which includes DMC3 controller, Aspen Watch for controller 
performance monitoring, and a complete set of adaptive control tools; and (2) APC project, which 
includes DMCplus controller and nonlinear controller, Aspen Watch, and some adaptive control tools if 
licensed. 



 

Figure 8.34 Selection of project type and related software tools 

For controlling the production rate, and product concentration and qualities (such as polymer density 
and melt index) of polyolefins, we recommend choosing APC project and using the nonlinear controller, 
as both polymer density and melt index have noninear dependencies on key manipulated variables.  

For controlling the polymer production rate, molecular weight, and concentration of monomer in the 
polymer, we can use a linear multivariable model-predictive control, such as DMCplus controller under 
APC Project or its newer version, DMC3 controller under DMC3 Project.  For now, we choose DMC3 
Project, and complete the project name and the working folder location, as in Figure 8.35. After clicking 
OK, we see the interface layout of Figure 8.36. 

 

Figure 8.35 Specifying project name and working folder location 



 

Figure 8.36 DMC3 interface layout: Tool ribbons (top), navigation workflow buttons (bottom left)- datasets, 
controllers, composite and online; navigation tree area (left “white” column), and workspace (middle). 

8.2.4 DMC3 Builder Task One: Data Processing for Developing a Master Model- Import Process Data, 
Merge the Datasets and Mark and Delete Bad Data Slices 

DMC3 Builder can perform six key tasks: (1) Master Model:  data processing and model identification 
(ID); (2) Configuration: configuring the steady-state optimizer and dynamic controller; (3) Optimization: 
performing the steady-state optimization; (4) Simulation: including five types of simulation, namely, 
controller, optimizer, filter, model, and preview dynamics; (5) Calculations: performing online 
calculations and transformations; and (6) Deployment:  performing controller deployment. We begin 
with task one, data processing to develop the master model, below 

From the “Import” tool ribbon on the top left, we choose “Dataset”. We then select the collect file 
WS8.1-1.clc within our working folder and click on the Open button. See Figures 8.37 and 8.38. 

 

Figure 8.37 Important dataset, collect file WS8.1-1.clc. 

We see in Figure 8.38 that the first collect file has 9 tags, a sample period of 60 sec, an interpolation 
span of 5 min and a total of 2640 samples collected from 10/1/1996 07:14:00 to 10/3/1996 03:13:00. 
We click  “Import” to upload the data into the project. In general, an interpolation span of 5 to 10 
minutes would be sufficient for most problems. 



 

Figure 8.38 Contents of the first collect file 

Before the software import the data into the project, an “Interpolate Dataset” window shows up. We 
click on “Start” button to interpolate any bad and missing data slices longer than 5 minutes in duration. 
We then click on “Close” button to conclude the interpolation analysis. The analysis results in the 
message “0 of 9 vectors (variables) have been interpolated”. We do not show the screen images of this 
straightforward step. 

Figure 8.39 displays the first dataset in the Datasets view and trend plots. The software will 
automatically show the first three in the view (which happen to be all manipulated variables, 
Flow_MMA, Flow_VA, and Init), but we choose to add the remaining two manipulated variables (Transf 
and T_JKT) to display. Of particular significance in the displayed plot are the stepwise changes in all five 
manipulated variables within the total duration of step tests.  



 

Figure 8.39 A display of the first dataset for stepwise changes in                                                                                     
five manipulated variables during step tests 

We repeat the same process to import the second collect file, WS8.1-2.clc. Figure 8.40 illustrates the key 
features of the second collect file. Its list of vectors to import is identical to that in Figure 8.38. A display 
of the five manipulated variables is similar to Figure 8.39. Figure 8.41 displays the continuous changes in 
all four controlled (dependent) variables within the duration of step tests.  

 

Figure 8.40 Contents of second collect file. 



 

Figure 8.41 A display of the second dataset for continuous changes in                                                                                     
four control variables during step tests 

Next, we follow the path: tool ribbons -> dataset actions -> merge -> create new dataset: name - WS8_1 
-> OK. See Figure 8.42.  

 

Figure 8.42 Merge two datasets into a new dataset, WS8_1 

Figure 8.43 illustrates the merged datasets. We note that the software has automatically highlighted in 
grey the section of date and time within the duration of the dataset that contains bad/missing values. 
When we choose to use our mouse to highlight the grey section, it will become green and activate the 
data slicing tools on the top ribbon buttons. See Figure 8.44. 



 

Figure 8.43 Merged dataset WS8_1 

 

Figure 8.44 Using a mouse to highlight the bad/missing data section to                                                                 
activate the data slicing tools in the ribbon buttons 

We then click on the “Mark Bad” ribbon button, and see the input window of Figure 8.45, in which we 
apply global slicing tool to remove bad dataset section of all vectors (variables) with missing data and 
click the OK button. 



 

Figure 8.45 Global slicing of bad dataset section of all vectors (variables) with missing data 

8.2.5 Create Manipulated Variable (MV) and Control Variable (CV) Lists 

On the top tool ribbon, we choose Manage Lists to build: (1) MV (manipulated variable) list – 
Flow_MMA, Flow_VA, Init, Transf, and T_Jkt; and (2) CV (control variable) list - Polymer, Mol_Wt, T_Rx 
and Conc_MMA. Use the Add (+) and Delete (-) buttons to create a new list or delete an existing list, 
respectively. After creating a list, choose the desired variable (vector) from the right-top list and use the 
arrow key to move it to the list on the right-button section. See Figures 8.46 and 8.47 for the MV and CV 
lists. 

 

Figure 8.46 Manipulated variable list, MV 



 

Figure 8.47 Control variable list, CV. 

We pause to present an important note. Our manipulated variables are independent variables that the 
operator can change. A control problem may include additional independent variables, called 
feedforward variables (FF), that impact the process, but the operator cannot change them directly. If our 
dataset from plant step tests includes the time-dependent change profile of feedforward vectors 
(variables), we should include those FF vectors to the end of the independent variable list. For our 
current problem, we would include any FF variables to the end of the MV list in Figure 8.46 and place 
those FF variables after the reactor cooling jacket temperature variable, T_Jkt. 

8.2.6 DMC3 Builder Task One: Model Identification (ID) for Developing Master Model - Setting up the 
Model ID 

We click on Create Model button located at the far right of the tool ribbons to start building the dynamic 
controller model using the dataset, WS8.1_1. In the Identify Model-Specify Structure input form, we 
enter model name, Copolymerization, specify a Time to Steady State of 90 minutes, and choose the five 
MVs as input variables, and the four CVs as output variables. See Figure 8.48. Click OK to see the Case 
Editor Screen of Figure 8.49. 

 

Figure 8.48 Controller model specification 



 

Figure 8.49 Case editor screen. 

On the left column of the navigation tree for Copolymerization controller, we click on All Variables 
within Master Model to see a listing of dataset and input and output variables, as illustrated in Figure 
8.50. 

 

Figure 8.50 Dataset and input and output variables 

Next, we click on Parameter Trials of the Case Views on the tool ribbons (see Figure 8.50) to start 
specifying the trial cases, focusing on FIR trials (simulation runs) with the parameters listed in Table 8.3. 

Table 8.3 Parameters for FIR trial cases, WS8.1 

Time to Steady State, min Number of Coefficients Smoothing Factor 
30 30 5 
60 60 5 
90 90 5 

120 120 5 



When we click on Parameter Trials, the software automatically creates the cases with “Time to Steady 
State (TTSS)” equal to 30, 60 and 90 min. Make sure to check the boxes for Master, Prediction, 
Uncertainty and Time Uncertainty for the 90-min case. We also need to click on the “+” button next to 
FIR Trials to add the new case with a TTSS of 120 min.  See Figure 8.51. 

                                      
Figure 8.51 List of trial cases 

As our sampling period (data collection interval) is 1 min (Figure 8.48), the software assumes a controller 
execution interval of 1 min and gives the Number of Model Coefficients equal to the TTSS according to 
Eq. (8.48): 

                                     
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑚𝑖𝑛
 =    ,

   
  x 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 𝑃𝑒𝑟𝑖𝑜𝑑, 𝑚𝑖𝑛

          (8.48) 

Model coefficients are required to model faster responses. For example, if the controller execution 
interval is 0.5 min, with the TTSS (= 90 min) and sampling period (= 1 min) remain the same, Eq. (8.48) 
means the number of model coefficients is 180. The number of model coefficients also determines the 
number of future control moves being calculated by DMC3 Builder. See Table 8.4. We note that the 
larger the number of model coefficients, the smaller the controller execution interval and the larger the 
number of control moves calculated. Understanding this relationship is key to applying control to 
respond to fast-changing independent disturbances in the system. 

Table 8.4 Relationship between the number of model coefficients                                                                                       
and the number of control moves calculated 

Number of model 
coefficients 

30 45 60 75  90 105 120 

Number of control 
moves calculated 

8 9 10 11 12 13 14 

The third parameter, Smoothing Factor, is used to smooth the data and apply the penalty for change 
between successive FIR model coefficients. The default value of 5 is acceptable in most cases. 

We now move to Case Actions within the tool buttons and click on the Identify button to run the model 
identification (ID). Figure 8.52 shows the window display of the progress of the FIR model identification. 
We click “Close” when seeing the message of “Solution Complete”. Figure 8.53 shows the identified 



smoothed and unsmoothed model curves for each TTSS

 

Figure 8.52 Window display of the progress of the FIR model identification 

 

      Figure 8.53 Identified smoothed and unsmoothed model response curves:                                                       
“fir S5, U90” means finite-impulse response; smoothing factor = 5; TTSS = 90 min. 

8.2.7 Guidelines for Selecting Model Parameters  

In Section 8.2.6, we have previously discussed the number of model coefficients in relation to Eq. (8.48), 
the sampling period and the controller execution interval. We indicate that the use of a smoothing 
factor of 5 is always a good practice. How do we then choose the third parameter, the time to steady 
state (TTSS)?  

We choose the TTSS based on the slowest responses in the model, and all model responses should reach 
steady state at the selected TTSS. We extend faster response curves to match the selected TTSS. 

Figures 8.54a to 8.54d compare the finite-impulse response curves at TTSS = 30, 60, 90 and 120 min and 
with a smoothing factor of 5. The comparison confirms our selection of master model with a TTSS of 90 
min for all control variables (Polymer, Mol_Wt, T_Rx and Conc_MA) to reach their steady-state values. In 
general, a control variable will continue to change past a chosen TTSS value that is too short; and a large 



TTSS will cause the smoothed and unsmoothed response curves of a control variable to drift apart at the 
end. 

 

(a) fir S5 U30: finite-impulse response -> S5 =smoothing factor of 5, U30 = TTSS of 30 min.  MOL_WT and 
CONC_MMA (y-axis) continue to increase past TTSS of 30 min (x-axis). T_RX continues to drop past TTSS 

of 30 min. Pay attention to the red curve that ends at 30 min. 

 

(b) fir S5 U60: TTSS of 60 min.  MOL_WT and CONC_MMA continue to increase past TTSS of 60 min. 
T_RX continues to drop past TTSS of 60 min. 

 

(c) fir S5 U90:  TTSS of 90 min.  POLYMER, MOL_WT, T_RX and CONC_MMA appear to reach their 
steady-state values and do not change much past TTSS of 90 min. 

 

(d) fir S5 U120:  TTSS of 120 min appears to be too long as all dependent variables have already reached 
their steady-state values around TTSS of 90 min. 

Figure 8.54(a)-(d) Evaluation of the selection of time to steady state (TTSS). 

8.2.8 Uncertainty and Correlation Plots of the Master Model 

We display the master model with a TTSS of 90 min by following the path on the navigation tree: 
Copolymerization Model ->Master Model -> Cases Folder ->All Variables and click on the “Frequency 
Uncertainty” button on the tool ribbons. Figure 8.55 shows the resulting frequency-domain uncertainty 
plot. In each response plot, the shaded area above and below the dark average response curve indicates 
a two-sigma confidence region that includes 95.4% of all data points. The narrower the shaded area, the 
more accurate the average response curve is. For example, the model response plots of Mol_Wt and 



Conc_MMA to changes in Flow_MMA contain very narrow two-sigma confidence region and the quality 
of these model response plots is graded “excellent” or “A”. By contrast, the wide shaded two-sigma 
region for the model response plot of T_Rx to changes in Flow_MMA and in Transf indicates a plot of 
poor quality with a grade of “C”. We see plots of very poor quality with large shaded two-sigma region 
for the model response plot of Polymer to changes in Transf with a grade of D. 

Likewise, Figure 8.56 shows the time-domain uncertainty plot. For each input/output variable pair, we 
see the shaded two-sigma confidence region, and the corresponding model grade from A to D. Both 
frequency-domain and time-domain uncertainty plots result in essentially identical model grades. 

 

Figure 8.55 Frequency domain uncertainty plot for the master model at a TTSS of 90 min 

 

Figure 8.56 Time domain uncertainty plot for the master model with a TTSS of 90 min 



The correlation plots show how much an input variable or MV correlates with another input variable. 
The correlation coefficient is a statistical measure of the strength of the relationship between the 
relative movements of two variables. The values range between -1.0 and 1.0. ... A correlation of -1.0 
shows a perfect negative correlation, while a correlation of 1.0 shows a perfect positive correlation. In 
Figure 8.57, both x-axis and y-axis represent input variables or MVs. We see the value of the correlation 
coefficient between two input variables on the upper right corner of each plot, with values between 0 
and 0.28, indicating a relatively minor positive correlation. 

 

Figure 8.57 Correlation plot for the master model at a TTSS of 90 min 

8.2.9 DMC3 Builder Task One:  Building the Controller Model for Developing the Master Model 

Before creating the final controller model, we need to check the steady-state gain of each input-output 
pair and investigate which changes in an input variable have a notable impact on a specific output 
variable. Specifically, we copy the steady-state gain values of all input-output pairs by following the 
path: Controllers ->Copolymerization -> Master Model ->Case Folder -> All Variables -> Right-click within 
the workspace of model response curves ->Copy gains. See Figures 8.58 and 8.59. 

 



Figure 8.58 Copying steady-state gains of model response curves. 

 

Figure 8.59 Steady-state gains of model response curves with a TTSS of 90 min 

Figure 8.60 gives the explicit ratio elements of the steady-state gain matrix of Figure 8.23. 

 

Figure 8.60 Explicit ratio elements of the steady-state gain matrix 

Comparing the magnitudes of the steady-state gain values in each CV column, we conclude that all input 
variables or MV rows have a notable influence on the “polymer molecular weight” column.  Additionally, 
we note the following: 

 The mass flow rate of the chain-transfer agent, Transf, has the least influence on the polymer 
mass flow rate, Polymer, with a gain of 0.05762. 

 Both mass flow rates of MMA and VA, that is, Flow_MMA and Flow_VA, have the smallest 
influences on the reactor exit temperature, T_Rx with gains of -0.03789 and 0.02761. 

 The mass flow rate of the chain-transfer agent, Transf, has the least influence on the 
concentration or mole fraction of monomer MMA in the polymer product, Conc_MMA with a 
gain of -0.00138. 

We eliminate those MVs that have the least influence on a specific CV with smallest steady-state gain 
values and click on “Mask Selection” to disable copying those response curves over to the final master 
model. For example, we mask the mass flow rate of transfer agent, Transf, as a MV for controlling the 
mole fraction of MMA in the polymer product, Conc_MMA, by highlighting the corresponding response 
curve, right-click to show the selection menu, and then choose “Mask Selection”. See Figures 8.61 and 
8.62. 



 

Figure 8.61 Eliminating the model response curve of a selected input-output pair                                                                    
from the final master model by Mark Selection. 

 

Figure 8.62 A display of four highlighted response curves that are eliminated                                                                     
in the final maser model after Mask Selection 

8.2.10  DMC3 Builder Task One: Creating a Controller Model 

The first step to create a controller model is to define the various trial runs as the Master trial. We 
confirm our previous selection illustrated in Figure 8.53. We click on Master Model in the navigation 
tree and see the Model views in the tool ribbons. Click on Update Curve within Model Operations in the 
tool ribbons. See Figure 8.63. After clicking on Update Curves, we see a model update report. Be sure to 
choose “Allow overwrite of all null models in the master”, and “Overwrite all curve operations” (see 
Figure 8.64). Clicking OK will generate the Master Model response curves of Figure 8.65. 



 

Figure 8.63 Master Model view waiting for Update Curves to copy the Master Case response curves                                                     
with a TTSS of 90 min to the empty model panel 

 

Figure 8.64 Model update report after clicking on Update Curve. 

 

Figure 8.65 Updated final master model with a TTSS of 90 min. 



8.2.11 Identification of Dead Time in Model Response Curves 

We enlarge the model response curve between Flow_VA and Mol_Wt by double-clicking on the curve. 
The enlarged curve appears to show a dead time of about 9 min before Mol_Wt begins to change after 
Flow_VA changes. We identify the dead time by following the path: Highlight the model curve -> Right-
click to open the menu for curve operations -> Click on Curve Operations (see Figure 8.66) -> Shift the 
curve by -9 min and update chart (see Figure 8.67)-> Then shift the curve by +9 min and update chart 
(see Figure 8.68) -> Update curve.  

 

Figure 8.66 Access the menu for curve operations 

 

Figure 8.67 Shifting the model curve by -9 min and updating chart. 



 

Figure 8.68 Shifting the model curve by 9 min and updating chart. 

Figure 8.69 shows the model response curves resulting from this curve operation to identify the dead 
time between output variable Mol_Wt and input variable Flow_VA. Note the dark blue triangular on the 
lower right corner of the response curve plot between these variables. 

 

Figure 8.69 Model response plot with a blue triangular on the lower right corner of a plot indicating 
having completed a curve operation 

Following the same procedure, we identify the dead times of other input-output pairs. Figure 8.70 
shows the resulting model response curves. 



 

Figure 8.70 Model response curves after curve operations for dead times. 

8.2.12 Collinearity Analysis 

Always perform collinearity analysis (discussed in Sections 8.1.4a and 8.1.4b) on the master model 
before its deployment. The collinearity analysis identifies and repairs ill-conditioned model matrices.  It 
can identify sub-models from a model matrix that are nearly collinear or highly nonlinear. A collinearity 
analysis includes the following four steps: 

Step 1.  Select variables and specify options – We choose MVs and CVs to be analyzed and specify the 
gain analysis options, such as RGA (relative gain analysis) threshold, singular value analysis, allowable 
gain changes, etc. 

Step 2.  Analyze and determine relationships – We analyze the model and determine which CV-MV pairs 
have collinearity trouble and specify confidence limits for the gains on individual model response curves. 

Step 3. Create groups – We create groups using MV-CV curves that do not have square relationships 
(2x2, 3x3, etc.). 

Step 4. Repair groups and update model – We repair gains for the square and non-square groups by 
either collinearizing or un-collinearizing the groups. 

We explain and demonstrate the details of each step below. 

Step 1. Select Variables and Specify Options. 

We begin by going to the Controller navigation tree and choose Copolymerization -> Master Model. On 
the top tool buttons, we click on “Collinearity” within “Model Operations”. See Figure 8.71. We 
immediately see a dialog: “Do you want to use collinearity repair wizard?” We choose “No” in order to 
use the collinearity repair dialog. See Figure 8.72. 



 

Figure 8.71 Activate the collinearity analysis within model operations. 

 

Figure 8.72 Choose the collinearity repair dialog by clicking on “No”. 

We then see “Select Variables –Copolymerization” and select all MVs and CVs for analysis. Click OK to 
proceed to the Collinearity Analysis window. See Figure 8.73. We note that if our list of MVs includes 
feedforward variables, we do not choose them in the collinearity analysis. 

 

Figure 8.73 Select variables for collinearity analysis. 

Next, we see the “Collinearity Analysis –Copolymerization” window, displaying the top toolbar for 
collinearity analysis buttons. We click on “Options” and see the window of “Collinearity Options”, as 
shown in Figure 8.74. We note that the default settings specify the use of RGA with a relative gain 
threshold of 10, a large threshold of 50 and a small threshold of 1.  These default settings will suffice for 
our model. We click OK on the “Collinearity Options” window to accept these settings, and then see the 
display of the results of the collinearity analysis of Figure 8.75. In the figure, we see the total number of 
submatrices as 1. This follows because we have 5 MVs and 4 CVs, and a 5x4 gain matrix; and RGA applies 
only to a single 4x4 square submatrix of the 5x4 gain matrix.  



 

Figure 8.74 Collinearity analysis options with default settings:                                                                                 
Relative gain analysis (RGA) or singular value analysis (SVA). 

Step 2.  Analyze and Determine Relationships 

 

Figure 8.75 Screen display of the results of collinearity analysis  

Figure 8.75 shows that there are two collinear systems, as indicated by the shaded MV-CV pairs: 
(Flow_VA)-(MOL-WT) with a gain of 21.15 and (T_JKT)-(MOL_WT) with a gain of 21.03; and (FLOW_VA)-
(CONC_MMA) with a gain of -0.03412, and (T_JKT)-(CONC_MMA) with a gain of -0.03391. 



Step 3. Create Groups 

Next, we click on CV names, MOL_WT and CONC_MMA, and on MV names, FLOW_VA and T_JKT to 
select these variables to form “Parallel Groups”. This results in a red triangle on the top right corner of 
the selected variable name. See Figure 8.76. 

 

Figure 8.76 Choosing the MV and CV to form parallel groups and the resulting red triangles on the top 
right corners of the variable names 

We then click on the “Create Group” button to the top tool bar for collinearity analysis and see the 
display of “Edit Parallel Groups” screen of Figure 8.77. Clicking on the “Edit” button displayed in Figure 
8.77 will show the screen of Figure 8.78. 

 

Figure 8.77 Display of the “Edit Parallel Groups” screen  



 

Figure 8.78 Creating parallel groups, choosing the default, FLOW_VA, as the pivot, and clicking on 
“Recalculate” to determine the required gain changes to collinearize the MVs. 

Step 4. Repair Groups and Update Model 

We click “OK” in the “Create Parallel Group” folder in Figure 8.78, followed by clicking on “Repair 
Square” in the top tool bar for collinearity analysis to fix the gain matrix for both remaining square 
submatrix groups, and the parallel group defined in the previous task. This leads to Figures 8.79 and 
8.80, which show the relative gains and the (model) gains, respectively.   

 

Figure 8.79 Display of relative gains after clicking on “Repair Square” 



 

Figure 8.80 Display of (model) gains after clicking on “Repair Square” 

We then click on “Repair” followed by “Start”. Figure 8.81 shows the Start and Finish of RGA (relative 
gain array) repair.  

 

Figure 8.81 Run RGA square repair. 

Step 5. Review and Save Gains to the Master Model 

Figure 8.82 asks us to apply the recommended changes. Click OK. This leads to Figure 8.83. We place the 
mouse inside the figure, right-click to open the options, and choose “Copy Gains”. 



 

Figure 8.82 Display of “Apply Collinearity” and apply gain changes directly. 

Figure 8.83 “Copy Gains” of the model after collinearity analysis 

The final model gains are as follows: 

                         



Before we continue further, we export the current controller application and save it according to the 
following path: Controller -> Copolymerization ->Right-click: Export -> Save as WS8.1a.dmc3application 
(see Figure 8.84). 

 

                             Figure 8.84 Export and save the controller model as WS8.1a.dmc3application. 

8.2.13 Open-Loop Prediction and Prediction Error (Model Bias)  

We first identify the units and ranges of MVs and CVs in our dataset before continuing with open-loop 
prediction. Following the path: Controllers ->Copolymerization -> Master Model -> Cases Folder ->All 
variables, we see the units and ranges of MVs and CVs displayed in Figure 8.85. 

 

Figure 8.85 Units and ranges of MVs and CVs in copolymerization controller model. 

To proceed with predictions, we follow the path: Controller->Copolymerization ->Master Model ->Top 
ribbons: Master Model Actions ->Compare -> Compare predictions -> See Figure 8.86 -> Generate 
predictions-> Close -> Top ribbons: Zoom-In ->Figure 8.87. We note from Figure 8.85 from the the 
dataset, the polymer production rate, POLYMER, varies from 12.297 to 31.843 kg/hr. This is the range of 
POLYMER in Figure 8.87. To understand Figure 8.87, we note the difference between the prediction 
(blue) and measurement (red) gives the prediction error (pink). In the figure, we should read the positive 
and negative values for the prediction error beginning from the baseline of zero prediction error at 20 
kg/hr. Figure 8.88 shows the prediction plot for all four CVs. 



A significant result from the prediction analysis is the scatter plot. Predictions should be unbiased over 
the entire dataset range. It is important to review the scatter plot. Figure 8.89 illustrates that the scatter 
plots for all four CVs in our copolymerization controller appear to be acceptable. 

 

Figure 9.86 Setup for prediction run 

 

Figure 8.87 Comparison of CV prediction with measurement and illustration of prediction error 



 

Figure 8.88 Prediction plots for all four CVs 

 

Figure 8.89 Scatter plots for all four CVs 

8.2.14 DMC3 Builder Task 2: Configuration – Model Configuration  

The model configuration task involves the specifications of: (1) feedback filters for prediction errors 
(discussed previously in Section 8.1.5 for prediction error filtering); (2) subcontrollers; (3) test groups; 
and (4) composite participation. See Figure 8.90. 

Aspen DMC3 allows a controller to be subdivided into multiple units of MVs and CVs for operational 
convenience in turning multiple variables ON or OFF at the same time. These units of MVs and CVs are 
known as subcontrollers. For example, we may classify a large DMC3 controller for an ethylene 
production train to have the following subcontrollers: (1) ethylene cracked gas compressor and quench; 
(2) cold-box and demethanizer, refrigeration compressors; and (3) de-ethanizer and C2 splitter. If 
subcontrollers are used, every MV in the controller must be a member of one and only one 



subcontroller.  Every CV in the controller must be a member of at least one subcontroller, although a CV 
may belong to more than one subcontroller. Feedfirwards do n0t belong to subcontrollers. Our current 
woekshop deals with a small controller and does not have subcontrollers. 

 

Figure 8.90 Model configuration task in DMC3. 

must be a member of at least one subcontroller, although a CV may belong to more than one 
subcontroller. Feedforwards do not belong to subcontrollers. Our current workshop deals with a small 
controller, and does not have subcontrollers. 

Aspen DMC3 SmartStep application uses primitive process models to predict the behavior of the tested 
process. When the tester application automatically steps an independent variable, it also keeps 
dependent variables within their prescribed limits. The result is a constrained step test where all 
constraints are honored. A SmartStep application uses the concept of test groups to help 
maximize testing efficiency. A test group consists of MVs and CVs for which step tests are performed. 
The current workshop does not involve a SmartStep application with test groups.  

The last DMC3 model configuration application involves composite controllers. An Aspen DMC3 
composite application facilitates the coordinated action of multiple DMC3 controller applications. It 
works by providing consistently calculated steady-state MV and CV targets to participating controllers. A 
Composite application is typically used in the following scenarios: (1) a large part of the unit is under the 
control of several controller applications; and (2) controllers on separate processes, with significantly 
different times to steady-state, are linked by common constraints. A DMC3 composite application 
utilizes the same steady-state optimization technology that is embedded in FIR controller applications. 
The composite suite variable set is a superset of all MVs, FFs and CVs in all participating controllers. The 
steady-state solution obtained from the DMC3 composite application, therefore, honors the constraints 
and utilizes the MVs of all the participating controllers. Our current workshop does not include 
composite application. 

Figure 8.91 illustrates that we specify the default option of “full feedback “of prediction error (model 
bias), in which we calculate the difference between the current measurement and the current 
prediction to calculate a bias that is applied to each element of the prediction error. This is exactly what 
we previously demonstrated in Figures 8.9 to 8.11, Section 8.1.2a. Figure 8.91 also shows the options of 
“First order” and “Moving average” filters, which were previously explained in Section 8.1.5 for 
prediction error filtering. Lastly, the check boxes in the option of “Intermittent” in Figure 8.91 refers to 



those CVs for which a new measurement is not available in each controller execution cycle. This is 
typically the case of a discretely sampled variable, such as composition from a stream analyzer. 

 

 

Figure 8.91 Specification of “full feedback” option for prediction error feedback in model configuration. 

8.2.15 DMC3 Builder Task 2: Configuration – Configuring the Steady-State Optimization 

We follow Section 8.1.6a-b to configure the steady-state optimizer. Figure 8.92 illustrates the interface 
to configure the SS optimizer. Figures 8.93a-b show the input entries for MVs and CVs for the steady-
state simulator, respectively. 

 

Figure 8.92 Configuration of the steady-state optimizer 

 

 

Figure 8.93a Input entries for MVs for steady-state simulator  



 

Figure 8.93b Input entries for CVs for steady-state simulator 

8.2.16 DMC3 Builder Task 3: Optimization – Performing the Steady-State Optimization 

We initialize the SS optimizer tuning by clicking on “Initialize Tuning” button. We choose the dataset 
WS8_1, uncheck “initialize dynamic tuning”, and click “OK”, following by clicking on “Calculate” button 
(see Figure 8.94). This results of CV targets from the SS optimization appear in Figure 8.95. 

 

Figure 8.94 Initialize optimizer tuning and calculate. 

 

Figure 8.95 MV results of steady-state optimization using the current configuration and tuning     

         



 

Figure 8.96 CV results of steady-state optimization using the current configuration and tuning                                         

8.2.17 DMC3 Builder Task 4: Simulation – Configuring and Simulating the Dynamic Controller 

We follow Section 8.1.6c-e to configure the dynamic controller. Figures 8.97a-c shows how to initialize 
the controller simulation. Figures 8.98a-c show the input entries for MVs and CVs, including operating 
values and tuning values. After completing the entries displayed in Figures 8.97a-c, we save the 
simulation file as WS8.1_BaseCase.dmc3application. 

 

Figure 8.97 Initialize the controller simulation 

 

Figure 8.97a Input entries for controller simulation –part 1. 



 

Figure 8.97b Input entries for controller simulation –part 2. 

 

Figure 8.97c Input entries for controller simulation –part 3. 

Before we make the controller simulation, we save this simulation file as 
WS8.1_BaseCase.dmc3application. Saving the input entries for the base case is essential, as it allows us 
to return to these initial specifications later if necessary. We note that when running the controller 
simulation forward in time, DMC Builder has no provision to let the controller rewind in time to its initial 
specifications. 

With this controller model, we can proceed to fine-tune the controller to optimize the polymer 
production, improve product quality, and compensate for disturbances and setpoint changes, etc. 

8.2.18 DMC3 Builder Task 4: Simulation –Dynamic Controller Applications to Polymer Production and 
Setpoint Changes 

To increase the polymer production, we save the base case as a new file, WS8.1-1.dmc3application.  
There are many ways to increase the polymer production from its current value.  We illustrate an 
approach in Figures 8.98a-b, which show the controller input entries to raise the polymer production to 
40 kg/hr, while satisfying all the constraints. This involves setting the higher engineering and validity 
limits of initiator mass flow INIT to 1.5 kg/hr, the higher engineering and validity limits of chain transfer 



agent mass flow TRANSF to 6 kg/hr, and the lower engineering and validity limits of polymer mass flow 
POLYMER to 40 kg/hr.  

 

Figure 8.98a Input entries for controller simulation increasing polymer production to 40 kg/hr – part 1. 

 

Figure 8.98b Input entries for controller simulation increasing polymer production to 40 kg/hr – part 2. 

We save the converged simulation file as WS8.1-2.dmc3application. 

Next, we wish to raise the polymer molecular weight to 36,000, while keeping the polymer production 
to 40 kg/hr, and controlling the concentration of MMA in the polymer product to 0.2. We can achieve 
this setpoint change by referring to the input entries of Figure 8.89a, and raising the operator and 
validity high limits of polymer molecular weight MOL_WT to 36,000, while keeping other input entries 
unchanged. Running the simulation quickly reaches the new polymer molecular weight target value of 
36,000. See Figure 8.99. We save the resulting simulation file as WS8.1-3.dmc3application. 



 

Figure 8.99 Input entries for controller simulation increasing the polymer molecular weight MOL_WT to 
36,000 while keeping the concentration of MMA in the product CONC_MMA at 0.2 

This concludes the current “long” workshop of introducing DMC3 for a copolymerization problem. We 
covered the DMC3 tasks of (1) master model, (2) configuration, (3) optimization, and (4) simulation. 
Interested readers may refer to training courses offered by Aspen Technology, Inc. for an introduction to 
the additional tasks of (5) calculations (performing online calculations and variable transformations), 
and (6) deployment (performing controller deployment). 

8.3 Model-Predictive Control of Nonlinear Polyolefin Processes 

8.3.1 Challenges of Developing Nonlinear Predictive Modeling for Polyolefin Process Control 

In Section 1.4.2, we review the observations by Turner and his colleagues [14,15] of the significant 
deficiencies in applying the conventional neural networks to model-predictive control of polymer 
processes, particularly with grade changes.  Specifically, we mention that: (1) Conventional neural 
network architectures intrinsically contain regions where the partial derivative of a dependent variable 
(a process variable, PV) with respect to an independent variable (a manipulative variable, MV) becomes 
zero, and the resulting zero model gain would lead to an infinite controller gain; and (2) conventional 
neural network models cannot cope with the extrapolative demands of predictive control during 
polymer grade transitions. These two deficiencies are only two of the ten reasons that Turner and his 
colleagues [14,15] speak against applying conventional neural network models to model-predictive 
control of polymer processes. In a 2020 article, Bindlish [18] has demonstrated a controller output 
variable that has a steady-state gain inversion (changing signs from positive to negative, or from 
negative to positive) in a nonlinear model-predictive control of a DOW chemical process.  

In analyzing what must be done for model-based control of polymer processes, Bausa [19] describes 
that the nonlinearities in a polymer process occur mainly during the grade change. A model that was 
identified for a special grade often does not predict the steady-state gains correctly when considering 
other polymer qualities such as melt index, which typically varies nonlinearly with process independent 
variables.  

Bausa [19] says that it is a logical step to extend the linear model-predictive control algorithms gradually 
with nonlinear model characteristics. Figure 8.100 illustrates two approaches to do this. The Wiener 
approach multiplies the linear dynamic model output with a nonlinear steady-state function or mapping 



to yield the output prediction; the Hammerstein approach connects the output from a nonlinear steady-
state function or mapping with a linear dynamic model to produce the output prediction. Jeong et. al 
[20] have demonstrated a nonlinear model-predictive controller using a Wiener model for an 
experimental continuous methyl methacrylate polymerization reactor. We note that in applying a 
Wiener model, the linear dynamic model is typically a multi-input and multi-output (MIMO) model, 
while the nonlinear steady-state function or mapping is typically a multi-input single-output (MISO) 
model. For example, the single output could be the melt index of a polyolefin product, while the 
multiple inputs could be the hydrogen mass flow rate, flow rate ratios of ethylene to hydrogen, and 
butane to hydrogen, etc.  

 

Figure 8.100 (a) The Wiener model; (b) The Hammerstein model. 

8.3.2 Nonlinear Steady-State Mapping by State-Space Bounded Derivative Network (SS-BDN) 

8.3.2a Possible Gain Inversion and Non-Monotonic Behavior of Conventional Neural Networks 

We refer the reader to reference [17] and many online tutorials about conventional neural networks, 
and will not repeat those readily available, basic materials in this text. We briefly review the relevant 
features of a conventional neural network that is essential to demonstrating its deficiencies for polymer 
process control applications. 

Figure 8.101 illustrates the foundation of a neural network, the neuron, or node (sometimes called a 
processing element). We represent the inputs to the j-th node as an input vector, a, with components ai 
(i = 1 to n). The node manipulates these inputs, or activities, to give the output, bj, which can then form 
a part of the input to other nodes. In the figure, we see that the j-th node transfers the i-th input a i to 
the j-th output bj through a weight factor wij and a transfer function f(xj). Tj is the internal threshold for 
node j.  

 

Figure 8.101 The processing element (neuron or node) of a neural network. 



In polymer process control using neural network models, input components ai could represent the 
independent variables such as hydrogen mass flow rate, flow rate ratios of ethylene to hydrogen, and of 
butane to hydrogen, etc.; while the output bj could be a dependent variable, such as the polymer melt 
index. Depending on the type of transfer function f(xj) being used, we may find that the partial 
derivative of an output or a dependent variable bj with respect to an input component or an 
independent variable ai may change sign from positive to negative, or from negative to positive. 
According to Eqs. (8.3) and (8.4), these partial derivatives represent elements of the steady-state gain 
matrix. We call this sign change as a steady-state gain inversion. 

Consider, for example, a popular transfer function, f(xj) = tanh(xj), the hyperbolic tangent function. We 
review some basic calculus for the hyperbolic tangent function here. 

Define:  
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Let u = f(x), we write the derivatives as follows: 
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  (8.49) 

Figure 8.102 illustrates the hyperbolic tangent function and its derivative. While the hyperbolic tangent 
function monotonically increases with increasing xj, its derivative value changes from monotonically 
positive when xj is negative to monotonically negative when xj is positive. Therefore, using the 
hyperbolic tangent transfer function could lead to a change in the sign of the partial derivative of 
dependent variable bj with respect to independent variable xj, resulting in a gain inversion. 

 

Figure 8.102 The hyperbolic tangent transfer function and its derivative. 



What type of transfer function do we need to avoid possible gain inversion? We want to choose a 
transfer function whose derivative varies monotonically. Consider, for example, the analytical integral of 
a standard hyperbolic tangent transfer function as our new transfer function [14,15]: 

tanh(𝑎𝑥) 𝑑𝑥 =
1

𝑎
ln[cosh(𝑎𝑥)] + 𝑐 ⟹

(𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

ln (cosh 𝑢)
   (8.50) 
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= tanh u
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             (8.51)                

Figure 8.103 illustrates the transfer function log(cosh u), Eq. (8.50) and its derivative, Eq. (8.51). While 
the function itself is always positive in value, its derivative monotonically increases with increasing 
independent variable xj. Therefore, there is no concern for possible gain inversion. 

 

Figure 8.103 The transfer function log(coshu) and its derivative 

8.3.2b State-Space Bounded Derivative Network (SS-BDN) 

As discussed in [15,16], the SS-BDN is essentially the analytical integral of a neural network. Based on Eq. 
(8.50) - (8.51), we illustrate the general model architecture of a SS-BDN based on the analytical integral 
of a neural network based on a hyperbolic tangent transfer function. Figure 8.104 shows the model 
architecture. 



 

Figure 8.104 Architecture of the state-space bounded derivative network 

We wish to use this architecture to demonstrate that the partial derivative of the dependent variable y 
with respect to independent variables xk is always bounded (hence the name of bounded derivative 
network). Based on Figure 8.104, we write: 

 

Applying  ln[cosh(ax)] =  atanh(ax) and setting i = k, we can write: 



 

Eqs. (8.51) and (8.52) show the key features of the SS-BDN for nonlinear steady-state mapping that 
ensures the partial derivative of the dependent variable with respect to independent variables remain 
bounded. Additionally, as demonstrated in Figure 8.103, the choice of the transfer function within the 
network makes the values of the partial derivative monotonically increasing with increasing values of 
the independent variable. Both features are essential to the success of applying the Wiener model, 
Figure 8.100a, to polymer process control [15,16]. 

8.4 WS8.2 Development of a Nonlinear Predictive Controller Model for a Polypropylene Process 

8.4.1 Objective 

The objective of this workshop is to demonstrate how to use the DMC3 Builder to develop a nonlinear 
model-predictive controller for a polypropylene process based on the Wiener model of Figure 100a. This 
model consists of a linear state-space dynamic model for the process dynamics integrated with a 
nonlinear state-space bounded derivative network (SS-BDN) for polymer quality control. The goal of the 
controller is to control the polymer melt index and density. We also simulate the controller performing a 
transition from a melt index of 1 to a melt index of 10 at a constant density of 920 kg/m3. 

8.4.2 Starting an APC Project and Choosing Nonlinear Controllers, and Data Preprocessing 

Figure 8.105 shows the selection of APC Project and DMCplus, State-Space and Nonlinear Controllers. 
We save the project as “PP Quality Control”. From the “Import” tool ribbon on the top left, we choose 
“Dataset”, and select the text file, WS8.2.txt within our working folder. We then click on the Open 
button. See Figures 8.106 and 8.107. 



 

 

Figure 8.105 Selection of APC Project and DMCplus, State-Space and Nonlinear Controllers. 

 

Figure 8.106 Import dataset, WS8.2.txt 

 

Figure 8.107 Contents of imported dataset 



In Figure 8.107, we see the following variables: (1) CVs – MI_Lab, MI_Inst, Density_Lab and Density_Inst; 
(2) MVs – H2_C2 and C4_C2; and (3) DVs: Temp and C2_Partial_Pressure. We click on Import displayed 
in Figure 8.107, and see an “Interpolate Dataset” window. We click on “Start” button to interpolate any 
bad and missing data slices longer than 5 minutes in duration. We then clock the “Close” button to 
complete the interpolation analysis. We see the message that “0 of 8 vectors (variables) have been 
interpolated”. We do not show the screen images of these simple steps. 

Following the interpolation step, we see the vector (variable) summary and the corresponding trend 
plot. The software automatically shows the first three CVs (MI_Lab, MI_Int, and Density_Lab), and we 
choose the fourth CV (Density_Inst). See Figure 8.108.  We also display the MVs (H2_C2 and C4_C2) and 
DVs (Temp and C2_Partial_Pressure). See Figure 8.109. 

Figure 8.108   A display of the CVs 

 

Figure 8.109 A display of the MVs and DVs 



Reviewing the trend plots of Figures 8.108 and 8.109, we see no need to do data slicing, as there is no 
bad data slice. 

Next, we click on “Manage Lists” button on the top tool ribbon and follow Figures 8.46 and 8.47 to 
create the MV and CV lists. See Figures 8.110 and 8.111. 

 

Figure 8.110 Manipulated variables, MVs 

 

Figure 8.111 Controlled variables, CVs 

8.4.3 Aspen Nonlinear Controller: Task 1 - Model Identification                                                                                                         
8.4.3a Step-Response Plot 

At the far right of the tool ribbons, we click on “Create Model” button. In “Model Type Selection”, we 
choose “Nonlinear”. See Figure 8.112. Clicking on OK gives the “Identify Model” inputs. See Figure 8.113. 

 

Figure 8.112 Selection of model type 



 

Figure 8.113 “identify Model” inputs 

Clicking on “Options” displayed in Figure 8.113 gives the default specifications of Figure 8.114. We 
accept these specifications and click on “OK”. We then click on “Identify” shown in Figure 8.113. This 
results in the step-response plot of Figure 8.115, which represents the first type of plot under “model 
views” button on the top tool ribbon. 

 

Figure 8.114 Model identification options 



 

Figure 8.115 Step response curves of a nonlinear polypropylene process 

The step-response curve of a nonlinear polymer process is quite different from that of a linear process 
(e.g., Figure 8.53). For example, when H2_C2, a MV, increases, the affected MI_Lab, a CV, also increases, 
but it displays three response curves of increasing values from colors in red to blue and then to green. 
By contrast, when MV C4_C2 increases, the affected CVs, Density_Lab and Density_Inst, show three 
response curves of decreasing values from colors in red to blue and then to green. These responses 
depend on the operating point or values of the MVs, the direction of the change and the step size of the 
change in MV. In particular, the three response curves in the figure represent the time-dependent 
change of a chosen CV to a change of a chosen MV with its magnititue equal to the default step size of 1 
(red curve), two times the step size (blue curve) and three times the step size (green curve). 
Additionally, putting the mouse inside the response curve box for a selected CV-MV pair, right-click to 
open the menu and select “details”, we see a detailed plot of the MI_Lab-H2_C2 response curve in 
Figure 8.116. 

 

Figure 8.116 Showing the details of the MI_Lab-H2_C2 step response curve 

8.4.3b I/O Response Plot 



Next, we click on the I/O button on the top tool ribbon to generate an I/O plot which represents the 
response of each output as each input is moved from its lower limit to its upper limit. See Figure 9.117 
for the resulting I/O plot and Figure 8.118 for a detailed MI_Lab-H2_C2 I/O plot. In the I/O plot, the 
limits are either the validity limits, or the minimum and maximum values for that input from the current 
dataset. We see in Figure 8.117 that as MV C4_C2 increases, both Density_Lab and Density_Inst 
decrease. Table 8.5 summarizes the positive or negative sign of ∆CV/∆MV or ∆CV/∆DV for CVs (MI_Lab, 
MI_Inst, Density_Lab and Density_Inst) and MVs (H2_C2, C4_C2) or DVs (Temp, C2_Partial_Pressure). 

 

Figure 8.117 The I/O response curve of a nonlinear polypropylene process 

 

Figure 8.118 Showing the details of the MI_Lab-H2_C2 I/O response curve 

Table 8.5 Positive or negative sign of ∆CV/∆MV or ∆CV/∆DV 

 

 

 



8.4.3c Gain Plot 

Finally, we click on the “Gain” button on the top tool ribbon to generate a gain plot of Figure 8.119 
which represents the amount of gain for each input/output pair as each input increases from its lower 
limit to its upper limit. Figure 8.120 presents a detailed MI_Lab-H2_C2 I/O plot.  

 

Figure 8.119 The gain plot of a nonlinear polypropylene plot. 

 

Figure 8.120 Showing the details of the MI_Lab-H2_C2 gain curve 

8.4.4 Aspen Nonlinear Controller: Task 1 – Model Identification; Building the Nonlinear State-Space 
Bounded Derivative Network (SS-BDN) 

8.4.4a Configure Dynamics and Output States 

On the top tool ribbon, we click on “Build Models” button. We see an “Edit MISO Models” window and 
hit the “Configuration” button. This results in Figure 8.121, displaying the default model type, “Model 
Identified”. We replace each model type of our output variable (CV) by BDN through the drop-down 
menu. This leads to Figure 8.122. We see the “Inputs” button in Figure 8.122. Clicking on the “Inputs and 
specifying the inputs affecting each output, we see Figure 8.123. Next, we hit the “Deadtimes” and 
specify the initial Deadtimes in number of sample periods. These dead times are to model nonlinearity 
in the initial process response during changes. See Figure 8.124. We click on each output variable, 



followed by hitting the “Identify Deadtimes” button and keeping the default parameters, and then click 
on “Identify” to identify Deadtimes. See Figure 8.125. Repeat this step for all four output variables 
(MI_Lab, MI_Inst, Density_Lab and Density_Inst). 

Having identified the Deadtimes, we click on “Configure” button displayed in Figures 8.121 to 125. This 
leads to Figure 8.126, in which we configure within the “Dynamics” tab, the filter time constants for 
input variables (He_C2, C4_C2, Temp, C2_Partial_Pressure) for output variable MI_Lab. We repeat this 
step for output variables MI-Inst, Density_Lab, and Density_Inst. Next, we switch to the “Output States” 
tab within “Configure” step, and configure one output states, one for each filter, as illustrated in Figure 
8.127. We repeat this step for output variables MI-Inst, Density_Lab, and Density_Inst. 

Figure 8.121 Displaying available model types 

Figure 8.122 Choosing the model type, bounded derivative network (BDN) 

Figure 8.123 Specifying the input variables affecting each output 



 

Figure 8.124 Specifying the dead times: “2” refers to the number of sample periods (called index value) 

 

Figure 8.125 Identify for Deadtimes for MI_Lab. Repeat this step for all four output variables. 

 

Figure 8.126 Configure the filter time constants for input variables (He_C2, C4_C2, Temp, 
C2_Partial_Pressure) for output variable MI_Lab 



 

Figure 8.127 Configure the output states for each filter for input variables (He_C2, C4_C2, Temp, 
C2_Partial_Pressure) for output variable MI_Lab 

8.4.4b Build Model with Gain Constraints 

This step features a significant ability of the BDN to build a model based on specified gain constraints to 
avoid incorrect gain inversion discussed in Section 8.3.2a. Based on Figure 8.117 and Table 8.5 in Section 
8.4.3b, we can specify the corresponding gain constraints.  

We specify the steady-state gain constraints by continuing the “Configure” step, and clicking on “Steady 
State tab displayed in Figure 8.127, corresponding to output or CV, MI_Lab. This gives Figure 8.128, in 
which we specify a Min Gain of 0 and a Max Gain of 10000 for a positive gain; and a Min Gain of -10000 
and a Max Gain of 0 for a negative gain following Table 8.5. We then select “Identify” to build the BDN 
model for the MI-Lab. Figure 8.129 shows the resulting comparison between the nonlinear BDN model 
prediction and plant data for MI-Lab. For an average MI_Lab value of 4, the root-mean-squared error 
(RMSE) between the model prediction and plant data is only 0.0221, or approximately 0.55%. 

 

Figure 8.128 Specify the steady-state gain constraints for MI-Lab following Table 8.5 



 

Figure 8.129 Comparison between nonlinear BDN model prediction with plant data                                                             
for MI_Lab with a “Max Gain” of 10000 

Figure 8.130 shows the specification of steady-state gain constraints for Density_Lab, following Table 
8.5, and Figure 8.131 compares the predicted Density_Lab values from the nonlinear BDN model with 
plant data. For an average value of Density_Lab of 918, the RMSE between the model prediction and 
plant data is only 0.007485, or approximately 0.008154%. 

 

Figure 8.130 Specify the steady-state gain constraints for Density-Lab following Table 8.5 

 



 

 

Figure 8.131 Comparison between nonlinear BDN model prediction with plant data for Density_Lab with 
a “Min Gain” for C4_C2 of -10000, and a “Max Gain” for the remaining inputs of +10000. 

Following the steady-state gain constraints of Table 8.5 and repeating the same procedure to identify 
the models for MI_Inst and Density_Inst, we get essentially identical comparison curves as in Figures 
8.129 for MI and 8.131 for Density. 

8.4.4c Fine-Tune Steady-State BDN Gains 

Referring to Figure 8.128, we narrow the range of the steady-state BDN gain by lowering the “Max Gain” 
for all four inputs from 10000 to 100 and run the BDN regression again. This results in Figure 8.132, in 
which the error between the model prediction and plant data of MI_Lab drops from 0.022068413 to 
0.010037448. Likewise, referring to Figure 8.130 for Density_Lab, we change the “Min Gain” for C4_C2 
to -100, and the “Max Gain” for the remaining three inputs to 100, and run the BDN regression. We find 
that the resulting error between the model prediction and plant data of Density_Lab shows no 
improvement.  



 

Figure 8.132 Comparison between nonlinear BDN model prediction with plant data for MI_Lab with a 
“Max Gain” of 100  

After configuring and identifying the SS-BDN model, we see the “OK” status of the model identification, 
as seen in Figure 8.133.  We also see the resulting steady-state gain plot of Figure 8.134. 

Figure 8.133 Status” OK” indicating completion of the SS-BDN model identification 

 

Figure 8.134 Steady-state gain plot of the SS-BDN model 



Table 8.6 shows the resulting steady-state gain for the SS-BDN model. In practice, we only pay attention 
to the columns of MI_Lab and Density_Lab. We do not need to develop the model for MI_Inst and 
Density_Inst. 

                                              Table 8.6 Steady-state gains of the SS-BDN model 

 

8.4.4d Generate Model Predictions 

Next, we apply the SS-BDN model to predict the MI_Lab and Density_Lab, and compare the predictions 
with plant data. We click on “Generate Predictions” on the top tool ribbons, and choose dataset WS82. 
See Figure 8.135. The resulting comparison appears in Figure 8.136. 

 

Figure 8.135 Select dataset to compare with model predictions  

 

Figure 8.136 Generated model predictions of MI_Lab and Density_Lab. 

8.4.5 Aspen Nonlinear Controller: Task 2 – Configuration – Model Configuration 

MV/DV↓           CV→ MI_Lab MI_Inst Density_Lab Density_Inst 
H2_C2 29.1 29.1 14.4 14.4 

C4_C2 2.42 2.42 -23.7 -23.7 
Temp 0.088 0.088 0.44 0.44 
C2_Partial_Pressure 0.59 0.59 0.18 0.18 



As discussed in Section 8.2.14, the model configuration task involves the specifications of feedback 
filters for prediction errors, based on prediction error filtering covered in Section 8.1.5. We click on the 
“Feedback Filter” button within the top tool ribbons, followed by “Fine Tune” button to fine-tune the 
feedback filter. See Figures 8.137 and 8.138. 

 

Figure 8.137 Choosing the default feedback filter 

 

Figure 8.138 Fine-tune the feedback filter 

8.4.6 Aspen Nonlinear Controller:  Task 2 – Configuring and Runnng the Steady-State Optimiation 

We follow Figure 8.92 to configure the steady-state optimizer. Figure 8.139 specifies the inputs and 
outputs to configure the optimizer. Figures 8.140a-b show the input entries for MVs and CVs for the 
steady-state simulator, respectvely. In Figure 8.140a, we set the initially LP costs for MVs based on the 
negative values of the steady-state gains reported in Table 8.6. We do this by following the example 
illustrated in Figure 8.12 and Table 8.1. We note that in Table 8.6, in the MI_Lab column, all gains are 
positive; in the Density_Lab column, the gain ∆(Density_Lab)/∆(C4_C2) is negative. In the following, we 
choose the negative values of the steady-state gains in the Density_Lab column of Table 8.6 as our initial 
LP costs, except that we change the gain value for ∆(Density_Lab)/∆(C4_C2) from -23.7 to -5 (hence, the 
LP cost becomes +5 for MV or input C4_C2 in Figure 8.140a). As discussed in Section 8.1.2b and Table 
8.1, an input or a MV with a positive LP cost means that to minimize cost and maximize profit, we tend 
to move the MV towards its lower operating limit. By contrast, we tend to move a MV with a negative LP 
cost towards its upper operating limit. We will explore the impact of having different initial LP costs on 
the resulting steady-state targets of MVs and CVs. 



Figure 8.139 Inputs and outputs for steady-state optimization 

 

 

Figure 8.140a Specifications of MVs for steady-state simulator. 

 

Figure 8.140b Specifications of CVs for steady-state simulator 

Next, we click on the “Constraints” button, and see the display of Figure 8.141. We are to calculate the 
steady-state targets of CVs and MVs.

 

Figure 8.141 Current constraints of MVs and CVs for steady-state optimization 



We initialize the steady-state optimizer calculation by specifying th dataset WS82 and cancelling the 
initialization of the dynamic tuning. See Figure 8.142. 

 

Figure 8.142 Initialize steady-state optimizer by specifying the dataset 

 

Figure 8.143 Steady-state values obtained by the steady-state optimizer 

We now explore the impact of using the negative values of the steady-state gains in the MI_Lab column 
of Table 8.6 as our initial LP costs. Figure 8.144 shows the specifications MVs for steady-state simulator. 
The specifications for the CV are identical to those displayed in Figure 8.140b. Following the same 
procedure as in Figures 8.141 to 8.142, we find the results of steady-state values obtained by the 
steady-state optimizer in Figure 8.145, which are different from those displayed in Figure 8.143. This 
comparison demonstrates that the initial LP cost specifications affect the resulting steady-state targets 
for both MVs and CVs. 

In Table 8,6, between the negative values of Density_Lab column and of MI_Lab column, which set of 
values should we use as initial LP costs displayed in Figures 8.143 and 8.145? We suggest choosing the 
set of initial LP costs that gives us the steady-state target values of CV that are close to our intended 
controller operation. 



 

Figure 8.142   Specifications of MVs for steady-state simulator  

 

Figure 8.143 Steady-state values obtained by the steady-state optimizer 

8.4.7 Aspen Nonlinear Controller: Task 3 – Configuring and Simulating the Dynamic Controller with 
Setpoint Changes 

We follow Figure 8.97 to initialize the controller simulation. Figure 8.144a-b show the inputs for MVs 
and CVs, including the operating values and tuning values. We save the resulting simulation file as 
WS8.2_BaseCase_BDN.dmc3application. 



 

Figure 8.144a Initial MV specifications of controller simulation 

 

Figure 8.144b Initial CV specifications of controller simulation 

We wish to simulate the transition control of CV values of MI_Lab and MI_Inst from 2.7  to 1.5, while 
keeping both Density_Lab and Density_Inst between a lower operating limit of 938 kg/m3 and an upper 
operating limit of 940 kg/m3. Based on Figure 8.134 and Table 8.6, we expect the following changes to 
the MVs: C2_H2 and C4_C2 values to increase toward their upper operating limit, and temp and 
C2_Partial_Pressure values remain essentially unchanged.  

We lower the initial move suppression of both MVs, C2_H2 and C4_C2, from 1 to 0.2, to speed up the 
increase of both MVs. We also increase the initial move suppression of MV, Temp, from 1 to 5, to slow 
down the change in Temp. 



Figure 8.145 shows the changes of our MV and CV specifications. 

 

 

Figure 8.145 Changes to selected MV and CV tuning parameters for                                                                                  
MI and Density transition control 

Figure 8.146 shows the results after CV stead-state values reach their operating limits, that is, at a MI-
Lab value of 1.5, and a Density-Lab value of 925 kg/m3. We note that during the simulation, the 
controller runs in a true closed-loop fashion, with measurement data received as follows: (1) For MVs,  
the setpoint calculated by the move plan is transferred to the measurement value; and (2) For CVs, the 
prediction for the next cycle is transferred to the measurement value. Therefore, the measurements of 
all variables do not become stale. 

 

Figure 9.146 Results after CV steady-state values reach their operating limits 

The top plot in Figure 8.147 shows that the closed-loop MI_Lab prediction (in red) continues to decrease 
downward and approach the calculated steady-state target (the upper operating limit) of 1.5 (in green); 
the bottom plot in Figure 8.147 shows that the closed-loop Density_Lab prediction (in red) continues to 
increase upward and approach the calculated steady-state target (the lower operating limit) of 925 
kg/m3. We will not show the remaining simulation cycle in which the closed-loop prediction values 
match the calculated steady-state targets. 



 

Figure 8.147 Controller simulation plot showing the closed-loop precitions  (in red)                                                             
approach the claculated steady-state targets (in greed) of CVs. 

This concludes the current workshop. We save the project as PP Density and MI Control_Final. 

8.5   Aspen Maestro for Automating the Model-Building Workflow 

Aspen DMC3 V12 has added a powerful tool to automate the model-building process for model-
predictive control. We recommend the reader to take time to view the on-demand webinar by Kalafatis 
and Reis [21] to see how embedding AI into DMC3 can greatly speed up the model-building process and 
improve the model- prediction accuracy. However, we emphasize that to truly understand the concepts 
and know-hows behind each step of this automated model-building process, the reader should first 
become familiar with the fundamentals and practice we cover in Sections 8.1 and 8.2. 

Figures 8.148a-d [21] show the screen image of the four steps of the automated model-building process 
using Aspen Maestro which is an integrated part of DMC3 V12 and later versions. Note that we have 
purposed removed a part of the step-response curves on the right side of the figure to clearly show the 
Aspen Maestro workflow steps.  

Step 1.  Select variables: Figure 8.148a; follow Sections 8.2.2 to 8.2.4. Note the new “Maestro Model” 
button next to the “Select Variables” button in DMC3 V12 on the left of top tool buttons. 

Step 2.  Data mining: Figure 8.148b; automate Section 8.2.5, data slicing - this step explores data slices 
used to create the model. Select one of the four available options in the sensitivity scale (PID, low, 
medium and high) and view the data slicing results. A high sensitivity scale tends to include the best 
independent moves available to each input or manipulated variable. Note the new “Data Mining” button 
in DMC3 V12 on the left of top tool buttons. 



 

Figure 9.148a   Step 1 of Aspen Maestro model workflow for DMC3 – Select variables 

 

Figure 9.148b   Step 2 pf Aspen Maestro model workflow for DMC3 –Data mining. 

 

Step 3a. Data analysis – Correlation detection    Figure 8.148c – input correlation detection.  This step 
quantifies how much an input variable or a MV correlates with another input variable. Clusters of input 



variables inside a circle represent highly correlated variables with correlation coefficients close to -1.0 to 
1.0. A correlation of -1.0 shows a perfect negative correlation, while a correlation of 1.0 shows a perfect 
positive correlation. See Section 8.2.8 and Figure 8.57. The plot also identifies input variables with no or 
minimum correlation.  

 

Figure 8.148c   Step 3a pf Aspen Maestro model workflow for DMC3 –Input correlation detection. 

Step 3b. Transform detection.    Figure 8.148d.  This figure shows an example of transforming dependent 
variable measurements into a piecewise linear representation, that is, correlating the measurement data 
into connected multiple straight-line segments with different slopes. Aspen Maestro automates the 
development of transforms in DMC3 to deal with nonlinear dependent variable measurements and 
configures transforms to re-scale the data. For example, Aspen Maestro includes the well-known linear 
valve output transform and parabolic valve output transform introduced in Perry’s Chemical Engineers’ 
Handbook, 5th edition, that relates the fraction of maximum flow rate, Q, to fraction of valve stem travel, 
L, with a valve transform parameter  ꭤ  (0 < ꭤ ≤ 1) according to Eqs. (8.53) and (8.54): 

                                                                     𝑄 =  
ꭤ ( ꭤ)

   (linear)                                                       (8.53)                                

 



                                                                     𝑄 =  
ꭤ ( ꭤ)

  (parabolic)                                               (8.54) 

 

Figure 8.148d   Step 3b of Aspen Maestro model workflow for DMC3 –Transform detection. 

Figure 8.149 shows a plot of valve output transforms, displaying both linear and parabolic valves, Eqs. 
(8.53) and (8.54).  

 

Figure 8.149 An illustration of linear and parabolic valve output transformations included in Aspen 
Maestro. Used with permission from Aspen Tehnology. Inc. 

Step 4. Create Model. Figure 8.150 shows the model results based on previous selections of data mining 
(data slicing) and data analysis. Aspen Maestro automatically selects the best model curves to generate 
the final model, and we can transfer the resulting model to the controller view. 



 

 

Figure 8.150    Step 4 of Aspen Maestro model workflow for DMC3 –create model. 

This concludes our illustration of Aspen Maestro for automating the model-building process. In Chapter 
10, we will further illustrate embedding AI into DMC3 by using deep learning neural networks (such as 
LSTM  (long short-term memory) recurrent networks (see Section 10.4.2b), and GRU (gated recurrent 
networks) (see Section 10.4.2c) to develop soft sensors or IQ inferential for process and product quality 
variables that are not measured frequently. 

8.6 Conclusion  

In conclusion, this chapter systematically unpacks the complexities and potentials of advanced process 
control (APC) and model-predictive control (MPC) within polyolefin manufacturing. Through the careful 
delineation of APC concepts, the exploration of dynamic and nonlinear control models, and the 
integration of AI technologies, it lays a foundational and advanced understanding essential for both 
newcomers and seasoned experts in the field. The practical workshops and discussions provided not 
only illuminate the path toward developing sophisticated control systems but also highlight the 
significant impact such technologies can have on improving process efficiencies, optimization, and 
sustainability in the chemical processing industry.For future work stemming from this study, it would be 
advantageous to explore the integration of first principles with model predictive control to enhance the 



robustness and efficiency of the system [24]. Ultimately, this chapter advocates for the embracement of 
APC and MPC as transformative tools in the polyolefin production process, promising a future of 
enhanced industrial performance and innovation. 

This chapter is published with Wiley publication in the book Integrated Process Modeling, Advanced 
Control and Data Analytics for Optimizing Polyolefin Manufacturing by Liu & Sharma. [26-38] 
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