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Abstract

A Bayesian method to include spatial correlation structure of residuals in empirical
ground-motion models is presented, based on the integrated nested Laplace approxima-
tion. The method is evaluated on a simulated data set as well as Italian strong-motion
data. Results based on the synthetic data set indicate that the parameters of the model,
as well as associated uncertainties, are well captured. The presented method facilitates
the use of more complex models, such as accounting for nonergodic source, path, and site
effects, as well as non-stationary correlation functions. Excluding spatial correlations in
the empirical GMM leads to an increased value of the between-event variability; however,
the total variability tends to be the same. GMMs that include spatial correlation lead
to better predictive performance for within-event predictions. On the other hand, when
predicting for new events, performance decreases slightly compared to models that do not
account for spatial correlations.

1 Introduction

Empirical ground-motion models (GMMs) are typically estimated via regression from observed
strong-motion data sets. Modern GMMs account for systematic event and site terms by mod-
eling these as random effects, sometimes also including regional random effects to account for
regional variation in ground-motion scaling (Stafford , 2014). While it is generally acknowledged
that ground motions observed at different stations are spatially correlated, a spatial correlation
structure is usually not included during the regression stage. Spatial correlation models are
however estimated from residuals of a GMM (e.g. Esposito and Iervolino, 2011; Heresi et al.,
2022; Jayaram and Baker , 2009). Such models are useful for e.g. regional risk analyses (Jayaram
and Baker , 2010a; Manzour et al., 2016; Sokolov and Wenzel , 2011) and shakemaps (Sgobba
et al., 2023; Worden et al., 2010). In general, a model that accounts for spatial correlation
should be preferable, since it adheres closer to reality.
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Jayaram and Baker (2010b) proposed an iterative multi-stage method to include spatial
correlations in mixed-effects regression models. Ming et al. (2019) found that the multi-stage
method can lead to inconsistent results and is sensitive to initial, and proposed a scoring
algorithm to overcome these shortcomings. Here, I show how one can incorporate a spatial
correlation structure of residuals into a Bayesian GMM estimated with the integrated nested
Laplace approximation (INLA, Rue et al., 2009), which is a method for approximate Bayesian
inference for latent Gaussian models. The INLA methodology has been applied in multiple
fields, e.g. epidemiology (D’Angelo et al., 2021), air pollution mapping (Lu et al., 2023), ecology
(Fichera et al., 2023), modeling of seismicity (Bayliss et al., 2020; D’Angelo et al., 2020; Naylor
et al., 2022) and seismic inversion (Zhang et al., 2016). For applications in ground-motion
modeling, see e.g.Kuehn (2023);Macedo and Liu (2022); Sung and Abrahamson (2022);Walling
et al. (2021). In particular, INLA easily allows to incorporate multiple random effects as well as
spatial structures such as spatially varying coefficient models, which have been used to estimate
nonergodic GMMs (Landwehr et al., 2016; Lavrentiadis et al., 2022). Since INLA is a Bayesian
method, it allows to incorporate prior information via the prior distributions for the parameters
of the model, which can help to stabilize inference. In addition, priors can help to constrain
parameters to lead to reasonable extrapolation.

The paper is organized as follows: First, I give a brief overview of GMMs, as well as
how spatial correlation can be incorporated. Then, the data and underlying model used in
this study are described, both based on the model of Lanzano et al. (2019). A simulation
study follows, showing that the implementation can recover the parameters in a controlled
environment. Finally, the INLA spatial correlation GMM is applied to the real data.

2 Spatial Correlation Ground-Motion Model

In general, a GMM has the following form

Yes = f(c⃗; x⃗es) + ϵes (1)

where Yes is the ground-motion parameter of interest (e.g. logarithmic peak ground acceleration
(PGA)), e and s are indices for event and station, respectively, f(c⃗T ; x⃗T

es) is a function with
coefficients c⃗ relating the predictor variables x⃗ to Y , and ϵ is the residual. To account for cor-
relation between records from the same event or station, the residual ϵ is typically decomposed
into event terms δB, site terms δS and within-event/within-site residuals δWS (Al-Atik et al.,
2010)

ϵes = δBe + δSs + δWSes (2)

Each of these terms is assumed to be normally distributed with mean zero and standard devi-
ation τ , ϕS2S, and ϕSS:

δB ∼ N(0, τ)

δS ∼ N(0, ϕS2S)

δWS ∼ N(0, ϕSS)

(3)

Often, the residual is only decomposed into event terms and within-event residuals, without
site terms. In this case, the within-event residual is called δW , and the associated within-event
standard deviation is ϕ =

√
ϕ2
S2S + ϕ2

SS.
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The systematic event and site terms are often called random effects to distinguish them from
the coefficients, which are also called fixed effects This distinction does not really make sense
in a Bayesian context, since all parameters to be estimated are treated as random variables
in a Bayesian model. In the following, the systematic adjustment terms are called random or
latent effects. Parameters that control the distribution of another parameter, like standard
deviation τ for event terms δB, are called hyperparameters. The hyperparameters also include
the parameters of the spatial correlation structure, introduced later.

If the latent effects are integrated out, then the model for all records can be written as a
multivariate normal distribution (MVN)

Y⃗ = MVN(f⃗(x⃗;x),Σ)

Σij = δe(i),e(j)τ
2 + δs(i),s(j)ϕ

2
S2S + δijϕSS

(4)

where Y⃗ is the vector of target variables, f⃗(x⃗;x) is the functional form, evaluated over the
matrix of predictors (one row per record), and Σ is the covariance matrix. The entries of the
covariance matrix are non-zero for records from the same station or event. In Equation (4), δij
is the Kronecker delta, which is one for i = j and zero otherwise. The index ei connects record
i to event e; similarly for stations.

Including spatial correlations of of observations adds a term in the covariance matrix for
records from an event that depends on the distance between the recording stations (Ming et al.,
2019)

Σij = δe(i),e(j)τ
2 + δs(i),s(j)ϕ

2
S2S + δijϕ0 + δe(i),e(j)ϕ

2
ck(⃗ts(i), t⃗s(j)) (5)

where t⃗s(i) is the coordinate of the station corresponding to the ith record, and k(⃗ts(i), t⃗s(j)) is
a correlation function. The inclusion of a new term means that the variance of the within-
event/within-site residuals is reduced, which is now called ϕ2

0; consequently, the remaining
residual is called δWS0. If no site terms are considered, then the covariance matrix becomes
block-diagonal (Abrahamson and Youngs , 1992) (assuming that the data set is ordered by
events), and the remaining residual is δW0 if spatial correlation is included, and δW otherwise.

The correlation function determines the spatial correlation between two records, and typ-
ically depends on the distance between the stations. If the correlation function only depends
on the distance

∣∣⃗ti − t⃗j
∣∣, then it is called stationary.

One can rewrite Equation (1) to include all latent effects as

Yes = f(c⃗; x⃗es) + δBe + δSs + δCes + δW0,es (6)

where δCes is a random affect associated with a zero-mean latent spatial Gaussian process
(GP, also called a Gaussian field GF Rasmussen and Williams , 2006) that models the spatial
correlations between records

δC ∼ GP (0, ϕ2
ck(⃗t, t⃗

′)) (7)

Anderson and Uchiyama (2011) and Kuehn and Abrahamson (2020) have proposed to use
spatial correlations of within-event/within-site residuals to account for path effects. Dawood
and Rodriguez-Marek (2013) proposed a cell-specific attenuation model to model path effects,
where the anelastic attenuation is modeled as the sum over discrete path segments through small
cells, each of which is associated with its own anelastic attenuation coefficient. Such a model
can be implemented as a random effects model, with an average attenuation coefficient and
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cell-specific adjustments (Kuehn, 2023; Kuehn et al., 2019), which are assumed to be normally
distributed with mean zero and standard deviation σcell. In the following, regression models
including different random effects structures (with and without spatial correlations, with and
without cell-specific attenuation) are implemented and compared.

In general, a spatial correlation model should correspond to the partition of residuals used
in the estimation of a GMM, which typically include site terms for modern GMMs. Most
published spatial correlation models are estimated for within-event residuals δW , i.e. neglect
site terms. Stafford et al. (2019) provides an example of a spatial correlation model that
accounts for the full partition of residuals used in their GMM. Jayaram and Baker (2009) find
that the spatial correlation is region-to-region dependent based on local geology, depending on
the spatial correlation of VS30 (time-averaged shear wave velocity in the upper 30m). Accounting
for site terms should take this effect out of the residuals.

2.1 Implementation in INLA

Spatial models of the form like Equation (6) can be easily estimated using INLA (Rue et al.,
2009, 2017). For mathematical details of INLA, see (Rue et al., 2009) or Martino and Riebler
(2020). Spatial modeling in INLA is based on the stochastic partial differential equation (SPDE)
approach (Bakka et al., 2018; Lindgren and Rue, 2015; Lindgren et al., 2011). See Krainski
et al. (2019) for an introduction to spatial modeling with SPDEs and INLA. Kuehn (2023) and
Lavrentiadis et al. (2022) provide INLA code for GMMs in a nonergodic context, with spatially
correlated event and site terms as well as cell-specific attenuation.

The spatial Gaussian field δC is approximated by basis functions evaluated on a triangular
mesh (Lindgren et al., 2011), which are then projected onto the observed locations

δ⃗C (⃗tmesh) = N(0,P−1)

δ⃗C (⃗t) = A δ⃗C (⃗tmesh)

(8)

where t⃗mesh are the locations of the mesh nodes, A is a projector matrix connecting the mesh
nodes to the observations, and P is the precision matrix (the inverse of the covariance describing
the correlation between the mesh nodes).

The correlation function k(⃗t, t⃗′) is a Matérn correlation function

k(⃗t, t⃗′) =
2(1−ν)

Γ(ν)
(κ|⃗t− t⃗′|)νKν(κ|⃗t− t⃗′|) (9)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, κ is a
scale parameter and ν is a smoothness parameter. The default value in INLA for the smoothness
parameter is ν = 1 for a two-dimensional field. Most ground-motion spatial correlation models

use the exponential correlation function k(⃗t, t⃗′) = exp
[
− |⃗t−t⃗′|

ℓ

]
, which is a special case of the

Matérn function for ν = 0.5. A helpful quantity is the practical spatial range ℓ =
√
8ν/κ,

which is the distance where the value of the correlation function is about 0.139. Note that
typically studies of spatial correlations of ground motion describe the spatial correlation in
terms of the effective range, which is the distance where the correlation reaches a value of 0.05.
In the following, I generally use the practical spatial range, as this is how the length-scale of
the spatial field is parameterized in INLA.
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All models are implemented in the computer environment R (R Core Team, 2021) with
package R-INLA1. See Gómez-Rubio (2020, chapter 3) for more information on mixed-effects
models in INLA, and Kuehn (2021b) for an introduction to simple GMM modeling with INLA.
The basic functional form is defined as a formula of linear predictors, and the event and site
terms are defined as iid random effects, with event and station ID as the grouping factor.
The spatial term δC is defined as an spde random effect. To model spatial correlations of
within-event residuals δW or within-event/within-site residuals δWS, a separate spatial field

δ⃗C for each event is needed. This is achieved using either replicate or group (with an iid

group model) in the specification for the spatial random effects. Since an individual latent
spatial field is estimated over the mesh for each event, ideally the extent of mesh small is kept
small. Thus, instead of working with actual site coordinates, the site coordinates relative to
the event epicenter are used, i.e. the origin (⃗t = [0, 0]T ) for each event coordinate system is the
epicenter. This does not affect the distances between sites, which is what is needed to calculate
the correlation using the Matérn correlation function.

3 Ground-Motion Model and Data

The INLA regression model with spatial correlations of residuals is illustrated on the data set
used by Caramenti et al. (2022), which consists of the Italian subset of the data used in the
ITA18 GMM (Lanzano et al., 2019, 2022). The functional form of the ITA18 model is used to
model the dependence of the target variable on the predictor variables. For details on model
and data, see Caramenti et al. (2022) and Lanzano et al. (2019).

The ITA18 GMM depends on moment magnitude MW , Joyner-Boore distance RJB, faulting
style, and VS30. The functional form of ITA18 relating the target variable to the predictors is

f(c⃗; x⃗) = a+ b1(MW −Mh) 1(Mw≤Mh) + b2(MW −Mh) 1(Mw>Mh)

+ [c2 + c1(MW −Mref )] log10

√
R2

JB + h2 + c3

√
R2

JB + h2

+ k

[
log10

VS30

800
1(VS30≤1500) +

1500

800
1(VS30>1500)

]
+ f1FSS + f2FRV

(10)

with c⃗ = [a, b1, b2, c1, c3, k, f1, f2]
T and x⃗ = [Mw, RJB, VS30]. FSS and FRV are indicator variables

for strike-slip and reverse faulting, respectively. The parameters Mh, Mref , and h are fixed,
making the model linear in the predictors. The ITA18 model is developed is developed for
PGA and spectral acceleration for 26 periods from T = 0.01s to T = 10s. In this work, the
regression models including spatial correlations are carried out for PGA.

Figure 1 shows a magnitude-distance scatterplot, a map of the events and stations, as well
as the mesh used for the SPDE approximation. In total, the data set consists of 4784 records
from 137 events and 923 stations. The mesh has 4929 nodes and 9728 triangles.

For the prior distributions of the coefficients, the INLA default priors are used, which is
a normal distribution with mean zero and precision zero for the intercept a, and precision
0.001 for the other coefficients. In INLA, variabilities for the likelihood and iid random effects
are internally represented as logarithmic precisions (which is one over the variance), so priors

1https://www.r-inla.org/
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Figure 1: Left: Magnitude distance distribution of data set. Middle: Map of events (circles)
and stations (triangles). Right: Mesh used for the spatial field, based on centered station
coordinates. Points are stations, color-coded by event.

need to be set on this scale. The prior for the log-precision of the likelihood term (i.e. the
within-event/within-site residuals) is a the default prior, a log-Gamma distribution with shape
parameter 1 and rate parameter 10−5. The prior distribution for the logarithmic precisions of
the event and site terms is a log-Gamma distribution with shape 1.74 and rate 0.0153, which
is chosen such that the prior 1% and 99% quantiles for the corresponding standard deviations
τ and ϕS2S are 0.05 and 0.4. For the prior distribution of the parameters of the spatial field a
penalized complexity (PC) prior (Fuglstad et al., 2019; Simpson et al., 2017) is used with the
following parameterization

p(ℓ < 50) = 0.5

p(ϕc > 0.4) = 0.01
(11)

For the cell-specific attenuation model, the path length within each cell is divided by 100, to
avoid very small cell-specific adjustment coefficients. The prior distribution for the standard
deviation of the cell-specific attenuation coefficients is a PC prior with

p(σcell > 1) = 0.01 (12)

4 Results using a Synthetic Data Set

In this section, the model is evaluated on a simulated data set, for which coefficients, latent
parameters, and hyperparameters are known, and the data generating process is exactly the
same as in the regression the model. In that way, one can assess whether the model can
recover the parameter values for the given data set, as well as what happens under model-
misspecification.

I take the Italian data of the ITA18 model, fix the coefficients and hyperparameters (stan-
dard deviations and spatial range) and randomly sample observations. Hence, I calculate
median predictions for each record, and sample event terms, site terms, spatially correlated
observations, and remaining residuals, and combine them all into one data set. The coefficients
are fixed to the values of ITA18, and Table 1 shows the values used for the hyperparameters.
Then, regressions are performed according to the models presented previously. Different mod-
els are estimated: (1) a standard GMM (ignoring spatial correlation) which only accounts for
event and site terms; (2) the full model. The spatial correlation parameters are also estimated
from the within-event/within-site residuals. For comparison, models that do not account for
site terms are also investigated.
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Table 1: Values of hyperparameters for simulation.

τ ϕS2S ϕSS ϕc ℓ

0.17 0.2 0.1 0.22 40

Table 2: Fraction of estimated coefficients within 5% to 95% quantiles of posterior distribution,
over 80 different simulations, for the base model without spatial correlations, and the full model
including spatial correlations.

Coefficient Base Model Full Model

a 0.65 0.83
b1 0.53 0.78
b2 0.85 0.92
c2 0.62 0.87
c1 0.38 0.85
c3 0.73 0.93
f1 0.88 0.82
f2 0.92 0.88
k 0.87 0.90

Table 2 shows results with respect to the coverage of the posterior distribution of the
coefficients. 80 different data sets are simulated, and regressions are carried out using the base
model (without spatial correlations) and the full model including spatial correlation. I then
check whether the true coefficient is inside the 90% credible interval, i.e. is within the range
between the 5% and 95% quantile of the (marginal) posterior distribution. In general, the
model can recover the coefficients well, and the coverage for the full model is reasonably well
matched with expectations, while it is generally lower for the base model. In the subsequent
paragraphs, the estimated hyperparameters for one specific simulated data set are investigated.

Figure 2 shows posterior distributions of the estimated standard deviations ϕ0, ϕS2S, and
τ for the full model, and ϕSS =

√
ϕ2
0 + ϕ2

c for the standard model without spatial correlation.
The true values are well within the body of the posterior distributions, indicating that the
model can recuperate the parameters well (in the controlled simulation environment). When
not accounting for spatial correlation, the overall variability is well captured, but the between-
event standard deviation is overestimated, while ϕSS is underestimated. This effect is also
observed by (Jayaram and Baker , 2010b) and Ming et al. (2019). The underestimation of τ
when not accounting for spatial correlation is due to the fact that the covariance matrix for the
records from one event is Σij = τ 2 + ϕ2

ck(⃗ti, t⃗j), so the spatial correlation structure increases
the entries. This effect increases for longer length scales, since these generally increase the
value of the correlation, which is shown in Figure 3. Here, the estimated values of the standard
deviations are shown (averaged over 10 simulations), for regressions that do not account for
spatial correlation and for simulations with different spatial ranges. The ratio of the estimated
to true variance τ 2 increases to almost a factor of two for longer spatial ranges, while ϕSS

decreases. The single-station standard deviation σSS =
√

τ 2 + ϕ2
SS is well estimated (the

increase in τ and decrease in ϕSS cancel out), as is the station-to-station variability ϕS2S.

Figure 4 shows the posterior distribution of the spatial range ℓ and associated standard
deviation ϕc, for the full model, and models estimated from within-event residuals δW and
within-event/within-site residuals δWS. For the latter two models, first a standard regression
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Figure 2: Posterior distributions for standard deviations τ , ϕ0, ϕS2S, and ϕSS from regression
on simulated data, with and without accounting for spatial correlation. Vertical lines are true
values used in simulation.
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the true values used in the simulation.
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Figure 5: Kernel densities of even-specific range estimates for simulated data, estimated on
δWS using INLA and variograms. Right: Range dependent on number of records per event.
True value of range is 40km and is shown as black vertical/horizontal line. For INLA, the mean
of the posterior distribution is used.

without spatial correlation is performed, and then the spatial correlation parameters are esti-
mated from the residuals. Using δWS, which are the residuals which are spatially correlated
in the simulation, leads to a reasonable estimation of the spatial range, but underestimates the
variability. This is due to the fact that the spatial correlation structure is estimated on point
estimates of the residuals, which ignores uncertainty in the event terms δB and site terms δS,
which can be quite large in particular for sites that do not have many recordings. Estimation
of the spatial range using within-event residuals δW leads to a smaller value than the one used
in the simulation. However, in this case the spatial range is measuring a different signal. The
site terms, which are not spatially correlated in the simulation and are not considered in the
estimation, add some uncorrelated noise to the residuals, which leads to some dilution of the
signal and hence an underestimation of the spatial correlation. Hence, for δW the spatial range
is more like an intermediate of the spatial correlation of δWS and δS.

For Figure 5, the spatial range is estimated separately for each event with at least 10 record-
ings, and the within-event/within-station residuals δWS. The ranges are estimated both using
INLA, and using the traditional geostatistical approach of a variogram (Oliver and Webster ,
2014). The histograms of the estimated ranges are shown in Figure 5. On average, the true
value is captured quite well, though there is some variability in the estimates (recall that the
true value is 40km for all events). The INLA estimates show a little bit lower variability, which
is probably due to a regularization effect of the prior distribution. There is a dependence in
the variability on the number of records per event, in, but even the most recorded events show
some variability around the true value.
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Figure 6: Estimated coefficients for different models. Dot is median, uncertainty is 2.5% and
97.5% quantiles of posterior distribution.

5 Results for Real Data

In this section, the model is applied to the observed data, with PGA as the target variable.
Different models are used:

• Model 0: Standard model, no spatial correlation, event and station terms.

• Model 1: Similar to standard model, include spatial correlation of within-event/within-
site residuals δWS

• Model 2: no site terms, include spatial correlation of within-event residuals δW

• Model 3: Like Model 1, but include cell-specific attenuation as in Kuehn et al. (2019) and
Kuehn (2023).

In addition, the spatial correlation parameters are also estimated for Models 1 and 2 from the
residuals (i.e. using δWS for Model 1 and δW for Model 2).

Figure 7 shows the posterior distributions for the range and standard deviation of the spatial
correlation structure. The spatial range differs between all models, with Model 2 (no site terms)
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Figure 7: Posterior distributions for practical spatial range and standard deviation ϕc with real
data.
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Figure 8: Variograms for δW and δWS, aggregated for all events.

having the largest value. Including cell-specific attenuation leads to a decreasing value of the
spatial range; this makes sense, since spatial correlation of δWS has been interpreted as a
proxy for path effects (Anderson and Uchiyama, 2011; Kuehn and Abrahamson, 2020), and the
cell-specific attenuation model already takes care of path effects. When estimated on residuals,
the values are lower, similar to the simulation example, which is due due to ignoring uncertainty
in event and site terms.

One thing to note is that the spatial ranges for all models are quite long (on the order
of about 100km), compared to other models (see Sgobba et al. (2023) for a comparison of
effective ranges based on Italian data with other models; note that in Sgobba et al. (2023),
the effective range is the distance where the correlation reaches a value of 0.05). The effective
range estimated in Sgobba et al. (2023) is about 33km for PGA (see their Figure 7), which gives
a practical spatial range of 21.71km, considerably shorter than estimated in this work. The
reason is that during the regression, the spatial correlation structure is estimated for all records
in the data set, aggregating over all events. On the other hand, dedicated spatial correlation
studies typically select only well-recorded events, and estimate spatial correlation parameters
separately for each event. The estimated length-scales/ranges often show large variation across
events. Figure 8 shows variograms for residuals δW and δWS, aggregated for all events in the
data set. The estimated spatial ranges based on these variograms (using the Matérn model
with ν = 1) are 83.82km for δWS and 112.64km for δW , which is in the same ballpark with
the results from Figure 7.

Figure 9 shows the posterior distributions of τ , ϕS2S, and of the standard deviation of
the remaining residuals. As already seen in the simulation example, accounting for spatial
correlation of residuals leads to a decrease in the value of τ compared to the base model. The
ratio of variances is τ 2M0/τ

2
M1 = 1.82 (computed using the mean of the posterior distribution),

which is similar to the values for the longer ranges in Figure 3. The models with spatial
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Figure 9: Posterior distributions for standard deviations with real data.
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Figure 10: Posterior distributions for standard deviations of cell-specific attenuation.

correlation lead to lower station-to-station variability ϕS2S, which might indicate some trade-
off between path and site effects. The standard deviations of the remaining residuals are quite
different between the models, since they represent different quantities, depending on which
random effects are included in the model.

Figure 10 shows the standard deviation of the cell-specific attenuation coefficients, calculated
both for a model including spatial correlation of δWS and without. Including spatial correlation
leads to a decrease in σcell, meaning less variability in the cell-specific attenuation coefficients.
This again indicates that both parts of the model target a path-specific effect and trade off in
the model fit.

Table 3 shows a summary of the standard deviations and some model selection criteria
of the different models. In addition to the previously presented models, I also show results
for a standard model (no correlation) without site effects, and a model including cell-specific
attenuation, but no correlation. The second column in Table 1 shows which random effects are

Table 3: Summary of results for models with different random effect structures. Shown are
total and single-station standard deviations, and model selection criteria. See text for details.
For WAIC and RMSE a lower value is better, for LL a higher value is better.

Model RE σT σSS WAIC RMSE(LEO-CV) LL(LEO-CV)

M0 δB, δS 0.341 0.248 -769.9 0.238 20.9
M0b δB 0.354 NA 918.1 0.332 -671.1
M1 δB, δS, dC 0.337 0.271 -2689.7 0.265 -202.9
M2 δB, δC 0.369 NA -445.4 0.337 -718.9
M3 δB, δS, δC , cell 0.309 0.243 -2716.1 0.238 9.4
M3b δB, δS, cell 0.304 0.230 -987.1 0.230 98.5

12



included in the model. The total standard deviation σT and the single-site standard deviation
σSS are generally similar between models, with Model 1 showing slightly larger single-station
sigma due to larger ϕSS. The models including cell-specific attenuation show smaller total
sigma, since part of the ground-motion variability is accounted for by the variability in the
attenuation effects.

Table 3 also shows model comparisons based on criteria that evaluate how well the models
can generalize to new, unseen data. Shown are the values of the widely applicable information
criterion (WAIC, Watanabe, 2010, 2013), which is an information criterion for Bayesian models.
Similar to the Akaike information criterion (AIC, Akaike, 1998), WAIC is a method to assess
the out-of-sample prediction error of a model fit (Vehtari et al., 2017), and like AIC it penalizes
model complexity. The models including spatial correlation clearly outperform their standard
counterparts in terms of WAIC, with the cell-specific model leading to a small improvement.
However, one should note that the model with correlation but excluding systematic site terms
has larger WAIC than the standard model (no correlation but including event and site terms).
Thus, adding site terms provides a much larger improvement in predictive capability than
adding a spatial correlation structure. These results are not really surprising, since models
with more random effects essentially use more information for prediction of new data points.
Ming et al. (2019) provide a very good overview and discussion about the benefits of adding
spatial correlation models for within-event prediction.

WAIC is a measure of predictive accuracy, conditional on all random effects. Hence, it is
akin to leaving out one record at a time and estimating its predictive distribution, including
event terms, station terms, and other terms from the fit on the remaining records. However,
the main use of GMM predictions is for PSHA, where one has to predict for new events, i.e.
one cannot leverage observed records together with the spatial correlation model to improve
predictions. Hence, Table 3 also shows the results of an experiment where all records from one
event are left out as testing data, the different models are estimated based on the remaining
training data, and the test data is compared to model predictions. This procedure is called
‘leave earthquake out-cross validation’ (LEO-CV). Predictions still include random effects from
the training data, which in this case mean site terms and cell-specific attenuation coefficients,
if applicable to the model. Both the root-mean-square error (RMSE) of the test residuals, as
well as the total log-likelihood (LL), which is the sum of the LL values of all test data points,
are calculated. The LL of each test data point is calculated as the value of the probability
density function of the predictive distribution, which includes aleatory variability, but also
uncertainty in the coefficients, hyperparameters and random effects. For LEO-CV, the ranking
of the models is different, and the models including spatial correlation have worse predictive
performance than their corresponding base models, both in terms of RMSE and LOO. Both
WAIC and LEO-CV are calculated for events with at least 70 recordings.

As shown in Figure 7, there is uncertainty associated with the spatial range parameters,
quantified by their posterior distributions. The effect on the correlation is shown in Figure 11, as
uncertainty bands corresponding to the 2.5% and 97.5% quantiles of the posterior distribution
of the spatial range. In general, accounting for uncertainty can be important, and it should be
investigated whether the results from a forward application of a spatial correlation model are
sensitive to uncertainty in its parameters. However, given the large between-model variability
in spatial correlation the within-model uncertainty is probably of minor importance.

13



0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
distance (km)

co
rr

el
at

io
n

Figure 11: Posterior distribution for spatial correlation.

5.1 Non-stationary Correlation Model

Sgobba et al. (2023) argue that a simple stationary correlation model is not appropriate due
to residual trends at longer distances. They achieve a non-stationary model by detrending the
residuals; the resulting correlation model has a smaller spatial range. When including spatial
correlation in the GMM regression, one cannot detrend the residuals, but needs to incorporate
the non-stationarity directly in the correlation model. While it is generally well recognized
that correlation of ground motion is non-stationary (Chen and Baker , 2019; Chen et al., 2021;
Infantino et al., 2021; Kuehn and Abrahamson, 2020), direct modeling is rare (Bodenmann
et al., 2023; Kuehn and Abrahamson, 2020; Liu et al., 2022). One can include covariates in
the SPDE model (Ingebrigtsen et al., 2014), which allows to use a model similar to the one
proposed by Kuehn and Abrahamson (2020), where the spatial range depends on the source-
to-site distance. Thus, I now investigate a model where the spatial range is modeled as

ℓ =

{
exp

[
a1 + a2

Repi

Rref

]
Repi ≤ Rref

exp [a1 + a2] Repi > Rref

(13)

The reference distance Rref is introduced to prevent the spatial range to reach ever larger values
with increasing source-to-site distance. Here, its value is set to Rref = 80km, based on Sgobba
et al. (2023). The implementation in INLA follows Chapter 5 of Krainski et al. (2019).

Figure 12 shows the estimated spatial range dependent on epicentral distance, together
with the estimate of the stationary model (Model 1 in previous section). Now, the spatial
range close to the source is small and increases to a large value, much longer than for the
stationary model. The effect is shown in Figure 13, where the correlation around an observation
is displayed, color-coded by the value of the correlation. For an observation close to the source,
the correlation drops rapidly, and most points are basically uncorrelated. By contrast, more
points are correlated far away from the source. One can also see that the shape of the correlation
is not symmetrical, but skewed away from the source. The stationary model is of circular shape
and is the same everywhere, regardless of distance to the source.

The WAIC value of the non-stationary model is -2984.2, which is lower than for the station-
ary model (cf. Table 3). This indicates that the non-stationary model improves within-event
prediction.
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6 Discussion

This paper shows how to estimate empirical GMMs including spatial correlation structure of
residuals in a Bayesian way using INLA. In the model, the spatial effects are added as an ad-
ditional random effect which is estimated during regression, together with all other parameters
and hyperparameters.

The main question this paper raises is whether one should actually incorporate spatial
correlations during a GMM regression. The main use of a GMM is prediction for PSHA, which
requires calculation of the predictive distribution for records from unobserved events. As seen in
Table 3, the model including spatial correlation performs worse in terms of RMSE and LL when
predicting for observations from left out events. On the other hand, from a physical/theoretical
point of view the residuals should be spatially correlated, so it makes sense to incorporate this
aspect in the model. In the end, while prediction is important, it is also important to make the
model as realistic as possible. It is reassuring that the base model without spatial correlation
performs well from a predictive perspective, as most published GMMs are of this kind. If one
considers to incorporate spatial correlations into GMM development, one should investigate
whether the inclusion provides a benefit in terms of model performance, as well as produces
sensible results.

One advantage of estimating the parameters of the spatial correlation structure during
the regression is that the uncertainties of all parameters (coefficients, latent effects and hy-
perparameters) is taken into account. In the simulation example, the values of spatial range
and associated standard deviation are biased when estimated from residuals. Typical spatial
correlation models are estimated from within-event residuals δW , in which case the range is
conceptually a mix between the range of δWS and δW , so one would not necessarily expect
that the range is the same.

The regression model including spatial correlations leads to estimates of the spatial range
which are longer than those from published models. This might be due to the fact that the
regression model takes into account all records from all events, and provides a spatial range
based on the accumulated data (cf. Figure 8). Spatial correlation models are typically based on
a smaller subset of well-recorded events, which might lead to different results. One potential
solution could be to estimate a different spatial range parameter for each event during the
regression, but this might lead to problems for events that do not have many recordings. In
addition, in a forward application one would need to take the variability between events into
account; one can use the (weighted) mean, but the spread of different range values should not
be neglected.

Another possibility for the longer range is that it compensates for trends in the residuals
due to unmodeled effects, such as nonergodic path effects. The inclusion of a cell-specific
attenuation model, which is designed to account for path effects, leads to a reduction of the
spatial range by about 20km (cf. Figure 7). This effect can also be directly incorporated into
the correlation structure via a non-stationary correlation function. A model based on Kuehn
and Abrahamson (2020) and Liu et al. (2022), where the correlation depends on source-to-site
distance, leads to smaller estimates of the spatial range close to the source, with increasing range
for longer source-to-site distances. This model was proposed to account for path effects, and
leads to a improved predictive performance. Alternatively, spatial correlation models for path
effects have been proposed that are based on angular distance between source-to-site azimuths
(Bodenmann et al., 2023; Walling and Abrahamson, 2012).
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While spatial correlation models are generally estimated from within-event residuals δW ,
empirical GMMs often partition residuals into within-event/within-site residuals δWS and site
terms δS, and possibly additional terms (Al-Atik et al., 2010). In general, inclusion of site terms
provides a strong benefit in reducing aleatory variability and improving predictive performance
(cf. Table 3). Accounting for site terms should be done during the regression stage (Sahakian
et al., 2018), so incorporating spatial correlations should be done in a model including site terms
(again, cf. Table 3). This needs to be kept in mind when assessing and using such a model
(Stafford et al., 2019). For example, if one uses a spatial correlation model that is estimated
for within-event/within-site residuals δWS, e.g. to sample ground-motion maps for a regional
risk analysis, then the sampled values do not account for spatial correlation of site terms δS.
This correlation should be included in a separate step, using a spatial correlation model for site
terms (e.g. Chao et al., 2020; Parker and Baltay , 2022).

The regression model with spatial correlation includes a noise term δWS0, which is uncor-
related between records, and in geostatistical parlance is called a nugget effect. In general, one
would expect a continuous ground-motion field, i.e. the spatially uncorrelated noise term should
be zero. However, there is probably small-scale variability which cannot be resolved by the spa-
tial station distribution. There can also be measurement error due to different instruments,
which can contribute to unexplained variability.

The model as implemented in this work is estimated via Bayesian inference using INLA.
It should be seen as a possible alternative to the algorithm presented by (Ming et al., 2019)
(not a replacement) for analysts who prefer to use Bayesian inference. INLA can be used for
models with a linear predictor, which is somewhat restrictive, though often the basic functional
form of a GMM can be written as a linear model, like the ITACA18 model used as the basis
in this work. Ming et al. (2019) provide an approximation to make their scoring algorithm
work for non-linear models. For the INLA model, package Inlabru (Bachl et al., 2019) provides
an iterative method to incorporate nonlinearities, which could be used for more complicated
models.

INLA has been used to implement nonergodic GMMs based on spatially varying coefficient
models (Kuehn, 2023; Lavrentiadis et al., 2022). Thus, the regression models including spatial
correlation of residuals can be extended to include nonergodic terms such as systematic, spa-
tially varying event and site terms. In this work, I include systematic path effects based on
cell-specific attenuation models, which changes both the spatial correlation structure (practical
spatial range and standard deviation) and the parameters of the cell-specific model. Including
spatially varying event and site terms is unlikely to have a large effect on spatial correlations
of residuals, but it can be advantageous to have a full model to account for all uncertainties
and trade-offs in a model at the same time.

The SPDE approach implemented for spatial fields in INLA fixes the smoothness parameter
ν in the Matérn correlation function (Equation 9) to ν = 1 for two-dimensional fields (Lindgren
and Rue, 2015). One could use a different value for ν, which would require some approxima-
tions (Lindgren et al., 2011), but be more in line with most models of ground-motion spatial
correlation,which typically use a exponential correlation function (ν = 0.5). Alternatively, one
can treat ν as a parameter to be estimated (Bolin and Kirchner , 2020; Xiong et al., 2022).
Differences between spatial fields using the Matérn with ν = 1 and ν = 0.5 are likely small
(Kuehn, 2021a), but it might be worth investigating.
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Code and Data Availablity

R-code to fit regression models including spatial correlations, as well as to generate some
of the figures in this paper, can be found at https://github.com/nikuehn/GM_Spatial_

Correlation, archived at https://doi.org/10.5281/zenodo.11070746 (Kuehn, 2024). The
flatfile for the data used in the ITA18 model can be found at https://shake.mi.ingv.it/

ita18-flatfile/ (Lanzano et al., 2022).
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