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ABSTRACT 
With an increasing market penetration of electric vehicles (EVs) in the traffic mix, it become necessary to 
examine crashes involving EVs. In addition, there is a need to identify differences compared with 
traditional internal combustion engine vehicles (ICEVs), as EVs are heavier and have different 
performance characteristics than ICEVs. To date, there is limited research comparing crash characteristics 
among EVs and ICEVs and further, differentiating among different types of EVs: battery electric vehicles 
(BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). To fill this 
research gap, this paper estimates crash injury frequency and crash severity outcomes through statistical 
regression analyses. The statistical models and hypothesis testing results suggest both similarities and 
differences in crash characteristics among BEVs, PHEVs, HEVs, and ICEVs. The similarity lies in 
human-related factors and traffic-related factors, and the differences come from four types of factors 
including vehicle, roadway, crash, and environment. The potential reasons (in terms of vehicles’ engine 
type, software, and hardware) that could contribute to the differences in crash characteristics among four 
types of vehicles are discussed. The findings of this paper can provide insights into devising safety 
regulations for EVs. For example, EVs equipped with advanced driving assistant technologies can help 
relieve crash injury counts. However, the high acceleration rate of electric motors could positively 
contribute to the crash severity, and the front of BEVs needs more protection since head-on crashes of 
BEVs cause more severe crashes. 
 
Keywords: Crash Analysis, Electric Vehicles, Negative binomial regression model, Multinomial logit 
regression model  
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INTRODUCTION 
Electric vehicles are automobiles that are completely or partially powered by electricity and are 

divided into three categories: battery electric or all-electric vehicles (BEVs), plug-in hybrid electric 
vehicles (PHEVs), and hybrid electric vehicles (HEVs) (1). The power source of BEVs, as the name 
implies, is electricity from batteries. Both PHEVs and HEVs are partially powered by batteries but several 
differences exist between them. To be specific, compared with HEVs, PHEVs can be charged through 
external plugs and have larger batteries (2). In other words, PHEVs are similar to BEVs with gas engines, 
and HEVs are similar to internal combustion engine vehicles (ICEVs) with batteries. 

According to the statistics from 2016 to 2020 provided by the U.S. Department of Energy (US 
DOE), the number of BEV, PHEV, and HEV registration increased by 110 %, 75%, and 24% respectively 
(3). Such a significant increase in the number of EVs on the road brings attention to their safety issues. 
There is still no widely accepted conclusion on whether EVs are safer or not than ICEVs. Meanwhile, 
plenty of analyses and experiments are performed on EVs to demonstrate whether EVs are different from 
ICEVs in terms of vehicle crashes. For instance, the Highway Loss Data Institute (HLDI) states the 
insurance claim frequency of EVs is lower than ICEVs (4). Researchers also conducted crash experiments 
on both EVs and ICEVs and concluded that EVs are less vulnerable to crashes compared with ICEVs (5). 
However, there are still concerns about the safety issues of EVs brought by large batteries (6).  

Previous work attempted to analyze the EV crash data to figure out factors that influence the 
severity levels of EV crashes. However, previous research did not analyze the crash severity of different 
types of EVs separately, which makes it hard to figure out the internal difference in factors that influence 
the crash severity among different types of EVs. Moreover, no previous research investigates the factors 
that influence injury counts in EV-involved crashes. Using the 2014-2022 vehicle crash data provided by 
the Iowa Department of Transportation (Iowa DOT), this study compares crash characteristics between 
EVs and ICEVs and further, differentiates among different types of EVs. Moreover, this study further 
investigates what factors could influence the injury number of EV-involved crashes. 

The rest of the paper is organized as follows. First, we conduct a literature review on previous EV 
safety analyses. Then, we describe the data and statistical models used in this study. After that, we present 
the results and findings from statistical regression analyses. The last section concludes with research 
implications, research limitations, and future research directions. 

 
LITERATURE REVIEW 

Numerous studies have examined motor vehicle crashes, which include two main research 
questions: crash probability and crash severity (7). For crash severity studies, both statistical methods and 
machine learning models are used for parameter estimation. According to Savolainen et al., the frequently 
used statistical methods are binary outcome models, ordered discrete outcome models, and unordered 
multinomial discrete outcome models (8). In comparison, machine learning methods like support vector 
machines, neural networks, classification, regression trees, and clustering are also commonly used for 
crash severity studies (9). 

With the increasing number of EVs on the road, some studies have shed light on the statistical 
analysis of EV crashes. Liu et al. applied Pearson’s chi-squared test to confirm that the distribution of 
severity levels for EV (mixing of BEVs and PHEVs) crashes is different from that of ICEV crashes. They 
used the logistic regression model to identify essential factors influencing crash severity. For EVs’ crash 
data, the presence of medians has a negative effect on crash severity, and collisions with motorcycles 
have a positive effect on crash severity (10). However, this study did not include any explanatory 
variables on humans and vehicles involved in crashes, which could lead to omitted-variables bias. 
Moreover, several published government reports compared HEVs’ crash data with ICEVs’ crash data. 
Chen et al. directly compared the crash statistics between HEVs and ICEVs and noted that occupants of 
HEVs tended to be older than occupants of ICEVs, fire incidents were not common in both HEV and 
ICEVs, and occupants of HEVs were more likely to experience arm, wrist, and hand injuries but less 
likely to experience leg, ankle, and foot injuries when being compared with that of ICEVs (11). However, 
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that study did not account for roadway conditions and environmental factors into consideration and 
simply employed descriptive analysis instead of using statistical methods or tests. 

The former studies did not take heterogeneity into consideration, which may introduce biased 
estimation and incorrect inferences. Taking heterogeneity and heteroskedasticity into consideration, 
Huang et al. evaluated HEV crashes’ severity through a hierarchical mixed logit model and concluded 
that higher occupant vehicles and older occupants were associated with higher injury counts, but crashes 
happen on the wet road surface and regional artery roads (not expressway) result in fewer injury counts 
(12). Also, Huang et al. pointed out that the statistical analysis results could support strong heterogeneity 
effects in crash data (12). Based on this conclusion, Seraneeprakarn et al. further validated the influence 
of unobserved heterogeneity by comparing estimation from the mixed logit model, mixed logit model 
with heterogeneity in means, and mixed logit models with heterogeneity in means and variance (13). 
These studies identify the importance of taking heterogeneity effects into consideration when analyzing 
EVs’ crash data. Still, these studies only analyzed crash data involving HEVs instead of other types of 
EVs. 

Other than focusing on driver injuries in EV-involved crashes, some studies focused on 
vulnerable road users (i.e., pedestrians or cyclists). Hanna studied pedestrian or cyclist crashes with HEVs 
and ICEVs. Based on hypothesis testing results, Hanna concluded that motor vehicle crashes involving 
pedestrians and cyclists usually happened on roads with low-speed limits under good lighting (daytime) 
and weather (great visibility) conditions. More importantly, HEVs were more likely to collide with 
pedestrians and cyclists compared with ICEVs (14). Focusing on speed limits, vehicle actions, and crash 
locations, Wu et al. further verified this conclusion through statistical methods including a case-control 
approach, relative risk, and odds ratio (15). These studies suggest collision counterparts like pedestrians 
and bicycles are worth taking into consideration when analyzing EV crash data. However, a limited 
number of variables are explored in these studies. Such limitation makes it hard to identify potential 
differences and effects of various factors in crash data between EVs and ICEVs. 

In addition to studies that use statistical modeling methods to analyze real crash data, Karaaslan et 
al. used agent-based modeling to conduct traffic simulation and showed EVs have a greater potential of 
posing a threat to pedestrians than ICEVs by performing sensitivity analysis on the simulated crash data 
(16). Furthermore, Karaaslan et al. confirmed the simulation results by analyzing the crash data from the 
Fatal Analysis Reporting System (FARS) through a chi-squared test (16). This study further confirms the 
idea proposed in earlier studies that EVs have a higher possibility to hit pedestrians or bicyclists than 
ICEVs. 

Table 1 summarizes the factors and objects (types of vehicles) in previous studies on EV crashes. 
Compared with previous studies, this study compares both crash severity and the number of injuries 
between EVs and ICEVs and further, differentiates among different types of EVs. 
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Table 1. Summary of studies involving EV crash data. 

Study Statistical 
Models 

Explanatory Variables Research 
Objects Human Vehicle Crash Roadway Environment Traffic 

Hanna 
(2009) 

Hypothesis 
Testing - Vehicle 

action 

Collision 
counterpart, 

Crash location 
- Light, 

Weather 
Speed 
limit 

HEV, 
ICEV, 

Non-motorist 

Wu et al. 
(2011) 

Case-control 
Approach, 

Relative Risk, 
Odds Ratio 

- Vehicle 
action 

Collision 
counterpart, 

Crash location 
- Light, 

Weather 
Speed 
limit 

HEV, 
ICEV 

Chen et al. 
(2015) - 

Age, 
Gender, 

Risk of injury 

Restraint, 
Velocity 
change 

Collision type, 
Fire incidence - - - HEV, 

ICEV 

Huang et 
al. (2016) 

Hierarchical 
Mixed Logit Age 

Years, 
Width, 
Weight, 

Occupant 
number 

Number of vehicles, 
Collision type, 
Crash location 

Functional 
class, 

Surface 
- - HEV 

Seraneepr
akarn et 

al. (2017) 
Mixed Logit Age 

Years, 
Weight, 

Driver age, 
Occupant 
number 

Number of vehicles, 
Collision type, 
Crash location, 
Crash reason, 

Ratio: non-hybrid to 
hybrid 

Functional 
class, 

Surface 
- - HEV 

Karaaslan 
et al. 

(2018) 

Agent-based 
modeling 

(simulation), 
Chi-square test 

- - - - - - 
HEV, 
ICEV, 

Non-motorist 

Liu et al. 
(2022) 

Logistic 
Regression - - 

Collision 
counterparts, 
Crash area, 

Crash location 

Median 
presence, 
Surface 

Day of Week, 
Time of day, 

Visibility 

Speed 
limit 

BEV, 
PHEV, 
ICEV 
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DATA PROCESSING AND ANALYSIS METHODS 
The analyses in this study include two consecutive parts: data processing and statistical modeling. 

For data wrangling, the crash data for EVs is identified based on vehicles’ makes and models. Besides, 
ICEV crashes within the 50-meter-geological-buffer of EV crashes are selected. For regression analyses, 
correlation analysis and Forward Stepwise Selection based on AIC are performed to select the optimal 
variable combinations (17). 
 
Data Processing 

This study uses the crash data from 2014 to 2022 provided by the Iowa Department of 
Transportation. Since the given data does not contain the Vehicle Identification Number (VIN) or any 
variables to distinguish EVs from ICEVs, the vehicle makes (brand of the vehicle), vehicle models, and 
vehicle years are used to identify the fuel type of a given vehicle through fuel economy information 
provided by U.S Department of Energy (18). 

In addition, previous studies on motor vehicle crash analyses state that geographic variations 
cannot be ignored and suggest using buffer analysis to control the spatial heterogeneity (7, 19). Thus, a 
50-meter-buffer is used to select ICEV crashes around the EV (including BEV, PHEV, and HEV) crashes. 
In the end, there are 189 crashes for BEVs (Figure 1-b), 132 crashes for PHEVs (Figure 1-c), 3120 
crashes for HEVs, and 129733 crashes for ICEVs respectively (Figure 1-d). Observing the spatial 
distributions of crash locations, BEV and PHEV crashes mainly happen in urban areas while HEV crashes 
cover all main roads in Iowa, which may be due to the limited mileage of BEVs and PHEVs compared 
with HEVs. 

 

 
Figure 1. The spatial distribution of crashes by vehicle types. 
 
Statistical Analysis 
 
Hypothesis Testing 
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Pearson’s chi-squared test is applied to test whether the distribution of injury counts of BEV, 
PHEV, HEV, and ICEV crashes have different statistical distributions (20). 
 
Statistical Models 

Due to the limited number of observations for BEV and PHEV crashes, most basic statistical 
models for count data like Poisson regression and Negative Binomial are first considered in this study. 
The mean injury counts for BEVs, PHEVs, HEVs, and ICEVs are 0.286, 0.265, 0.352, and 0.171. The 
corresponding variances are 0.343, 0.425, 0.487, and 0.549. It is obvious that for each type of vehicle 
crash data, the injury count experiences an over-dispersion issue where the variance is greater than the 
mean of the injury counts. As a result, in this study, negative binomial regression is used since it has a 
less complex estimation process and can handle the over-dispersion issue in count data (24). Suppose the 
expected injury count λ! for the 𝑖th vehicle crash is given by Equation 1. 

 
λ! = 𝑒𝑥𝑝(β𝑋! + ϵ!) (1) 

 
For Equation 1, β is an unknown coefficient vector, 𝑋! are influencing factors for the injury 

count, and ϵ! is the error term. This gives the probability formula in Equation 2 where 𝑃(𝑛!|ϵ) is the 
probability of n injuries in the 𝑖th vehicle crash over a certain amount of time (25). Furthermore, 𝑒𝑥𝑝(ϵ!) 
is an error term that follows a gamma distribution. 
 

𝑃(𝑛!|ϵ) =
"#$[&'!"#$()!)]['!"#$()!)]"!

,!!
 (2) 

 
Other than estimating the injury count of vehicle crashes, this study also models the crash severity 

of vehicles with different fuel types. Since there are more than two severity levels, and the order of 
severity levels is not considered, Multinomial Logit Models (MNL), a traditional discrete outcome model, 
is employed to model the crash severity in this study. Suppose K is the number of severity levels, X 
means the influencing factors for crash severity levels, and β is the unknown coefficients of the 
influencing factors, the probability equation for severity level k is given in Equation 3 (17). 

 

P(𝑌 = 𝑘|𝑋 = 𝑥) = .
#$%&#$'('&⋯&#$*(*

/0∑ .#+%&#+'('&⋯&#+*(*,-'
+.'

 (3) 

 
Since the probability for all severity levels must sum to one, for 𝑘 = 1,… , 𝐾 − 1 
 

𝑃(𝑌 = 𝐾|𝑋 = 𝑥) = /

/0∑ "/0%&/0'1'&⋯&/02123-'
0.'

 (4) 

 
Taking the quotient between Equation 3 and Equation 4 provides Equation 5. 
 

23𝑌 = 𝑘4𝑋 = 𝑥5
23𝑌 = 𝐾4𝑋 = 𝑥5 = 𝑒64%064'1'0⋯0682#2  (5) 

 
Finally, taking the logarithm on both sides of Equation 5 derives Equation 6. 
 

𝑙𝑜𝑔 ;23𝑌 = 𝑘4𝑋 = 𝑥5
23𝑌 = 𝐾4𝑋 = 𝑥5< = β8% + β8'#' +⋯+ β𝑘$𝑥$ (6) 

 
This gives the log odds function between the selected two severity levels. 
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DATA DESCRIPTION 
Table 2 summarizes the descriptive statistics of numerical variables for crash data of each vehicle 

type. Table 3 summarizes the count and percentage of different injury levels for each vehicle type. 
 
Personal Variables 

Driver age and gender, occupant gender, driver condition, driver action, and personal identity are 
considered in this study. Driver condition is categorized into five groups based on the National Highway 
Traffic Safety Administration (NHTSA) definition of risky driving behavior: drug/Alcohol-related, 
fatigue, normal, other (emotional, illness, etc.), unknown (26). The driver's action is a variable that 
indicates whether the driving is aggressive. Aggressive driving behavior is defined by NHTSA as 
exceeding authorized speed, driving too fast, reckless driving, erratic lane changing, and road rage (26). 
 
Vehicle and Roadway Variables 

Vehicle variables including vehicle year, vehicle action, and the number of occupants are studied. 
Vehicle action is categorized into five groups: changing lanes, moving straight, stopping, turning, and 
unknown. Besides, roadway factors like surface conditions (dry, wet, icy, unknown) and road type 
(interchange, intersection, straight, unknown) are also explored in this study. 
 
Crash Variables 

The vehicle number, most harmful event, collision type, and safety equipment (safety belt, airbag, 
other protection) are studied. The most harmful event is categorized into six groups: collision with a fixed 
object, non-fixed object, non-collision, pre-crash, and miscellaneous. In specific, pre-crash events are 
events that cause the crash like avoiding animals, and miscellaneous event means events that rarely 
happen like an explosion, immersion, and others. In addition, the collision type variable is used to 
indicate whether the crash is a head-on crash. 
 
Environmental and Traffic Variables 

There are two environmental factors selected in this study: crash time and light condition. The 
crash time is categorized into 5 time periods based on a previous study on rush hour period crash analysis 
(27). The five time periods are early morning (1:00 – 5:59), morning rush hour (6:00 – 10:59), noon 
(11:00 – 14:59), evening rush hour (15:00 – 19:59), and late night (19:00 – 0:59). Besides, Speed limit 
and traffic control, which are two commonly used traffic-related variables in previous crash analyses, are 
used in this study. Traffic control is categorized into 3 groups: control present, and unknown. The control 
present means traffic controls like traffic signals, signs, and directors are available around the crash 
location. 
 
Injury Severity Level 

The severity level is categorized into 4 groups. Severe injury (including fatality) suggests injuries 
that prevent victims from moving. Light injury suggests evident injuries but is not serious to victims. No 
injury suggests the person involved in a crash is not injured. Unknown injury suggests that police officers 
are unable to fill out the injury level of victims. 
 
 



 9 

Table 2. Descriptive statistics of select variables. 

Variables 
BEV PHEV HEV ICEV 

Mean sd. Mean sd. Mean sd. Mean sd. 

Driver Age 40.40 13.65 41.11 13.37 43.25 15.50 40.26 14.18 

Victim Age 46.28 17.33 42.5 16.61 43.73 18.01 40.11 17.84 

Vehicle Year 5.44 3.72 6.11 3.19 7.83 3.93 9.35 4.61 

Number of Vehicles Involved 2.08 0.59 1.98 0.74 1.93 0.64 1.96 0.51 

Number of Occupants per Vehicle 1.37 0.60 1.25 0.49 1.34 0.72 1.42 0.76 

Number of Total Occupants 2.82 1.42 2.48 1.36 2.57 1.66 2.74 1.63 

Month 6.42 3.69 6.73 3.52 6.58 3.58 6.72 3.36 

Day of Week (1 – 7) 4.31 1.87 4.15 1.92 4.12 1.89 4.16 1.89 

Hour of Day (0:00 – 23:00) 13.87 4.42 13.5 4.93 13.48 5.09 13.45 4.87 

Speed Limit 38.46 14.34 37.92 14.54 37.52 13.57 35.84 10.23 

 
Table 3. Distribution of crash severity level by vehicle type. 

 BEV PHEV HEV ICEV 

 Count Percentage Count Percentage Count Percentage Count Percentage 

Fatality 3 0.5% 0 0.0% 13 0.2% 126 0.03% 

Injured 51 7.9% 35 10.7% 1085 12.3% 22,025 6.4% 

Unknown 5 0.7% 0 0.0% 65 0.8% 1,721 0.5% 
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RESULTS AND DISCUSSION 
 
Hypothesis Testing 

The injury count measures how many people get injured in one crash. The Chi-squared test 
results in Table 4 suggest that the distribution of the injury counts of BEVs is statistically different from 
that of HEVs and ICEVs. Moreover, the injury count distribution of PHEVs is statistically different from 
that of ICEVs. Finally, the distribution of injury count of HEVs is different from that of ICEVs. In 
general, differences in injury count distributions among EVs and ICEVs exist. Thus, we further conduct 
statistical regression analysis on injury count to uncover what factors cause these differences.  

 
Table 4. Chi-squared test results. 

 BEV vs. PHEV BEV vs. HEV BEV vs. ICEV PHEV vs. HEV PHEV vs. ICEV HEV vs. ICEV 
Chi-square 2.4951 12.625 38.024 2.3569 8.2184 539.12 

P value 0.4762 0.0055 0.0000 0.5017 0.0417 0.0000 
 
Injury Count Model 

Table 5 describes the statistical analysis of crash injury count using the negative binomial model. 
The influences of different factors are discussed below.  
 
Person Factors 

For all types of vehicles, the driver's age shows positive effects on injury count. The reason could 
be that reaction speed decreases as the driver's age increases (28). Besides, aggressive driving behavior 
tends to have a positive effect on injury count for EVs. One contributing reason could be that the electric 
motors of EVs have a greater acceleration rate than the engines of ICEVs (29). So, when being driven 
aggressively, EVs are more likely to crash at a relatively high speed compared with ICEVs. This could 
also explain the gender’s influences on injury count. Male drivers are more likely to have risky behavior 
like aggressive driving than female drivers, and male drivers tend to have a higher injury count than 
female drivers for both BEVs and PHEVs (30). 
 
Vehicle Factors 

Some vehicle factors may also impact crash injury counts. For BEVs and PHEVs, moving 
straight has a higher injury count than other vehicles moving directions. The possible explanation can be 
that most BEVs and PHEVs are equipped with autopilot or advanced driver-assistant systems (ADAS) 
which could warn the driver of unobservable risks in the scenarios like turning (31, 32). However, BEVs’ 
and PHEVs’ drivers may rely too much on ADAS while driving on straight roads instead of driving 
carefully. This could make BEVs and PHEVs have a higher injury count for moving straight than other 
moving statuses. In comparison, for HEVs and ICEVs, turning may be related to a higher injury count 
than other movements. The possible explanation can be that most HEVs and ICEVs on roads are not 
equipped with ADAS so drivers may not be able to notice potential risks in the scenario like turning. 
 
Crash Factors 

For all types of vehicles, head-to-head (head-on) crashes cause more injuries than non-head-on 
crashes. Nevertheless, the coefficient of head-on collision for BEVs is statistically significant. The reason 
could be that the front engine parts of PHEVs, HEVs, and ICEVs absorb a lot of crash forces during head-
on collisions. However, most BEVs like Tesla have empty front zones, which have greater deformation 
during crashes compared with vehicles with engines in front (33). 
 
Roadway Factors 

For BEVs, HEVs, and ICEVs, wet or icy surfaces post a negative effect on crash injury count. 
The reason can be that people drive in a very careful manner on icy or wet road surfaces (10). Besides, the 
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road type factor has different effects on each type of vehicle. For BEVs and ICEVs, interchanges tend to 
have a higher injury count than other road types. For PHEVs and HEVs, straight roads tend to have a 
higher injury count than other road types. However, proper reasons to explain such difference among 
different vehicle types requires further research studies in other regions. 
 
Environmental Factors 

For EVs, evening rush hours (15:00 – 19:59) are associated with a greater injury count than other 
periods. In contrast, for ICEVs, late night hours (19:00 – 0:59) are associated with a higher injury count 
than other periods. One possible reason could be EVs are used for commuting purposes (10). So, EVs 
tend to have a greater number of occupants than ICEVs during evening rush hour, and there are more 
injured people due to greater occupant numbers. 

Other than crash time, the light condition also posts different effects on different types of 
vehicles. For BEVs and PHEVs, a dark environment tends to have a lower injury count compared with a 
light presence environment. However, for HEVs and ICEVs, a dark environment tends to have a higher 
injury count than a bright environment. The reason for such difference could be that ADAS on BEVs and 
PHEVs guides drivers to drive safely in a dark environment (31, 34). Moreover, drivers could be more 
likely to rely on ADAS in dark situations than in light situations so the ADAS can help EV drivers reduce 
the driving risks effectively in dark environments. 
 
Traffic Factors 

For BEVs, HEVs, and ICEVs, a higher speed limit tends to have more injury counts, since a 
higher speed limit indicates vehicles are operating at a relatively higher speed, which may cause more 
injury counts (35). Besides, the crash injury counts for all types of vehicles are higher in areas with traffic 
controls. One possible explanation may be that traffic controls are placed in areas where there are more 
potential conflicts. 
 
Table 5. Negative binomial model estimation results of injury count by EV type. 

 BEV PHEV HEV ICEV 
Intercept -37.58 -62.81 -2.76 -2.21 

Driver Age 0.01 0.02 0.003 0.002 
Driver Gender     

Male 0.11 0.46 -0.14 -0.13 
Unknown -2.01 1.77 -0.67 -0.18 

Driver Condition     
Fatigue 18.09 17.83 0.09 -0.19 
Normal -1.34 20.09 -0.45 -0.35 

Other (illness, emotional, etc.) -33.42 - -0.02 0.03 
Unknown -0.30 19.05 0.22 0.22 

Driver Action     
Aggressive Driver 0.44 0.72 0.09 -0.03 

Unknown 1.21 -20.17 0.22 0.06 
Vehicle Year 0.05 -0.08 -0.001 0.003 

Vehicle Action     
Moving Straight 0.09 0.36 0.75 0.71 

Stopped -0.11 0.36 0.86 0.83 
Turning -0.40 -0.02 0.72 0.60 

Unknown -16.82 -15.79 0.23 0.86 
Surface     

Wet -0.27 1.20 -0.22 -0.01 
Icy -1.10 1.88 -0.59 -0.42 

Unknown -18.65 -17.44 0.77 0.16 
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Road Type     
Intersection -1.20 21.20 0.35 0.34 

Non-intersection -1.12 20.29 0.11 -0.01 
Unknown -20.96 9.50 -1.03 0.08 

Most Harm Type     
Collision with non-fixed object 18.91 -1.86 0.28 0.19 

Miscellaneous events 18.58 - 0.39 0.16 
Non-collision events 20.52 - 0.64 0.68 

Pre-crash events - -20.08 0.10 -0.04 
Unknown 18.17 -1.08 -0.31 -0.39 

Crash Type     
Head-on Crash 1.93 0.36 0.86 0.52 

Unknown 1.15 -18.79 0.35 -0.24 
Time Period     

Morning Rush Hour (6:00 – 10:59) 19.502 20.63 -0.03 -0.09 
Noon (11:00 – 14:59) 19.501 19.93 -0.09 -0.04 

Evening Rush Hour (15:00 – 19:59) 19.504 20.82 0.04 -0.04 
Late Night (19:00 – 0:59) 19.474 20.29 -0.12 0.11 

Light Condition     
Light Presence -0.43 -0.40 0.19 0.06 

Unknown 16.76 -1.95 -0.03 -0.83 
Weather     

Cloudy/Foggy -0.10 0.87 0.05 0.01 
Other (Windy, etc.) -18.61 - -0.19 0.09 

Rainy 0.05 -0.75 0.08 -0.02 
Snowy 0.91 -22.17 0.38 -0.07 

Unknown - - -1.52 -0.77 
Speed Limit 0.01 -0.001 0.02 0.01 

Traffic Control     
True 0.10 0.16 0.15 0.01 

Unknown 17.86 15.81 -1.96 -0.93 
 
Crash Severity Model 

Table 6 shows the results of the regression analysis on crash severity levels using the multinomial 
logit model. Findings for different variable groups are discussed separately below. 

 
Person Factors 

For crash victims, the likelihood of either light injury or severe injury (including fatality) 
decreases if the victim is male. This is consistent with the finding from previous studies on gender’s 
influence on injury severity that females are more likely to experience injuries than males (36). In 
addition, compared with victims in vehicles, non-motorists have a greater probability to experience 
injuries (both light injury and severe injury). One explanation is that non-motorists do not have efficient 
protection compared to people in vehicles. 
 
Safety Equipment 

For all types of vehicles in this study, the use of safety belts decreases the likelihood of both light 
and severe injuries. However, airbag deployment increases the likelihood of light injuries for all types of 
vehicles. The possible explanation is that airbag deployments are usually associated with an impact of the 
strong force. Moreover, for PHEVs, HEVs, and ICEVs, airbag deployments also have a higher likelihood 
of severe injuries, but for BEVs, the deployment of airbags has a lower likelihood of severe injuries. This 
is supported by previous crash tests which state the force loaded on BEV passengers is lower than that 
from ICEVs under the protection of airbags (33). 
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Crash Characteristics 
The occupant number has a different impact on injury severity for different vehicle types. For 

BEVs, an increase in occupant number is associated with an increase in the likelihood of severe injuries 
but a decrease in the likelihood of light injuries. For PHEVs, an increase in occupant number is related to 
a decrease in the likelihood of both severe and light injuries. For HEVs and ICEVs, an increase in 
occupant number is associated with an increase in the likelihood of both severe and light injuries, which is 
consistent with the research result of Seraneeprakarn et al. (13). 

When the crash force is large, victims may get thrown out of vehicles. Sometimes, a large crash 
force would cause the deformation of vehicles which can get victims trapped. This could explain when a 
person is thrown out or trapped in a crash, the person is more likely to get either lightly or severely 
injured. 

For BEVs, PHEVs, and HEVs, an increase in the vehicle number (which may not be the same 
type) involved in crashes could associate with an increase in the likelihood of light injuries. Moreover, for 
BEVs, HEVs, and ICEVs, the increase in the likelihood of serious injuries is related to a greater number 
of vehicles involved. This is not consistent with the research results of Huang et al. who suggest for HEV 
crashes, more vehicles involved in the crash would increase the likelihood of property damage only (no 
injury) (12). 
 
Roadway and Regulation 

At intersections, occupants on BEVs, HEVs, and ICEVs have greater log odds to experience both 
light and severe injuries. However, at the interchange, occupants on BEVs tend to have higher log odds of 
both light and severe injuries, which may need further investigation. For PHEVs, occupants have a greater 
likelihood of light injuries at the intersection and a greater likelihood of severe injuries on straight roads. 

The road surface condition will also affect injury levels, but the impacts vary among four types of 
vehicles. When road surfaces are dry, BEV occupants are more likely to experience severe injuries. HEV 
occupants are more likely to experience both light and severe injuries. ICEV occupants are more likely to 
experience light injuries. In comparison, on wet surfaces, BEV occupants have greater log odds to get 
lightly injured, and ICEV occupants have greater log odds to get severely injured. On icy surfaces, PHEV 
occupants tend to experience both light and severe injuries compared with other surface conditions. These 
results suggest that surface conditions could influence the injury severity of both EVs and ICEVs.  

For all types of vehicles in this study, an increase in speed limit is associated with an increase in 
the likelihood of light injuries. However, the decrease in severe injury likelihood is related to an increase 
in the speed limit for BEVs and PHEVs. One explanation is both BEVs and PHEVs contain heavy 
batteries that significantly increase the weight of vehicles, and the crash experiment results suggest that 
heavy vehicles can protect occupants from serious injuries (37). 
 



 14 

Table 6. Multinomial logit model estimation results of crash severity outcome. 

 Lightly Injured Seriously Injured / Fatal Unknown Injury 
BEV PHEV HEV ICEV BEV PHEV HEV ICEV BEV PHEV HEV ICEV 

Intercept 0.69 -1175.06 -2.18 -1.99 -17.11 -228.37 -5.38 -6.19 3.08 - -20.73 -5.58 
Person Gender             

Male -0.46 -0.58 -0.55 -0.35 -1.14 77.16 -0.18 -0.28 8.58 - -0.45 0.02 
Unknown -25.56 -788.04 -0.73 -0.57 1.43 316.04 -0.77 -0.34 32.42 - 2.72 2.55 

Non-motorist             
True 29.36 1040.32 5.67 5.79 0.93 8.49 7.10 7.11 -14.63 - -10.84 1.76 

Person Protection             
Other -20.43 490.06 2.58 -2.24 0.84 10.28 -16.04 -2.11 53.29 - -9.39 -0.73 

Safety Belt -0.11 -1.61 -0.20 -0.48 -2.55 -125.44 -2.68 -2.59 2.97 - -1.46 -1.94 
Unknown -0.79 -1.26 -0.37 -0.89 -9.29 -318.84 -3.10 -2.57 8.46 - 1.46 1.10 

Person Ejected             
True 37.71 - 15.63 3.56 0.38 - 16.37 6.04 0.34 - -0.01 0.86 

Unknown 1.09 -1658.34 -1.81 -2.20 -16.97 -175.60 2.75 1.55 26.78 - -2.35 -3.06 
Airbag Deployed             

True 1.58 1.42 1.77 2.47 -7.60 7.34 2.44 2.85 -0.65 - 1.27 1.26 
Unknown 1.44 2.36 1.54 1.52 0.41 196.42 1.83 2.13 17.17 - 3.21 3.19 

Person Trapped             
True 37.52 963.52 2.57 2.68 86.78 847.97 5.04 5.34 2.18 - 1.69 0.11 

Unknown 1.01 1135.19 0.62 0.62 14.29 -165.39 -3.32 -2.42 -8.24 - -0.49 0.80 
Driver Condition             

Fatigue -36.06 -452.61 0.67 -0.08 -0.11 10.03 1.51 -0.48 0.36 - -14.52 0.69 
Normal -2.41 654.51 -0.50 -0.19 3.15 100.12 -1.52 -1.17 10.15 - -0.70 0.47 
Other -37.87 - 0.44 0.20 -6.88 - 0.47 0.29 2.48 - -0.58 0.95 

Unknown -36.50 655.29 -0.36 -0.05 17.78 -99.10 0.76 0.18 -11.74 - 1.71 2.34 
Vehicle Year 0.12 -0.11 -0.008 0.03 -2.66 8.61 -0.030 0.003 0.19 - 0.10 0.004 

Number of Occupants -0.18 -0.36 0.20 0.04 2.32 -38.10 0.59 0.09 -7.11 - -0.22 0.05 
Surface             

Wet 0.04 0.90 -0.18 -0.23 -8.64 88.07 -0.30 0.09 -6.95 - -1.35 -0.14 
Icy -1.40 1.44 -0.80 -0.60 -28.02 105.80 -1.35 -1.35 16.55 - -1.45 -0.22 

Unknown -22.87 -45.65 0.27 -0.42 -1.05 -71.42 -15.29 0.23 0.72 - -2.10 -0.32 
Road Type             
Intersection -1.78 518.91 0.14 0.44 -4.70 2.17 1.04 0.91 -0.15 - 15.08 0.18 

Non-intersection -1.74 518.57 -0.03 0.01 -9.84 141.36 0.16 0.48 0.85 - 15.48 0.13 
Unknown - -45.65 -12.91 0.25 - -71.42 -5.79 -0.15 - - 15.77 -1.79 

Vehicle Number 0.47 0.50 0.22 -0.02 4.23 -8.45 0.10 0.29 -11.18 - 0.08 -0.04 
Speed Limit 0.008 0.01 0.009 0.01 -0.19 -4.13 0.05 0.05 -0.67 - -0.005 -0.009 

* The reference class is No Injury. 
* PHEVs do not have unknown injury. 
* The person data for BEV of “unknown” road type is invalid. 
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CONCLUSIONS 
This study fills the research gaps by analyzing the differences in crash injury counts and severity 

levels among four types of vehicles including BEVs, PHEVs, HEVs, and ICEVs. In detail, the Negative 
Binomial Model (NB2) is used to estimate factors influencing the injury counts of four types of vehicles, 
and the Multinomial Logit Model (MNL) is applied to study the severity levels of different types of 
vehicles. In these statistical regression analyses, this study investigates six main groups of crash factors 
including human, vehicle, roadway, crash, environment, and traffic. The finding indicates that differences 
in the distribution of injury counts, crash factors’ effect on injury counts, and injury severity among 
BEVs, PHEVs, HEVs, and ICEVs exist. 

Based on the discussion and analyses of the results, vehicles’ engine types, software, and 
hardware could contribute to these differences. For example, EVs (powered by electric motors) have a 
higher acceleration rate than ICEVs, which makes aggressive driving more likely to result in crash 
injuries. In addition, many BEVs and PHEVs are equipped with advanced driver-assistant systems 
(ADAS) which could help drivers avoid potential crashes, especially under low-light conditions or near 
intersections without clear visions. Finally, due to the presence of large batteries that significantly 
increase vehicle weights, BEVs and PHEVs are less vulnerable compared to other types of vehicles. The 
findings from this study can provide suggestions for developing regulations on EVs in terms of traffic 
safety. For example, there is a need for more education on EV-related driving behaviors, which enables 
future EV drivers to be aware of EV features and drive safely.  

However, this study still has some limitations. Since Iowa is not among the top ten states with the 
most registered EVs, a limited number of observations could lead to biased estimation for statistical 
models (38, 24). Moreover, unobserved heterogeneity is not considered in this study due to the limited 
number of observations, even though addressing unobserved heterogeneity is important for crash analysis 
(7). Future research is recommended to further investigate EV crashes in other states, such as California, 
to increase the number of EV crash observations and compare the results within various regions. 
Moreover, a combination of machine learning methods and statistical models can be used to explore the 
difference between EVs and ICEVs. 
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