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Abstract 
In this paper, a connection between reciprocal diagrams and typical features in membrane structures is 
drawn. Although numerous form-finding techniques have been developed in the field of tensile 
membrane structures, the introduction of reciprocal diagrams allows for an intuitive understanding and 
can therefore facilitates the development in early design stages.  

To begin with, we introduce relevant basic concepts, including planar reciprocal diagrams and force 
density method. The second part of the paper focuses on the construction of planar reciprocal diagrams 
for typical membrane features including membrane patches, ridge/valley cables (cables that go through 
a patch of membrane) and edge cables. The concept of anchoring force polygon is introduced.  The third 
part of the paper discusses form-finding in 3D with force densities found in the planar reciprocal 
construction, followed by progressive steps of updating force densities based on current geometry. 
Several benchmark studies were undertaken. Comparisons to analytical solutions or finite-element 
results were done, showing good agreement.  

 

Keywords: membrane structures, reciprocal diagrams, graphical methods, force density method, form finding, 
isotropic stress 

 

1. Introduction  
In the field of graphic statics, Maxwell’s construction of 2D reciprocal diagrams (1) is a powerful tool 
for its clear presentation of form and force of an equilibrium system. The idea has been implemented in 
recent work in funicular vault structures (2), tensile membrane under vertical loading (3) and optimal 
trusses (4), among many others. This paper focuses on the reciprocal diagram construction of tensile 
membranes including typical features such as edge cables and ridge/valley cables, followed by the form 
finding process using the thereby informed force densities. The proposed method is fast and intuitive, 
rather straightforward to implement due to the use of 1D element only.  

The current paper is organised as the following. First part of the paper reviews basic concepts of 
reciprocal diagrams (5), Frei Otto’s edge cable technique (6) and the force density method developed 
by Schek (7).  The second part extends Otto’s technique to other features, namely ridge/valley cables 
and membrane patches. A complete construction of planar reciprocal diagram is therefore feasible. Here, 
Singer’s extension of the classical force density method to membrane structures was inspirational (8). 
In the third and last part of the paper, lifting of the planar equilibrium was discussed, including a 
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progressive procedure of updating force densities. Several case studies are done and compared with 
analytical or finite-element results.  

In the drawing of form and force diagrams, blue is used for compression and red for tension. Green 
denotes boundary conditions like anchoring forces or constraints. Black lines are used for constructional 
purposes, unless otherwise stated. 

1.1. Reciprocal diagrams 
The application of reciprocal figures in graphic statics is a powerful tool for its clear presentation of 
form and force in equilibrium. The 2D form and force diagrams share the same number of edges and 
can be constructed to any chosen angle regarding the corresponding pair of edges (5). Typically used 
are the parallel (Cremona convention) and orthogonal (Maxwell convention) constructions. This paper 
adopts the latter, as it remains the relative position of corresponding edges, enabling an intuitive reading 
of diagrams.   

 

 
Figure 1. Reciprocal diagrams of an explanatory self-stressed truss following Maxwell convention. (a) Form 
diagram; (b) force diagram contain pairs of edges that are reciprocal to each other. The close polygons found in 
force diagram denote equilibrium in corresponding nodes in form diagram, e.g. triangle ② in (b) for node ② in 
(a). 

1.2. Membrane edges of a planar isotropic stress field  
Considering a planar membrane of isotropic stresses, namely same principal stresses without shear, the 
bending free edges, say materialised as edge cables, are of arc profiles. Such a planar stress field is also 
termed hydrostatic, like soup film (9). The analogy was widely used in Frei Otto’s research of retractable 
membrane roofs (6), where the authors have drawn inspiration for the correlation to reciprocal diagrams, 
see section 2.1. 

In the case of anisotropic stress with one dominating direction e.g., in warp pointing perpendicular to 
the span of an edge, the cable profile on the other hand follows a parabola profile. The difference of the 
two is diminishing as the sag to span ratio f/L (or rise) decreases. For a sensible rise around 10%, this 
can well be ignored. Mathematically, the Taylor series for the lengths of both arc and parabola profiles 
𝑠𝑠𝑎𝑎  and 𝑠𝑠𝑝𝑝 tells no difference within the second order of sag f. In practise therefore, L + 8𝑓𝑓2

3𝐿𝐿
 is often 

considered a good approximation for the cable length, Eq. (1) and (2). In this paper, we consider 
primarily form-finding for isotropic stress fields.  
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𝑠𝑠𝑎𝑎 = 𝐿𝐿 +
8𝑓𝑓2

3𝐿𝐿
−

32𝑓𝑓4

15𝐿𝐿3
+ 𝑂𝑂(𝑓𝑓5) 

(1) 

𝑠𝑠𝑝𝑝 = 𝐿𝐿 + 8𝑓𝑓2

3𝐿𝐿
− 32𝑓𝑓4

5𝐿𝐿3
+ 𝑂𝑂(𝑓𝑓5)  

 (2) 

 

 
Figure 2. Edge representation of arc and parabola (a) geometries of different rises (sag to span ratio of 10%, 20% 

and 30%), (b) isotropic vs. directional membrane stress conditions. Black dot represents the centre and focal 
point respectively. 

 

1.3. Force Density Method 
Force density method (FDM) is a form-finding method developed initially for cable net structures such 
as the Olympic stadium roof in Munich (7). The form i.e., 3D coordinates of free nodes can be linearly 
solved with equilibrium condition only, given anchor point positions, external loads, and force densities 
in a net. In the absence of external loads, the linear equation of FDM reads: 

𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖 = −𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶𝑓𝑓𝑥𝑥𝑓𝑓 

(3) 

with 𝐶𝐶 = �𝐶𝐶𝑖𝑖 𝐶𝐶𝑓𝑓�  being the branch-node matrix of the network, 𝑄𝑄  the diagonal matrix of force 
densities, and 𝑥𝑥𝑇𝑇 = �𝑥𝑥𝑖𝑖𝑇𝑇 𝑥𝑥𝑓𝑓𝑇𝑇� the coordinates, where subscript 𝑖𝑖 designates free nodes and 𝑓𝑓 for fixed 
nodes. 

FDM has been extended for surface structures of isotropic stress field since late 20th , (8), (10) which 
had inspired the connection between a triangular membrane element and its reciprocal diagram in this 
paper. This is further discussed in section 2.3. 

2. Planar reciprocal diagrams for membrane structures 
Three types of building elements, namely edge cables, ridge/valley cables, and the membrane patches 
are considered. The reciprocal construction shown here demonstrates their form and force clearly which 
leads to an intuitive design procedure.  

2.1. Edge cables and the anchoring force polygon 
Considering a membrane corner anchoring two edge cables as the following Figure 3. As discussed, 
when the stress field is isotropic, the edges are of arc profiles. The well-known formular for 
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hydrostatic pressure 𝐹𝐹 = 𝑝𝑝  ⋅  𝑟𝑟, gives the constant cable force 𝐹𝐹 as the product of pressure 𝑝𝑝 and 
radius 𝑟𝑟. Assuming a membrane stress of unity, the edge cable forces 𝐴𝐴𝐴𝐴�����⃗  and 𝐴𝐴𝐴𝐴�����⃗  has the amplitude of 
its radius 𝑟𝑟1 and 𝑟𝑟2, pointing tangentially to their respective arc profiles. The anchoring force  𝐴𝐴𝐴𝐴������⃗   as 
the summation of these two cable forces, is in the direction of the shared chord  𝐴𝐴𝐴𝐴����,  and has the 
amplitude of |𝑂𝑂1𝑂𝑂2|. This can be proven by checking the congruence of △𝐴𝐴𝑂𝑂1𝑂𝑂2 and △ DAB (11).  

One shall notice, the form edge 𝐴𝐴𝐴𝐴���� and the force edge 𝑂𝑂1𝑂𝑂2������� constitute a reciprocal pair, sitting 
orthogonally to each other.  
    

 
Figure 3. Graphical solution of anchoring force of two edge cables of arc profile at an anchor point A, with an 

isotropic stress field of unity.  

 

With such, an anchoring force polygon (green dashed) can be constructed given a series of edge cables 
spanning an isotropic stress field of unity by simply connecting the centres consecutively. The 
amplitude and direction of planar anchoring forces at these anchor points are thereby determined 
graphically.  

This preprint research paper was submitted on 27-Mar-2024 and has not been peer reviewed.



 

 
 

5 

 
Figure 4. Anchoring force polygon (green dashed) of an isotropic stress field of unity in plane.  

2.2. Ridge/valley cables  
In addition to two edge cables at an anchor point as discussed in previous case, oftentimes a ridge/valley 
cable is present. That is, a cable spanning inside a membrane patch. Such cables can be used to adjust 
the membrane shape, deviating it from soup-film like geometries, which extends the design space of 
membrane structures.  

The construction of reciprocal diagrams of ridge/valley cables can be done by “shifting” the diagrams 
apart. This correlates physically to the fact that the additional forces introduced by the ridge/valley 
cables need to be anchored, see the increase in amplitude of anchoring force edge (green dashed) 
between (a) and (b) in following Figure 5. The equilibrium is now denoted by the quadrilateral force 
polygon in Figure 5 (b), as opposed to the force triangle in Figure 5 (a). Note that the added ridge/valley 
cable does not have to be colinear with the existing anchoring cable, in other words it may alter the 
previous anchoring cable direction. 
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(a) 

 
(b) 

 
Figure 5. Reciprocal construction of ridge/valley cable in addition to two edge cables at one anchor point. 

equilibrium is now denoted by the quadrilateral force polygon in Figure 5 (b), as opposed to the force 
triangle in Figure 5 (a). 

2.3. Membrane patches 
After the discussion of typical cable elements in membrane structures, let’s now turn to the membrane 
patch itself. A planar membrane patch subjected to isotropic stress of σ is discretised into a tri-mesh, a 
part of which shown as Figure 6 (a). Inspired by Singer’s work on extended FDM for surface structures 
(8), the following reciprocal construction can be done. That is, the force introduced by a triangular face 
on one of its three vertices 𝑉𝑉𝑖𝑖, is perpendicular to the opposing edge 𝐸𝐸𝑖𝑖,  and its amplitude equates 1

2
σ𝑙𝑙𝑖𝑖, 

with 𝑙𝑙𝑖𝑖 the length of 𝐸𝐸𝑖𝑖, i=1,2,3. Note that the tri-mesh is neither form nor force diagram. This enables 
the lumping of stresses to forces on the tri-mesh nodes, and therefore the use of 1D element only. 

When the isotropic stress is unity i.e., σ =  1, the force diagram of this triangular face is simply its 
medial triangle as Figure 6 (c), and the corresponding form diagram is obtained by connecting the 
orthocentre of this face to its three vertices as Figure 6 (b). 
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Figure 6. Reciprocal construction of tri-mesh under isotropic stress of unity: (a) tri-mesh, (b) form diagram, (c) 

force diagram. Note that the tri-mesh is neither form nor force diagram. 

One shall notice the above construction gives three tension edges for an acute triangular face. In the case 
of an obtuse face, whereby the orthocentre sits outside, the constructed force edges are one compression 
edge and two tension edges. In the very special case of an orthogonal triangle, which practically would 
not be encountered in a regular discretization, only gives two meaningful tension edges. Numerically, 
the third edge of zero length and infinite force density, is one that starting from a node and ending at 
itself. Its corresponding row can be eliminated from the branch-node matrix. Physically, this zero-length 
edge has infinite geometric stiffness but no length to “exhibit” any forces.  

 
Figure 7. For an obtuse triangular face (b) whereby the orthocentre sites outside, the form edge through the 

obtuse vertex corresponds to a compression force. 

2.4. Compatibility of features 
Until now the construction for three components, namely edge cables, ridge/valley cables and membrane 
patches are described. Their form and force edges are compatible (in the sense that they do not overlap) 
given a triangular discretization which embeds the cable elements. The form edges of cable elements sit 
always on the tri-mesh edges, whilst the form edges for membrane patch sit always off the tri-mesh 
edges (with the exception in an orthogonal triangle as mentioned). This simplify the computational 
implementation of the method since no special topological manipulation is needed. 

In terms of the force diagram, the compatibility (denoting equilibrium) is naturally given during the 
construction of close force polygons. For edge cables, their force edges share a “pole” i.e., the centre of 
their arc profiles. For patches, the median triangles denote the internal equilibrium of the tri-mesh faces. 
For ridge/valley cables, the choosing of prestressing forces are subjected to the designer, given the 
summation of these additional forces alone do not violate condition of equilibrium.   

The introduction of ridge/valley cables causing a “shifting” effect in the force diagram, is in a similar 
fashion as adding creases in a funicular vault as described by Rippmann (12). 
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Figure 8. Compatibility of membrane features in the reciprocal diagram construction: coloured solid lines for 

form edges and coloured dashed lines for force edges. Introduction of ridge/valley cables “shift” the force 
diagram apart. 

3. 3D form-finding and comparison of results 
The planar equilibrium described by the constructed form and force diagrams presents a set of force 
densities for the given network. A linear FDM can therefore be used to lift the geometry into 3D when 
new anchor point heights are prescribed. A lift with only vertical displacement to approach a minimum 
surface is a practically meaningful approach, since the planar equilibrium is preserved when projected 
back, e.g. in cases where the force direction in plan is of primary importance. By lifting, the length of a 
form edge is increased by factor 1/𝑐𝑐𝑐𝑐𝑐𝑐(θ𝑏𝑏), where θ𝑏𝑏 is the angle between that bar 𝑏𝑏 and the plane for 
reciprocal construction. The corresponding force has to increase by the same factor for the invariant 
force density. In more general cases where displacement is not restricted to vertical, this factor is also 
known as deformation gradient F.  

In both cases, the lifted geometry does not correspond to an isotropic stress field anymore, see 
formulation by Bletzinger (13). The resulted non-isotropic stress field S, referring the deformed/actual 
geometry, is related to the imposed isotropic stress σ by F through 𝑆𝑆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹−1 ⋅ σ ⋅ 𝐹𝐹−𝑇𝑇. For 1D-
elements (14), we have 𝐹𝐹 = l/L, hence actual stress 𝑆𝑆 = 𝐿𝐿

𝑙𝑙
σ, where l and 𝐿𝐿 are the actual and reference 

bar lengths respectively. To summarize these relations within a tri-mesh face: 
1
2
σ = 𝑞𝑞𝑖𝑖 =

𝑁𝑁𝑖𝑖
𝐿𝐿𝑖𝑖

=
𝑛𝑛𝑖𝑖
𝑙𝑙𝑖𝑖

=
1
2

li
𝐿𝐿𝑖𝑖

Si, i = 1,2,3 [𝑁𝑁/𝑚𝑚] 

(4) 
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Figure 9. A visual hint: the lifted net (ao-bo-co) does not correspond to an isotropic stress field anymore (not 
perpendicular to median triangle of actual geometry △abc). Shown here is the case with vertical displacement 

only. 

This can be resolved via a progressive procedure namely updating the force densities according to actual 
geometry. In other words, the planar equilibrium construction through reciprocals provides an intuitive 
entry point to find starting values for the following FDM steps, with many design intensions like the 
determination of anchoring forces, the introduction of ridge/valley cables already implemented. 

This two-fold procedure is implemented in Python in Rhino3D®. For handling matrices, NumPy 1.24.2 
(15) was used via “remote procedure call” mechanism provided by the COMPAS framework 1.17.5 
(16).  

3.1. Catenoid 
Catenoid is a minimum surface of revolved catenary and can be analytically defined in cylindrical 
coordinates as the following. The code is tested with the geometry setup with two circular rings of 6 
meters diameter, various distances apart. Solving constant 𝑐𝑐 numerically with geometrical boundary 
conditions gives corresponding references. 

ρ = c 𝑐𝑐𝑐𝑐𝑐𝑐ℎ
𝑧𝑧
𝑐𝑐

 

(5) 
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Figure 10. Geometries of step 1 to 5 of various catenoid setups and the radii plot over progressive steps of FDM 

(at centre height). 

 
Figure 11. (a) Form diagram and (b) force diagram of catenoid D6H4, step 5. 

It’s well known that minimum surfaces cannot be found for all boundaries, e.g. when the rings are too 
far apart. In engineering practices, ridge/valley lines can be employed (17). Following case implements 
four ridge lines of 5 kN prestress, on the “D6H6” boundaries (ring diameter 6 meters and distance of 6 
meters). Membrane prestress is an isotropic stress of 1 kN/m. 

 
Figure 12. Testing results of ridge lines on otherwise collapsing “D6H6” catenoid. (a) no cable force assigned 

resulting in a collapsing minimum surface. (b) Assigning 5 kN of prestress in ridge cables. 
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3.2. A 4-point sail 
The following example of a 4-point sail is aimed to further demonstrate the construction of planar 
reciprocal diagrams, with implementation of a ridge line, and the results are compared with program 
Kiwi!3D (18). The sail has a grid of about 9 meters span.  

As mentioned, the form-finding starts from planar definition of features and reciprocal diagrams 
construction. We see here the difference of force diagram and the form found geometries after assigning 
of an 8 kN prestress in the ridge cable, which is also compared to the reference modelled in Kiwi!3D.  

 
Figure 13. Planar reciprocal construction of tri-mesh under isotropic stress of unity: feature definition of edges 

cables (arcs) and ridge cables (lines), tri-mesh discretization, form diagram and force diagram, left to right. Note 
that at this stage a planar state of equilibrium is already found. All forces and geometries are known. Here no 

force is assigned to the ridge cable. 

 
Figure 14. Assigning an 8 kN prestress in ridge cable shifts the planar force diagram apart. 
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Figure 15. (a) Maximum height differences between Kiwi!3D (as reference) and FDM results, step 1 to 4. Red 
lines indicate reference is lower, blue being that reference is higher in vertical direction Z. (b) In plane (XY) 

difference: geometries of edge cables converge towards reference by Kiwi!3D (black surface in zoom-in 
diagram). 

 

3.3. A twin-hypar 
This example of a twin hypar is adopted from the “round-robin test” exercise 4 by Gosling and others 
(19) where several membrane structures were analyzed independently and compared, to “assess level of 
consistency and harmony in current practice” back in year 2013. In this example, the grid size is 6 by 6 
meters, consisting of three high and three low points with 4 meters height difference. The membrane 
prestress is 5 KN/m in both warp and fill directions, and pretension of edges cables is 50 kN. A 
membrane prestress of non-unity makes no difference in the construction of reciprocals and therefore 
the finding of initial force densities, only that the forces assigned to those form edges of the membrane 
patches and edge cables are now simultaneously scaled. 

 

Max. △Z [m]: 0.026 0.013 0.006 0.005 
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Figure 16. (a) Geometric layout of the twin hypar, initial tri-mesh, and form-finding result of iteration step 4 

from top to bottom. (b) Initial planar form and force diagrams. 

 

 
Figure 17. Maximum height differences between Kiwi!3D reference geometry and FDM results, step 1 to 4. Red 

lines indicate reference is lower, blue being that reference is higher in vertical direction Z. 

 

4. Conclusions 
The current paper introduced a force density-based form-finding method for membrane of isotropic 
stress field, with edge and/or ridge cables. The main feature is the use of planar reciprocal diagrams as 
a starting point to find initial force densities, which enables a direct tuning of important design 
parameters like anchoring forces and ridge cables in the first design sketches. The equivalence of 
isotropic stress field to the lumped forces enabled the sole use of 1D elements. A progressive procedure, 
i.e. updating force densities based on current geometry after each linear solving step provided good 
agreement to references. 
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