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Abstract

Professor Richard Klein and his students built a bicycle with a rather interesting
feature: no one was able to ride it. A prize was offered. Hundreds of students
and cycling enthusiasts attempted it. Years passed, and the prize money grew.
This article is an exploration of the dynamics and control of the unridable
bicycle from the perspective of an engineer determined to ride it. By developing
simple models of a bicycle as an inverted pendulum attached to a wheeled
carriage that provides steer kinematics, one can pinpoint a physical mechanism
which explains why the rear-steered configuration is difficult to balance. By
applying a state space control perspective, one can illuminate limitations and
opportunities for stabilization. The end result is that Klein’s unridable bicycle is
ridable, with the right strategy and ample practice.

Introduction & Background

In 1986, Richard Klein and his students made an unusual modification to a
rather normal bicycle [1]. A photograph of the bicycle is shown in Fig 1 They
placed the handlebar where the seat normally goes and moved the seat to where
the handlebar normally belongs. They also moved the chain ring and wheel
drive sprocket to the other side of the bike. Therefore, when a rider sits on the
seat, places their hands on the handlebar in front of them, and begins pedaling,
the bicycle begins moving in the direction that the rider is facing, as expected.
What makes the bicycle different is that the wheel which steers is the rear wheel.
The non-steered wheel, which is now at the front of the bicycle, is mechanically
connected to the pedals via drive chain. Klein gave a name to this bike:
Rear-Steered Bike I (RSB1).

For this bicycle, the handlebar and fork are separated from each other and
placed at opposite ends of the bike as shown in the photo of Fig 1. The two parts
are connected to each other mechanically via the steer chain wrapped around
two steer sprockets of equal diameter. If the steer chain is wrapped in a simple
loop configuration as shown in Fig 2A, then a left turn of the handlebar by
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Fig 1. Klein’s “unridable bicycle.” A photograph of the rear-steered bicycle
that Richard Klein and others deemed unridable.

angle δ causes the fork and the steered wheel to rotate the same angle δ and in
the same direction. However, since the steered wheel is at the rear of the bicycle,
such a leftward turn of the handlebar causes the entire bike to turn to the right.

Another way to configure the steer chain is shown in Fig 2B. Here, the chain
makes a figure-8 shaped loop. As a result, the fork turns in opposite direction as
the handlebar. In this case, the bicycle turns in the same direction that the
handlebar is rotated. Either configuration is possible on Rear-Steered Bike I
(RSB1).
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Fig 2. Steer chain configuration.” A: When the steer chair wraps around
the sprockets in a simple loop, a leftward turn of the handlebar causes the
rear-steered bicycle to execute a rightward turn. B: When the steer chain is in a
figure 8 configuration, the bicycle turns in the same direction that the handlebar
is turned.

Regardless of which way the steer chain is configured, the simple act of
making the rear wheel the one that steers, makes the bike have really odd
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behavior. In the Supporting Information section at the end of this article, there
are links to several videos. The first, S1 Video shows mechanical engineering
students attempting to ride Klein’s Rear-Steered Bike I. To be fair the video
shows students’ first interactions with the bike. However, it typically does not
get much better after spending hours trying to wrap their minds around it.

A “Backward Brain Bicycle”

It is well known that the simple act of switching the sign of the input/output
relationship, so that a bike turns in the opposite direction that the handlebar is
steered, is sufficient to make the task of balancing a bicycle upright exceedingly
difficult. The popular YouTube channel, Smarter Every Day, has an episode
devoted to this specific topic [2] in which Destin Sandlin added a geared
connection between the handlebar and fork of a normal front-steered bicycle.
When the rider would turn the handlebar one way, the fork would turn the front
wheel by the same angle about its steer axis, but the opposite direction.

To be clear, Sandlin and co-workers did nothing else to modify the dynamics
of their “Backwards Brain Bicycle.” In principle, it should be just as easy to
stabilize. The rider would just need to respond with the opposite steer input in
response to a perceived amount of bicycle lean. However, at least in Sandlin’s
case, it took nearly a month of daily dedicated training to de-program the
subconscious part of the brain that holds those automatic responses and replace
those responses with ones that produce the opposite handlebar motion.

The story of the “Backward Brain Bicycle” is relevant here because of the
important difference between it and Klein’s “Rear-Steered Bike I” (RSB1). As
presented in this article, the dynamics of the rear-steered bicycle are
fundamentally different than those of the front-steered counterpart. While there
might be some long-term training required to ride a bike similar to RSB1, the
strategies may be fundamentally different. To ride the flipped bike might require
different levels of precision, athleticism, and/or cognitive engagement in the
riding process.

Klein’s Challenge

Richard Klein openly challenged the public to try to ride his Rear-Steered Bike I
(RSB1). At the time of his co-authored article in IEEE Control Systems
Magazine [1], the prize money for the first person to successfully ride it was
$1,000 US. By the time that the author met Kline for the first time in person,
the prize had risen to $5,000 US.

Recognizing the potential difficulty posed by a bicycle that steers in the
opposite direction that the handlebars are pointed (i.e. backward brain effect),
Klein allowed those seeking conquer the “unridable” bike to choose which
configuration from Fig 2 that they wanted for the steer chain.

To successfully complete Klein’s challenge, the rider had to remain seated in
the saddle, with both feet on the pedals. Furthermore, both wheels had to
remain contact with the ground at all times, and the bike needed to make
continuous forward progress along the specified path. The path started with a
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straight section of 100 ft (30.5 meters) in length, followed by a 90-degree turn,
followed by a second 100 ft long straight section. At all times, the bicycle had to
remain a distance of 3 ft. (0.9 meters) from the center of the path. When the
rider reaches the end of the path, they are to put their feet on the ground,
manually turn the bike around, and then ride along the path again, traversing it
in the opposite direction.

In an archived web posting [3], Klein stated that over the years, many
hundreds of overly optimistic riders attempted to win the prize reward. For
some of the most skilled bicyclists and unicyclists, Klein would let them borrow
the bike for a month or more to develop their skills. Before fall 2009, there was
just one person who was able to remain upright. However, this rider ended up
riding haphazardly in an open and flat parking lot as opposed to being able to
follow a prescribed path, a necessary condition for winning the prize.

Blame it on the Open Loop Zero

To provide a control theoretic explanation of why Klein’s RSB1 is “unridable”,
Åström, Klein, and Lennartsson [1] derived linearized equations of motion for a
simplified bicycle model and constructed transfer functions that relate the lean
angle of the bike (output) to the rider torque on the handlebar (input). In an
alternate formulation [4], the input is the steering angle δ. They observed that
the system has two open loop poles, both real, one negative and the other
positive. The two open-loop poles come from the fact that the bicycle behaves
like an inverted pendulum, tending to fall toward one side or the other. The
transfer function also had an open loop zero. For a bicycle with front wheel
steering, the zero was a negative real number, making it fairly straightforward to
devise control laws which could stabilize the system.

But in the case of a rear-steered bicycle, the open-loop zero migrates to the
right half plane, making it a non-minimum phase system. To make matters
worse, for system parameters approximating those of Klein’s unridable bike, the
open loop zero and open loop pole were in close proximity. An analysis by
Åström estimated an upper bound for the phase margin to be about 10o. This
indicates that a rear-steered bicycle, similar to Klein’s unridable bike, might be
stabilizable in principle. However, such a controller would lack an appropriate
level of robustness for a feedback controller that consists of the human brain
serving serving as the real-time signal filter, and control law processor, and the
human muscles serving as actuators.

For robustness, Åström [4] recommends zero-to-pole ratios that are either less
than 0.25 or greater than 4.0. Given that this ratio for the rear-steered bike
depends on longitudinal location of center of mass, height of center of mass, and
speed, he recommends a strategy of standing tall on the pedals, leaning forward,
and pedaling rapidly to get over the z/p > 4 threshold as soon as possible.
Then, in principle, one could move one’s weight back, to sit down, and then
“enjoy the ride” once the speed gets sufficiently large [5]. This strategy has been
successful on a rear-steered bicycle built at the University of California at Santa
Barbara. See also [6]. However, such an approach would violate the rules for
Klein’s challenge,
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Scope of the Current Work

The author became the first person to ride Klein’s RSB1, satisfying all the
requirements of the challenge. A few weeks later, the author’s student, Joe
Szalko, became the second. One can think of this article as an exploration of the
dynamics and control of rear-steered bikes with the objective of learning how to
ride the RSB1 under the conditions specified by Klein’s challenge.

The modeling effort is focused on illuminating aspects of bicycle physics that
explain what makes riding a rear-steered bicycle different from a bike steered
with the front wheel. Here, the paper focuses on the presenting the geometry of
steer kinematics and the two types of lateral acceleration that either either have
a reinforcing effect or cancelling effect on the lean dynamics of the bike.

Unlike some previous works, the dynamics and control analysis here is
performed in the time domain. It considers the natural unstable drift dynamics
of the system, and overlays on top of it the control vector field, illuminating the
ways that the rider can “push” or “pull” the system through the steering input
in order to prevent the bicycle from falling. By expressing the problem in
physical terms like forces, accelerations, and velocities, the types of quantities
that a rider can feel in the seat of their pants, one can formulate strategies for
riding the unridable bike in similar tangible terms.

Klein [12] and Åström et al [1] used the “unridable” rear-steered bicycle as a
curious and cautionary case study suitable for engineering students studying
dynamic systems and control. In much the same way, this study which takes a
deeper exploration into the modeling and control of the system might be a
valuable case study for advanced undergraduates and beginning graduate
students in engineering.

Bicycle Models

There is a long history of developing mathematical models for bicycles [7].
Depending on how one wants to use the models, some are more appropriate
than others. For example, if one wishes to capture the phenomenon of
self-stability (i.e. hands-free riding), it would be important to include gyroscopic
effects, caster effects, and details of mass distribution [8]. In this study, the goal
is to gain insight into what makes RSB1 so difficult to ride, and then use that
insight to devise strategies for riding the bike. In this regard, we seek a simple
physical model that strips away unimportant effects. We seek a model that a
rider can use to interpret what is happening, and to devise a practical strategy
for balancing and riding the “unridable” bike.

Inverted Pendulum

A common starting point for modeling a bicycle is a simple
one-degree-of-freedom inverted pendulum. The bicycle depicted in Fig 3A
consists of a rider fixed rigidly to the bike, whose motion is essentially a
side-to-side rotation about a fixed contact point, labeled c, where the tires touch
the ground.
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Fig 3. Modeling the lean dynamics of a bicycle as an inverted
pendulum.

One of the differences between a bicycle and the common inverted pendulum
in Fig 3B, though, is that the rider can move the contact point with the ground
laterally. This is depicted in Fig 3C in which the pendulum hinge joint is placed
on a roller which can move, vc2 ê2, and accelerate, ac2 ê2, in the lateral direction.

Anyone who has spent time mastering the skill of balancing an inverted
broomstick in the palm of one’s hand knows that it can be accomplished by
carefully monitoring the lean angle of the pendulum and then quickly, but
gracefully, pushing one’s hand into the direction of the lean. Likewise, people
learning to ride a bike are told to turn the handlebar into the direction of the
lean.

The yaw rate also has an influence on the lean angle θ. Here, the yaw rate is
the rate of change of the bicycle’s heading angle. In Fig 3C, it is depicted as a
rotation rate about vertical axis: ψ̇ ê3.

A careful derivation of the equations of motion of an inverted pendulum,
incorporating the lateral movement and yaw effects described above yields the
following:

Ic1θ̈ = mgh sin(θ) +mhac2 cos(θ) + (Ic2 − Ic3)ψ̇
2 cos(θ) sin(θ). (1)

Here, m is the mass of the pendulum, h is the height or distance of the center of
mass from the contact point (pendulum pin joint), and g is the gravitational field
strength. Ic1, Ic2, and Ic3 are moments of inertia about point c corresponding to
directions b̂1, b̂2, and b̂3 aligned with principal axes of the bike/rider.

The first term on the right side of (1) is the moment about the contact point
c generated by gravity. The second term shows how lateral acceleration affects
the lean rate of the pendulum. The final term in (1) captures a destabilizing
centripetal effect coming from the yaw rotation.

Steer Kinematics for Front Steered Bike

The primary way that the rider generates a lateral acceleration and a yaw rate is
by steering the bike. The mechanical bicycle model used in this study consists of
the inverted pendulum described previously attached to a carriage as shown in
Fig 4. By modeling the ground contact by a simple carriage, we are intentionally

May 9, 2024 6/31



ignoring the complicated ways that leaned and steered wheels can contact with
the ground. The training wheels on the carriage keep the steered wheel and
unsteered wheel upright. Furthermore, the steered wheel (front wheel), along
with the fork and handlebar, rotate about a vertical “steer axis.” This removes
caster effects which are not needed to illuminate the differences between front-
and rear-steered bicycle dynamics. The carriage provides a simple model of steer
kinematics which relates the rider’s handlebar steer inputs to the accelerations
and rotations that can serve to balance the pendulum.

FRONT STEERED BIKE MODEL
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Fig 4. Mechanical model of the front steered bicycle. The model consists of an
inverted pendulum attached to a carriage which simplifies the steer kinematics, keeping only
the most important effects.

The inverted pendulum is attached to the carriage via a hinge joint. The
rotational axis of that hinge joint is labeled “lean axis” in the figure. Three
points of particular interest in the kinematics analysis are labeled u, s, and c in
Fig 4. All three lie on the lean axis. Point u lies directly below the axle of the
rear unsteered wheel and directly above the contact point p with the ground.

Point s is the counterpart for the front (steered) wheel; point s lies at the
intersection of the steer axis and the lean axis. Since the steer axis is vertical,
point s hovers directly above the point where the steered wheel contacts the
ground. In addition to the lean and steer axes, there is a third dashed line in
Fig 4A passing through point s called the “steer line.” If one were to imagine a
vertical plane that sliced the front wheel into a left half and a right half, then
this vertical plane would intersect the horizontal plane plane passing through
point s along the steer line. The angle between the lean axis and the steer line is
δ, the steer angle. The rider gets to choose the steer angle. Generally, δ changes
in time.

Finally, point c on the lean axis is aligned with the center of mass of the
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pendulum. As the pendulum leans to the left or to the right the center of mass
of the pendulum traces out a circular arc that lies in a plane perpendicular to
the steer axis. The intersection of this plane with the steer axis is labeled
point c. The fact that there are points on Fig 4 and Fig 3 with the same label c
is intentional.

Fig 5 shows the a top view of the carriage, along with points u, s, and c as it
is executing a left turn. Locations of the rear wheel and front wheel are shaded
in light gray so that reader can see geometrically important features. Both
Figs. 4 and 5 show mutually perpendicular basis vectors ê1, ê2, and ê3 which
define a frame of reference fixed to the frame of the carriage. Unit vector ê1 is
horizontal and tangent to the lean axis; ê2 is also horizontal. Vector ê3 is
vertical, positive upward.
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Fig 5. Steer geometry of the front steered carriage.

Since the rear wheel rolls without slipping, point u will move in a direction
tangent to the lean axis with velocity

v⃗u = v ê1. (2)

As in the benchmark study of Meijaard et al. [7], this inquiry will consider the
case in which the speed v is constant.

If we assume that the front wheel also does not slip, the the velocity of
point s, labeled v⃗s in Fig 5, will always be oriented along the steer line. We can
write the velocity of point s as

v⃗s = vs cos(δ) ê1 + vs sin(δ) ê2. (3)

In general, the speed vs will be different from v, and it will not be constant.
The yaw rate, discussed previously, is the time derivative of the heading angle

ψ defined in Fig 5. Note that since the distance between points u and s does not
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change, there is a simple relationship between the velocities of the two points:

v⃗s = v⃗u + v⃗s/u = v ê1 + βψ̇ ê2. (4)

Here, v⃗s/u denotes the velocity of point s relative to point u, and β is the
distance between the points. Reconciling Eqs (4) and (3), one can determine a
useful expression for the yaw rate in terms of the steering angle of the carriage:

ψ̇ =
v tan(δ)

β
. (5)

Recall that the yaw rate affects the lean dynamics (1), at least at quadratic
order. More important is its effect on the lateral acceleration of point c.

To write the acceleration of point c, one can express it relative to point u.

a⃗c = a⃗u + a⃗c/u

=

(
v2

β
tan(δ) ê2

)
+
(
−αψ̇2 ê1 + αψ̈ ê2

)
= −αψ̇2 ê1 +

(
v2

β
tan(δ) + αψ̈

)
ê2.

(6)

The acceleration a⃗u is rather simple because, at any instant, point u is moving
at constant speed along a path with radius of curvature ρ as depicted in Fig 5.
In that same figure, it is clear that ρ = β/| tan(δ)|. Similarly, as shown in the
second line of (6), it is simple to split a⃗c/u into normal and tangential
components because points u and c are a fixed distance, α, apart.

The ê2 component in the final line of Eq (6) is the ac2 term in Eq (1). To
simplify it a little further, one can take the derivative of (5) and substitute for ψ̈
to get the following expression for the lateral component of acceleration for
point c:

ac2 =
v2

β
tan(δ) +

α v

β cos2(δ)
δ̇. (7)

This gives us the effective lateral acceleration of the pendulum base in terms of
the rider’s steer input δ and its derivative δ̇. In upcoming discussions, we will
make careful note that the first term scales quadratically in speed v while the
second scales linearly.

Steer Kinematics for Rear-Steered Bike

For the rear-steered bicycle, there is a similar pendulum/carriage model as
shown in Fig 6. The direction of travel indicated in Fig 6B confirms that the
unsteered wheel is at the front of the bike and the steered wheel is at the back.
The direction of the ê1 vector is flipped so that it points in the direction of
travel. Also the direction of the steer angle is flipped so that a positive angle δ
generates a turn to the left (when facing the direction of travel) just as it did for
the front steered bike. Likewise, the lean angle θ for the rear-steered bicycle is
defined so that a lean to the left corresponds to a negative value of θ, just as it
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Fig 6. Mechanical model of the rear-steered bicycle.

did for the front steered bicycle. A positive yaw rate still corresponds to a
counter-clockwise rotation when viewed from above.

For both RSB1 and a typical front-steered bicycle, the seat is close to the
rear wheel. Therefore the center of mass, G, tends to be closer to the rear wheel
than the front. Therefore, the value of α, the distance between points c and u is
relatively large for the rear-steered bicycle.

The handlebar in Fig 6 is shown attached directly to the fork which turns the
steered wheel. It is illustrated this way for simplicity. To depict the chain and
sprocket mechanism in the actual rear-steered bike would only complicate the
figure since it has no relevance to the steer kinematics.

To work out the steer kinematics of the rear-steered carriage is nearly
identical to that of the front steered carriage, but with a few signs flipped.
Therefore, there is no need to detail it again. The yaw rate, ψ̇, is the same as it
was for the front steered carriage (5). The lateral component of acceleration of
point c, depending on steer input, is given by

ac2 =
v2

β
tan(δ)− α v

β cos2(δ)
δ̇. (8)

Note that in comparing Eqs (7) and (8) the steer kinematics for the two bike
models differ only by the sign of the δ̇ term. That difference gives rise to the
positive open loop zero for the rear-steered bike that was mentioned in the
introduction.

Linearized Input-Output Equations of Motion

Schwab and Meijjard [9] have reviewed several decades of research in modeling
and measuring the ways in which riders control bicycles. It is common for such
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studies to think of the rider as the controller element in a closed-loop feedback
control system. In many of these models, the rider provides a steer torque to the
bicycle handlebar. In others, the rider provides the steer angle instead. The
present study adopts a steer angle perspective. The goal of the project was for
the author to learn how to ride Klein’s unridable bike. The choice conforms to
the author’s view of balancing the bicycle as a process of determining which
direction to turn the handlebar and how fast to do it. Furthermore, anyone who
has attempted to ride Klein’s rear-steered bike knows that it is nearly impossible
to develop any appreciable speed. So gyroscopic effects are minimal, as is the
rotational inertia about the steer axis. In turning the handlebar, there is little
inertia to push against. Therefore, it is rather simple for the rider to generate
any reasonable steer rate δ̇ that one desires. In this study, δ̇ is the control input.

As is common, we linearize the system, treating the states θ, θ̇, and δ as small.
The result obtained by combining (1), (5), (7) for the front steered bicycle is

Ic1θ̈ = mgh θ +mh

(
v2

β
δ +

αv

β
δ̇

)
. (9)

For the rear-steered bike, the model equations become

Ic1θ̈ = mgh θ +mh

(
v2

β
δ − αv

β
δ̇.

)
(10)

The terms in parentheses in Eqs. (9,10) are linearized version of the lateral
accelerations, ac2.

It is worth noting that if one treats the pendulum as a single point mass,
concentrated at a distance h from the lean axis, then (9) is identical to the
simplified bike model derived by Timoshenko & Young [10]. It is also equivalent
to the first model of Åström et al [1].

In the case of the “benchmark” model, Meijaard et. al [7] meticulously derive
linearized equations of motion of the form[

Mθθ Mθδ

Mδθ Mδδ

] [
θ̈

δ̈

]
+ v

[
0 Cθδ

Cδθ Cδδ

] [
θ̇

δ̇

]
+

[
g

[
Kθθ Kθδ

Kδθ Kδδ

]
+ v2

[
0 K̄θδ

0 K̄δδ

]] [
θ
δ

]
=

[
0
Tδ

]
. (11)

Here, the 13 matrix elements depend on 25 different geometric and mass
distribution parameters for the bike, and Tδ is the steer torque. It is of interest
to note that if the bicycle has a vertical steer axis which passes through the
contact point between the steered wheel and the ground, as in the carriage
models of Figs. 4 and 6, then the coefficient Kθδ is zero. If, in addition, the
centers of mass of the handlebar, fork, and steered wheel all lie on the steer axis,
then Mθδ is zero also. In this case, the top equation of (11) decouples
symbolically from the steer torque Tq. As such, one can write that top equation
as

Mθθ θ̈ = −gKθθ θ − v2Kθδ δ − v Cθδ δ̇. (12)
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Referring to the “benchmark” model, coefficient Mθθ is positive, Cθδ is
negative, and both K̄θδ and Kθδ are negative if you take into account that the
sign of the steer angle δ in this study is opposite that of [7]. Therefore Eq. (12)
has the same structure and speed dependence as the mathematical model for the
front steered bike in (9).

But even if one does not make the assumptions about verticality the steer
axis and centers of mass of various parts lining up on that steer axis, the new
terms that would appear would be quite small. For example, in the benchmark
bike for the benchmark model, the ratio of retained-to-neglected inertia terms is
Mθθ/Mθδ ≈ 35. The ratio of retained-to-neglected speed-independent “stiffness”
terms is Kθθ/Kθδ ≈ 31. This is important if one is to use insight gained from
studying the simplified model in effort to stabilize and control the real bicycle.

Role of Steer Kinematics in Bike Stabilization

Steer Input

One of the reasons for creating bicycle models with the pendulum separated
from the carriage (refer to Figs.4, 6) is to help illuminate a qualitative, physical
understanding of what makes the rear-steered bike difficult to ride. This section
focuses on a numerical experiment in which both the front steered and
rear-steered carriages are traveling so that point u is moving at a constant speed,
v. Here, both carriages are given the time-varying steering input defined by the
logistic function:

δ(t) =
A

1 + e−kt
. (13)

A plot of δ and its first time derivative, δ̇ appear in Fig 7.
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Fig 7. Time dependent steer input δ and its time derivative δ̇ used in
the numerical experiment.

Over the time interval shown, the steer angle starts off close to zero, then
smoothly but quickly transitions toward another angle π/6 = 30◦, corresponding
to a nearly steady left turn. The value of k in (13) was chosen to be k = 8.79 1

s
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so that the 10% to 90% rise time is a half second. If an ordinary, slowly moving
bicycle is leaning to the left, a rider might initiate such a steer maneuver in
effort to avert a fall.

Wheel Paths

As the front-steered (Fig 4) and rear-steered (Fig 6) carriages execute the steer
maneuvers prescribed in Fig 7, the steered and unsteered wheels trace out paths
shown in Fig 8. Specifically, the figure shows paths traced out by the points u for
the unsteered wheels and points s for the steered wheels that lie on the lean axis.

0 0

0 0x (m) x (m)

y
 (

m
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m
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(A) Front steer paths

unsteered wheel

steered wheel

y
e
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e

Fig 8. Paths traced out by the two wheels (points u and s) of the
carriage as the steer maneuver is executed. (A) Front-steered carriage.
(B) Rear-steered carriage. The green dashed curve in (B) shows the path taken
by point c, aligned with the center of mass of the pendulum. Plots assumed a
speed of v = 1.1m/s, and wheel base β = 1.09m. The plot of point c in panel B
corresponds to a center of mass location α = 0.61β, the same as Klein’s RSB1.
At the final points of the paths shown, two thick gray line segments indicate the
locations and orientations of the wheels at that instant.

For the case of the front-steered carriage (Fig 8A), the wheels trace out paths
that one might expect. At the beginning, when the steer angle is essentially zero,
the two wheels travel along a nearly straight line. But as the handlebar turns
the front wheel about the vertical steer axis counter-clockwise when viewed from
above, both wheels get pulled inward along curves that bend to the left.

The corresponding paths of points u and s for the rear-steered carriage,
shown in Fig 8B are qualitatively different. As defined in Fig 6 positive steer
angle δ corresponds to a clockwise rotation of the rear wheel about the vertical
steer axis when viewed from above. As a consequence, the rear-steered carriage
executes a left turn by first swinging the rear wheel outward the right.

At the final point for each of the four paths plotted in Fig 8, there is a wide
gray segment depicting the positions and orientations of the four wheel of the
two carriages at that instant. Observe that for both carriages, the unsteered
wheels are at the same heading angle ψe at the end of the maneuver, though the
carriages took different paths to get there.
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Horizontal Acceleration

When it comes to balancing the pendulum, what matters most in the pendulum
dynamics (1) is the lateral acceleration of the carriage. Fig 9 shows the
acceleration vectors of points u and s for the front-steered carriage along the
paths shown in Fig 8A. For the rear, unsteered wheel in Fig 9A, the acceleration
is given by

a⃗u =
v2

β
tan(δ) ê2. (14)

This is obtained by substituting (5) into (6) and setting α = 0. It is a centripetal
acceleration with the radius of curvature β/ tan(δ). As such, we see the
acceleration vectors pointed inward, toward the center of curvature in Fig 9A.
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(B) Front wheel, steered
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(C) Front wheel, steered

path

centripital accel

swing-in accel

Fig 9. Wheel accelerations of points u and s for the front-steered
carriage as it executes the simple steer maneuver. (A) Centripetal
acceleration vectors on point u of the rear unsteered wheel. (B) Acceleration
vectors on point s of the front wheel are enhanced due to steering action. (C)
Two sources of acceleration that enhance each other. Parameters are the same
as those listed in Fig 8.

For the front steered wheel, the acceleration contains more terms:

a⃗s =
v2 tan(δ)

β

(
− tan(δ) ê1 + ê2

)
+

vδ̇

cos2(δ)
ê2. (15)

The resulting acceleration vectors of point s on the front-steered carriage appear
in Fig 9B. Again, the acceleration vectors point inward along the curved path.
Here, one can see that the inward acceleration for the front wheel is even greater
than that of the rear wheel of the front-steered bike. This is because the lateral
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acceleration in (15) comes from two different sources that reinforce each other.
One source of acceleration is a centripetal piece proportional to v2/β; it is the
same as that for the unsteered wheel in (14). The other contribution to the
lateral acceleration in (15) is a term proportional to vδ̇. This occurs because
turning the front wheel of a front steer bike directs more of the wheel’s motion v
into the ê2 direction. We call it the “swing-in” part of the acceleration. These
two parts of the acceleration vectors are shown separately in Fig 9C. By placing
the vectors tip-to-tail, it is easy to see how the vectors reinforce each other to
enhanced the acceleration at point s.

The corresponding plots depicting the acceleration vectors on the rear-steered
carriage are presented in Fig 10. As was the case for the front-steered carriage,
the unsteered wheel only experiences a simple centripetal acceleration as shown
in Fig 10B and points inward.
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(A) Rear wheel, steered

(C) Rear wheel, steered (D) Path of point c

(B) Front wheel, unsteered

path path

path path

acceleration acceleration

accelerationcentripital accel

swing-out accel

Fig 10. Wheel accelerations of points u and s for the rear-steered
carriage as it executes the simple steer maneuver. (A) As the carriage
executes a left turn, acceleration vectors of point s of the rear-steered wheel. (B)
Acceleration vectors of point u of the front unsteered wheel. (C) Two sources of
acceleration that oppose each other on the rear-steered wheel.(D) Acceleration
vectors on point c aligned with pendulum center of mass. Parameters are the
same as those listed in Fig 8.

As before, the acceleration vectors for the steered wheel come from two
different sources: one from a centripetal piece proportional to v2/β, and another
from a piece proportional to vδ̇:

a⃗s =
v2 tan(δ)

β

(
− tan(δ) ê1 + ê2

)
− vδ̇

cos2(δ)
ê2. (16)
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This time, however, the sign of the vδ̇ term is flipped. The resultant acceleration
vectors are shown in Fig 10A, and the two parts of steered wheel acceleration
are shown in Fig 10C.

The sign change in the vδ̇ portion of the acceleration is due to the fact that
the path of the rear-steered wheel swings outward: the steering action of the
wheel causes a change in velocity toward the right, even though the bicycle
model as a whole turns to the left. For the rear-steered bike, we call it the
“swing-out” acceleration.

Fig 10C illustrates how the swing-out acceleration opposes the centripetal
acceleration. It is these two opposing components of the acceleration, in contrast
to the reinforcing accelerations for the front steered bike, that can make it
exceedingly difficult to balance a rear-steered bicycle.

Effect on the Lean Dynamics

What matters for balancing the pendulum of the rear-steered bike model (Fig 6),
is the lateral acceleration at point c, the point on the lean axis aligned with the
center of mass of pendulum. For Klein’s RSB1, the saddle is fixed to the frame
near the steer axis of the bicycle. As a result, point c is closer to the steered
wheel (point s) than the unsteered wheel (point u) and the lateral acceleration
of point c looks more similar to that of point s than point u. Fig 10D shows the
acceleration vectors of point c with opposing components similar to that
encountered at the steered wheel.

The good news, from the perspective of someone determined to ride Klein’s
unridable bike, is that these two contributions to the acceleration cannot
completely cancel each other. One piece varies with steer angle δ, and the other
varies with the derivative, δ̇. Therefore, the two terms are out of phase. The bad
news for the prospective rider is that the δ̇ signal leads the δ signal. Therefore, a
rider on RSB1 who steers into a lean, as is customary for a traditional bicycle, is
going to experience an acceleration that hastens the fall before the centripetal
effect kicks in and can (hopefully) avert a crash. It’s this dynamic effect of a
simple steer maneuver, first causing an outward acceleration and then an inward
one, that the rider needs to grapple with in order to balance the bike.

Another aspect one must consider when devising a strategy to ride the
rear-steered bike is the role of speed. Recall that the swing-out acceleration is
proportional to speed v, while the centripetal acceleration is proportional to v2.
Therefore, the proportion of the two types of opposing accelerations changes as
the speed changes.

State Space Analysis

To gain insight into how an aspiring rider might exploit these competing
accelerations in effort to stabilize the rear-steered bike, we turn to a state space
control perspective. In doing so, we take the linearized mathematical models
derived previously (9, 10), and re-write it in standard state space form:

ẋ(t) = Ax(t) +B u(t), (17)
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where ω = θ̇,

x(t) =

θ(t)ω(t)
δ(t)

 , and A =

 0 1 0
mgh
Ic1

0 mhv2

βIc1
0 0 0

 .
The 3× 1 B matrices for the for the front steered and rear-steered bicycle
models are

B = Bf =

 0
αmhv
βIc1
1

 , and B = Br =

 0

−αmhv
βIc1
1

 , (18)

respectively. Note that the control input u in (17) represents the steer rate, δ̇.
The steer angle δ is included in x and thus is treated as a state.

For the lean dynamics of our simplified bike models, the state space is three
dimensional. One can think of the right side of (17) as a vector field. Solutions
to the differential equation (17) are integral curves in state space that are
everywhere tangent to the vector field.

Drift Dynamics

When we set u(t) ≡ 0, we are left with just the natural dynamics of the
linearized bike model: θ̇(t)ω̇(t)

δ̇(t)

 =

 0 1 0
mgh
Ic1

0 mhv2

βIc1
0 0 0

θ(t)ω(t)
δ(t)

 . (19)

One may call this the drift dynamics, and it is the same for both the
front-steered and rear-steered bikes.

Since the bottom equation in (19), states that δ̇ = 0, the state space of the
just the drift dynamics is foliated by invariant planes: δ = const, as shown in
Fig 11. Furthermore, Eq (19) possesses an entire line of equilibria:
(θ, ω) = (−δv2/βg, 0). Thus, for each constant steer angle δ, there is a
corresponding equilibrium lean angle θ for which the gravitational moment is
exactly balanced by an effective moment due to a constant centripetal
acceleration.

Aside from the zero eigenvalue corresponding to the line of equilibria, matrix
A in (19) has two other real eigenvalues: λ = ±

√
mgh/Ic1, one positive and one

negative. Therefore, each equilibrium of the drift dynamics is of saddle type.
These are the typical linearized dynamics about the equilibrium of an inverted
pendulum. The positive real eigenvalue accounts for the instability
corresponding to bike falling to either side. In each δ = const invariant plane,
the stable and unstable eigenspaces are in directions tangent to eigenvectors
v+ = [1

√
mgh/Ic1 0]T and v− = [−1

√
mgh/Ic1 0]T , respectively.

Fig 11 shows phase portraits for the saddle equilibria on several different
δ = const slices. Notice from the v dependence, or lack thereof, in the
expressions above, the phase portraits look exactly the same at higher speed,
except for the fact that line of equilibria gets more skewed.
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Fig 11. Foliation of phase portraits for the bicycle model’s drift
dynamics (19).

Adding the Control Vector Field

To more easily visualize the effect of control, on can define a new variable θ̃ as

θ̃(t) = θ(t) +
v2

gβ
δ. (20)

This transformation shifts the line of equilibria to the delta axis, where
(θ̃, ω) = (0, 0). As a result, the linearized model with control input, Eq (17), can
be re-written as

˙̃x(t) = Ã x̃(t) + B̃ u(t), (21)

where

x̃(t) =

 θ̃(t)ω(t)
δ(t)

 , A =

 0 1 0
mgh
Ic1

0 0

0 0 0

 , B̃f =

 v2

gβ

+αmhv
βIc1
1

 , B̃r =

 v2

gβ

−αmhv
βIc1
1

 .
(22)

Here, B̃f u(t) and B̃r u(t) are the control matrices for the front-steer and
rear-steer bike models. Notice that performing this velocity-dependent
transformation in (20) removed the v dependence in the drift vector field Ãx̃.
Furthermore, because the new coordinate system is aligned with line of
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equilibria, the phase portraits on each leaf of the foliation stack up, as
carbon-copies, right on top of each other. Because the right column of Ã consists
of all zeros, there is no steer angle dependence in the new expression of the drift
dynamics. One can investigate stability, controllability, and stabilizability by
considering only the two dimensional θ̃, ω subspace, where the integral curves of
the drift dynamics (u(t) ≡ 0) look like those shown in Fig 12A.

q

(A) w

q

(B) w

~ ~

Fig 12. Integral curves for the (A) drift vector field Ãx̃, and (B) for
the control vector field B̃u when u is a positive constant.

Furthermore, Fig 12B shows integral curves of ˙̃x = B̃ u, for the control vector
field projected onto the δ = const, (θ̃, ω) subspace. The linearized bicycle model
never actually produces solutions like those shown in Fig 12B. However, the
curves are useful in that they depict the direction in which the rider can “push”
the (θ̃, ω) state of the bike by producing a δ̇ steer input. In this case, the green
arrows indicate the direction a rider can “push” the state with a positive ḋelta.
A negative δ̇ would push in the opposite direction in state space. By overlaying
integral curves of the control vector field on top of integral curves of the drift
vector field as in Fig 12B, one can see, graphically, what type of steer input
would push the state toward the stable eigenspace of the natural drift dynamics.

In the formulation of (21), it is worth noting that all the speed dependence v,
appears in the control vector field B̃ u(t). The top element of the B̃ matrix is
proportional to v2, corresponding to the centripetal acceleration produced by
steer kinematics. The middle element of B̃ is proportional to v, corresponding
to the “swing-in” (front-steered bike) or “swing-out” (rear-steered bike) part of
the lateral acceleration. And since the two terms depend differently on v, the
direction of the control vector field changes for different bike speeds.

Controllability and Stabilizability

Upon constructing the standard controllability matrix R̃ = [B̃ ÃB̃ Ã2B̃], one
finds that it becomes singular for bicycle speed v = 0 and for v = α

√
mgh/Ic1.

The result holds for both the front-steered and rear-steered bicycles.

May 9, 2024 19/31



It makes sense that controllability is lost for our bike model when v = 0.
When the bike is not moving, it cannot generate lateral acceleration. More
puzzling is that there is a forward speed, well within the range of what would be
considered normal cycling speeds, for which the front-steered bike loses
controllability.

Front-Steered Bicycle Model

Controllability refers to the property of being able to steer any initial state to
any final state using some combination of the drift vector field and a
time-varying control vector field [11]. The control vector field and the drift
vector shown in Fig 12 would have a non-singular R̃ corresponding to a
controllable system.

In contrast, consider the circumstance shown in Fig 13 depicting what
happens to the the state space integral curves when the front-steered bike travel
at speed v = α

√
mgh/Ic1. Here we see that B̃f aligns with the unstable

eigenspace of the drift vector field.

q

w

unstable 

eigenspace

(drift)

stable 

eigenspace

(drift)

~

Fig 13. Loss of controllability, from a state space perspective, for the
front-steered bike model. Integral curves projected onto a δ = const plane
for the drift vector field and for the control vector field for the front-steered bike
at the speed where the controllability is lost. Integral curves for the drift vector
field are solid and shown in blue. Integral curves for the control vector field are
dashed and shown in green.

The unstable eigenspace of the drift dynamics shown in the figure is a
projection onto a single δ = const plane. In the full three dimensional state
space of Eq. 21, the unstable eigenspace is a two dimensional, invariant surface
that separates the state space into to parts that are indicated by two different
shades of gray in Fig 13. In the absence of control, u = δ̇ = 0, solutions in the
dark gray side, never “drift” to the the light gray side and vice versa. And since
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the Control vector field acts tangent to the unstable eigenspace, control action is
unable to “push” the dynamic state transversely to the surface. It is impossible
use control to steer states on one side of the boundary to the other.
Controllability is lost.

To the bicycle rider interested maintaining balance, though, this result is
inconsequential. Fig 13 shows that the control vector field does act transverse to
the stable eigenspace. To keep the bicycle from falling to one side, the rider can
apply a steer input that pushes the state toward the stable eigenspace, then
allow the stable component of the drift dynamics carry the state toward the line
of equilibria at (θ̃, ω) = (0, 0). Although the linearized model of the front steer
bike, loses controllability at one specific speed, it is still stabilizable [11] at all
forward speeds greater than zero.

Rear-Steered Bicycle Model

Both the front-steered and rear-steered bikes lose controllability at a critical
speed we call the crossover speed :

v = vcr = α
√
mgh/Ic1. (23)

In this case, the control vector field lines up with the stable eigenspace as shown
in Fig 14A. Therefore, like the loss of controllability for the front-steered bike
model, one can use the stable eigenspace to separate state space into a darkly
shaded half and a lightly shaded half and argue that, at linear order, the control
is unable to push states from one side to the other.

q

w

q

w

q

w(A) v = v
cr

(B) v > v
cr

(C) v < v
cr

~ ~

~

P

P

Fig 14. Loss of controllability and crossover for the rear-steered bike model. (A) Integral
curves projected onto a δ = const plane for the drift vector field and for the control vector field for
the rear-steered bike at the speed where the controllability is lost. Integral curves for the drift vector
field are solid and shown in blue. Integral curves for the control vector field are dashed and shown in
green. (B) Same curves, but for a speed slightly faster than the crossover speed. (C) Same curves,
but for a speed slightly slower than the crossover speed.
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This time, however, the effect is more pernicious. Since B̃r is tangent to the
stable eigenspace, it becomes impossible to use control to arrest the unstable
dynamics; one cannot steer the state toward the stable eigenspace. Therefore, at
the crossover speed v = vcr, the rear-steered bike lacks stabilizability too.
Connecting this result to the physics of the problem, one can say that loss of
stabilizability occurs for the rear-steered bike when the centripetal acceleration
(proportional to v2) and the swing-out acceleration (proportional to v)
counteract in a way to make it impossible to actively balance a bike using steer
input.

Fig 14B shows overlays of the integral curves of the control vector field on
top of integral curves of the drift dynamics. The bike speeds for this case is
slightly faster than the crossover speed. Suppose that at some time, the state of
the bicycle is at the point labeled P in the figure. Since a positive control input
δ̇ creates a “push” in the direction of the green arrows (on the dashed curves) in
state space, the rider at state P should choose a sufficiently negative steer rate
δ̇ < 0 to drive the system’s dynamics back toward the stable eigenspace.

If one thinks about what this means physically, point P corresponds to the
rear-steered bike leaning too far to the right, given the current lean rate ω and
steering angle δ. Furthermore, if the rider does not respond to this situation, the
bike and rider will fall to the right. As just discussed the portrait in Fig 14B,
the appropriate action for the rider to generate a negative steer rate δ̇ which
steers the whole bike to the right. This is the normal response for stabilize a
leaning bike.

In contrast, look at the overlaid integral curves in Fig 14C where the bike is
traveling slightly slower than the crossover speed. Again, one can consider the
same state P corresponding to a bike/rider leaning too far to the right. Arrows
of the integral curves of the control vector field in this case indicate that the
rider should immediately respond with a sufficiently large positive steer rate,
δ̇ > 0. It is important to point out that the control strategy for the rear-steered
bike changes on opposite sides of the crossover speed.

For the slower speeds, the swing-out acceleration has a stronger effect than
centripetal. Physically, the δ̇ response corresponds to the rider executing a left
turn, but doing so in a way that causes the rear, steered wheel to swing to the
right to arrest the fall of the right-leaning pendulum.

One final observation to make regarding Figs 14B and C is that when bike
speed is close to the crossover speed, the control vector field is mostly aligned
with the stable eigenspace. Because of this, it requires a relatively large amount
of input to counteract the unstable dynamics.

For the front seer bike, there are no such complications. The control vector
field B̃f is well aligned with the unstable drift dynamics that one is trying to
thwart. The steering strategy is essentially the same regardless of speed.

Strategies for Riding the Rear-Steered Bicycle

It is clear that the ability to stabilize and balance the rear-steered bike model is
dependent on the component of vector B̃r aligned with the unstable eigenspace
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of the uncontrolled drift dynamics. With this in mind, one can decompose B̃r

into eigen-components:

B̃r = bu v+ + bs v− + bδ v0.

Here, v+, v−, and v0 are eigenvectors of Ã corresponding to the positive,
negative, and zero eigenvalues. In this case, bu is given by

bu =
1

2

(
v2

gβ
− αv

β

√
mh

gIc1

)
. (24)

The quantity bu is dimensionless and provides a measure of how much
authority the rider has, through steering input, to counteract the unstable
inverted pendulum dynamics of the bike. The solid curve in Fig 15 is a plot of
this “balance authority” as a function of bike speed, v. To generate the plot,
numerical values for parameters α and β were measured while the author was
sitting on Klein’s RSB1. Other parameters h, m, and Ic1 were based on the
benchmark bicycle of Meijaard et al. [7]
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Fig 15. Plot of balance authority, bu as a function of bike speed, v.
The solid curve is bu given by (24) for the rear-steered bike, while dashed curve
is the corresponding measure for a typical front steer bike. Parameters
β = 1.09m and α/β = 0.61 were measured from Klein’s RSB1, while parameters
m = 94 kg, h = 0.861m, g = 9.81N/kg, Ic1 = 80.8 kg m2 were obtained from [7].
bu for the front steer bike is determined by changing the sign of the second term
in (24), and using a value of α/β = 0.34.

The plot shows that for v = 0, the balance authority is zero. This is because
the control vector B̃ is identically zero at zero speed. With no speed, it is
impossible for this particular bike model to turn a steer input into a lateral
acceleration that would have an effect on a leaning pendulum.

The control vector, B̃, has parts that are linear and quadratic in speed v,
depending on whether they derive from the swing-out or centripetal acceleration
effects, In the same way, the expression for bu in (24) has the same linear and
quadratic structure. The value of bu crosses over from negative to positive at the
crossover speed, vcr. The zero value of bu at the crossover speed corresponds to
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loss of the ability to affect the unstable dynamics of the bike, and thus, the loss
of stabilizability. The sign flip in bu corresponds to the input/output behavior of
the system switching from that determined by swing-out acceleration to another
determined by centripetal acceleration.

For comparison, the analogous balance authority bu for the front steer bike is
also shown in Fig 15 as a dashed curve. This illustrates the profound impact of
having the two types of acceleration oppose each other, as they do for the
rear-steered bike. The opposition greatly reduces the authority of steer input to
balance a rear-steered bike.

Strategy 1: Ride Fast

In [5], Åström suggests a ride-fast strategy for balancing the rear steered bike.
By rapidly accelerating past the crossover speed, vcr, this quickly creates
separation between the non-minimum phase zero and open-loop unstable pole,
allowing for robust stabilization. From the perspective advanced in this article,
such an approach would quickly propel the rider into a regime in which the
centripetal part of lateral acceleration, proportional to v2, dominates the
swing-out portion, proportional to v. A rider in such a situation would have
ample balance authority (Fig 15), and would be able to adopt a balancing
strategy of simply turning into the direction of lean, just like a traditional
front-steered bicycle.

This strategy actually works for the rear-steered bicycle shown in Fig 16,
nicknamed EZRSB (easy rear-steered bike), which is patterned off a similar
rear-steered bike that Klein built, which he called “Rear-Steered Bike II.” [1, 12]
Notice that the seat of the EZRSB bike is relatively far forward, moving the
center of mass closer to the front unsteered wheel. This significantly reducing
the parameter α. Also, the bike’s saddle is relatively high, increasing the
rotational inertia, Ic1, about the lean axis. Both of these effects tend to lower
the crossover speed to approximately 0.4 m/s. This is about 80% lower than
that of Klein’s “unridable” RSB1, making the threshold much easier to surpass.
The corresponding measure of balance authority, bu, as a function of speed for
the EZRSB is provided in Fig 17, with comparisons to a typical front-steered
bike and the RSB1.

In the author’s experience of riding and observing students ride the EZRSB,
if one does not get a strong initial push, it is difficult to pedal fast enough
before falling. This is shown in video S2 Video. Compared to the front-steered
bike, the balance authority in Fig 17 for the EZRSB is very close to zero over a
range of relatively slow speeds. However, if that initial push is sufficient to
propel the bike and rider past a certain speed threshold, balancing the Easy
Rear-Steered Bike is almost as simple as riding a front-steered bicycle. One
cannot ride without hands on the handlebar. But since lateral acceleration of
the bike at these higher speeds is dominated by centripetal effects, riding the
EZRSB requires no additional rider training, provided that the steer chain is in
the figure-8 configuration as shown in Fig 2. In our experience, every rider who
has had the fortitude to give the bike a strong enough initial push has been able
to succeed at riding it in a controlled manner.
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Fig 16. The “Easy Rear-Steered Bicycle” (EZRSB). Built by the
author’s students. The wheel base is β = 0.62m; and center of mass location
α = 0.2β, leading to a crossover speed of approximately vcr = 0.4m/s.
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Fig 17. Balance authority for the “Easy Rear-Steered Bicycle”
(EZRSB). Comparisons are provided to the same measure on a typical
front-steered bicycle (orange dashed), and to Klein’s “unridable” RSB1 (blue
dashed).

A video of the author riding EZRSB is provided in S3 Video. Although the
bicycle itself looks odd, the way that the rider initiates leans, executes turns,
and returns the bike to a non-leaned state seem natural. By observing the
rotation rate of the wheels, on can estimate the speed of the bike at the
beginning of the video at about 2.1 m/s. This is a factor of 5.25 larger than the
estimated crossover speed of vcr = 0.4 m/s, yielding an open-loop zero to pole
ratio of z/p = 5.25. This is well past the ratio z/p = 4 that Åström [4]
recommends for robust control. At this speed, the dimensionless balance
authority measure was estimated to be about bu = 0.41.

During experimentation, the author was able to ride the EZRSB as slow as
1.1 m/s, about 2.75 times larger than the crossover speed. We wouldn’t expect
the bike to get as slow as the crossover speed, where bu is zero. At a speed of
1.1 m/s, our estimate of the balance authority, according to Eq (24), was
approximately bu = 0.06. To be clear, this experimental measure of the author’s
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ability to balance the EZRSB by first traveling at a high enough speed where it
was rather easy to balance the bike, and then slowing down until maintaining
balance was no longer possible. S4 Video shows EZRSB operating near this
threshold. Accompanying the loss of ability to keep the bike balanced, one also
loses directional control.

Another example of a rear-steered bicycle for which the “Ride Fast” strategy
works well is a BMX bike trick called the “Fakie”, in which riders travel
backwards. The interested reader can search on YouTube and find instructional
videos that urge riders to keep their weight over the unsteered wheel. Keeping α
small reduces the crossover speed.

What has proven to be a good strategy for the EZRSB with its center of
mass close to the unsteered wheel (α small), is not a viable approach for Klein’s
“unridable” Rear-Steered Bike I (RSB1). Because the center of mass on RSB1 is
closer to steered wheel (α large), there is a larger “swing out” component of the
lateral acceleration. As a consequence, the crossover speed for RSB1 is
approximately 2.1 m/s, compared to 0.4 m/s for EZRSB. If achieving a balance
authority of bu = 0.06 is imperative for RSB1 as it was for EZRSB, then RSB1
would need an initial push of 2.6 m/s to get it over the threshold where a
strategy based on centripetal acceleration would work. If having a zero to pole
ratio z/p = 2.75 is important, then the initial push on RSB1 would have to
produce a speed of 5.8 m/s in less than the fraction of a second that it takes to
fall. This is two to five times larger than the initial impulse needed to get the
EZRSB going. If one’s goal is to satisfy the requirements of Klein’s Rear-Steered
Bicycle Challenge, then this does not appear to be a viable strategy. The author
and his students have not been able to generate a large enough initial speed on
RSB1 for which the “Ride Fast” strategy could work.

Strategy 2: Ride Slowly and Swing Out

The relatively high crossover speed for the RSB1 bicycle leads one to explore the
possibility of balancing the bike at slow speeds, below the crossover. Returning
to Fig 15, one can see that low speed control which leverages the “swing-out”
acceleration would be a challenge. The lowest speed for which the author was
able to ride EZRSB had a balance authority of bu = 0.06. The largest
magnitude of bu that one could experience while traveling slower than the
crossover speed is estimated to be |bu| = 0.05. And this occurs at half the
crossover speed, giving a pole to zero ratio of p/z = 2, about half that
recommended by Åström [4] for robustness.

Furthermore, to ride a rear-steered bicycle and keep it balanced at these low
speeds, where the swing-out component of acceleration dominates, requires a
fundamentally different approach to riding the bike. The physics of the system,
combined with the control analysis suggests the following strategy:

1. Speed control. The reason why the balance authority curve for RSB1 takes
the shape shown in Fig 15 is because of the swing-out acceleration is
linearly proportional to speed and the centripetal part of lateral
acceleration is quadratic. For the rear-steered bike, these two components
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oppose each other, albeit 90◦ out of phase. The figure shows that balance
authority is quite small for all speeds slower than the crossover. But if
such an approach is to work, then it would be important for the rider to
get into and remain inside a small window of speeds near 1

2vcr where the
magnitude of bu is largest.

It is critically important that the rider develop a “feel” for how the bicycle
is responding to their control inputs. If the rider recognizes that the bike
is not responding sufficient well, the rider should know how to speed up or
slow down to improve the outcome.

2. Exploit the “swing-out.” For low speeds, the lateral component of
acceleration that has the strongest impact on lean dynamics is the
“swing-out” component. The rider must re-train their brain to recognize
that it is not the steer angle δ that is used to balance the bike. Instead, it
is the rate at which one turns the handlebar, δ̇, to swing the rear wheel
outward, that is important. Again, the rider must develop a productive
sense of how it feels to swing the rear wheel out in response to lean.

3. Configure the steer kinematics. Since the control strategy is to consciously
prioritize steering the bicycle’s rear end rather than steering the direction
of the bike, it is important to configure the steer chain as a simple loop
rather than a figure-8 as shown in Fig 2. This way, the rear end of the
bike points in the direction of the turned handlebar on RSB1. This is the
opposite of what one should choose in the “Ride Fast” strategy.

4. Direction control. An important part of Klein’s Rear-Steered Bicycle
Challenge is to be able to control the direction of the bike. It is not
sufficient just to keep it balanced. Klein claimed that at least one rider
was able to achieve balance, but “the rider ended up riding haphazardly in
an open and flat parking lot as opposed to being able to follow a
prescribed path.” [3].

As stated in item 2, the primary means of affecting the lean dynamics of
the bike is through δ̇, the rate at which the rider turns the handlebar, not
the handlebar angle itself. Once one becomes proficient at keeping the
bicycle balanced, one may learn to coordinate the ḋelta balance inputs to
produce a non-zero average steer angle δ which steers the bike in the
desired direction.

Results

The author’s students designed and built a rear-steered bicycle similar to Klein’s
Rear-Steered Bike I. After about a month of training on this rear-steered bike,
the author was able to ride it. A few months later, the author coordinated a
visit with Richard Klein, and demonstrated that he was able to ride Klein’s
Rear-Steered Bike I under the conditions specified in the challenge.

Within weeks, one of the author’s students, Joe Szalko, also demonstrated
that he was able to ride RSB1.
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S5 Video shows a video in which the author successfully rides Rear-Steered
Bike I (RSB1). This is a typical ride. In comparison to the EZRSB (the “Easy
Rear-Steered Bike”) of S3 Video, riding RSB1 is a struggle. It demands the
rider’s complete attention. The rider is consistently providing large steer inputs
to keep the bike balanced. And the speed of the bike is slow. This is the nature
of riding the previously “unridable” bicycle.

Videos recorded on multiple occasions over several days show that the rider
consistently chooses to ride the bike at 1.1 m/s. This consistency suggests that
the rider is able to achieve the speed control component (Part 1) of the “Ride
Slow” strategy. It is worth noting that the rider’s speed of 1.1 m/s almost
perfectly matches the bike speed that maximizes the magnitude of balance
authority predicted in Fig 15.

Even so, that maximal balance authority at v ≈ 1
2vcr is still very small. This

is why S5 Video shows the rider continually making very rapid steer angle
changes. Occasionally one sees steer angle changes of more than 60◦ or more
over a small fraction of a second. The RSB1 rider needs to be constantly
vigilant and aggressive.

In the linearized model (10) adopted for the control analysis, there is no limit
to the size of the control input u one could apply, or the amount of time one
could apply it. Here, in the experiment, one sees that there are limits to how
much the rider can actually turn the handlebar. In multiple occasions in the
video, the rider is near the limit.

There are occasions in the video in which the rider deviates from item 2 of
the “Ride Slow” strategy.These occur when the bike is in a very tight turn. In
this case, centripetal acceleration dominates and one can maintain the tight turn
by controlling one’s speed. It is a different type of bike riding that doesn’t
appear to have a front-steer counterpart. It is rather fun.

S6 Video shows a rider on RSB1 again, starting at the normal speed of
approximately 1

2vcr. Then the rider increases speed and attempts to ride as fast
as possible without losing balance. Repeated measures indicates that this occurs
at about 1.6 m/s. This corresponds bu = 0.04 and p/z = 1.3 Performing the
same experiment, but this time testing how slow the bike can travel without
losing the ability to balance and maintain directional control reveals a lower
bound on the ridable speed at approximately 0.7 m/s, with bu = 0.04 and
p/z = 3.0.

Thus, one can conclude that it is possible to ride Klein’s Rear-Steered Bike I,
maintaining balance and directional control, within a narrow range of slow
speeds. Riding the bike within this range requires one to adopt an
unconventional strategy that takes advantage of a “swing-out” component of
acceleration that depends on the rate at which the rider turns the handlebar.
Puzzle solved. Challenge completed.

Conclusion & Reflection

When a five-year-old child learns to ride a bicycle, she does not perform
centripetal acceleration calculations, plot wheel trajectories, and then conduct
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state space stabilizability analysis. Instead she hops onto the saddle, propels
herself forward, falls, gets back up, and tries again, and again, and again. The
self-learning neural network inside her brain builds models of how the bike
works, and sifts through promising control strategies. In the end, she develops
an ability to ride a bike.

There’s no reason to believe that a human, with a sufficient amount
experience and exploration with the rear-steered bike, couldn’t form the
appropriate neural connections that would lead to an ability to ride Klein’s
“Unridable” Bicycle, without ever contemplating a differential equation.

But there is a reason Klein and his collaborators deemed his rear-steered
bicycle “unridable.” The exploration described here is the first to characterize
the difficult to control dynamics physically as a consequence of two types of
lateral accelerations that partially cancel each other out. It is the first published
study the rear-steered bike as a state-space control problem. The state space
perspective illuminates a geometric understanding of what happens to the
rear-steered bicycle’s dynamics as the speed passes through a “rollover speed” in
which the system loses stabilizability. The perspective allows one to develop a
measure of balance authority, bu that appears to provide insight into the
conditions for which the bike is and is not ridable.

Most importantly, for this project, the competing accelerations and state
space perspective provide insight into how to develop strategies for riding the
”unridable” bike. They are strategies that an engineering professor with modest
athletic abilities could follow to successfully complete the challenge.

Klein [12] and Åström et al [1] used the “unridable” rear-steered bicycle as a
curious and cautionary case study suitable for engineering students studying
dynamic systems and control. In much the same way, this study which takes a
deeper exploration into the modeling and successful, albeit delicate, control of
the system might be a valuable case study for advanced undergraduates and
beginning graduate students in engineering.

Supporting Information

S1 Video. Students’ attempts to ride Rear-Steered Bike I. Typical
attempts to ride a rear-steered bicycle. Attempts appear to be similar regardless
of whether the steer chain is configured as a simple loop or figure-8 as depicted
in Fig 2. Students in the video are adults and have provided written consent.
Link.

S2 Video. Attempt at riding the easy rear-steered bike (EZRSB),
but without sufficient initial speed. The author’s push off from a lamppost
was not sufficient to propel the bike and rider sufficiently past the crossover
speed at which the bicycle could be balanced easily. Link.

S3 Video. A successful ride of EZRSB. With sufficient initial speed, the
author demonstrates that EZRSB can be balanced with little effort. The end of
the video shows that coming to a stop is a different matter. Link.
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S4 Video. Riding EZRSB at a slow speed close to balanceability
boundary. At a speed of v = 1.1 m/s, it becomes difficult for the author to
maintain balance and directional control. Link.

S5 Video. Success at riding Klein’s “Unridable” Rear-Steered Bike I.
Video of the author successfully riding RSB1. Link.

S6 Video. Rear-Steered Bike I traveling (relatively) fast. The bike is
ridden at its normal speed close to 1

2vcr. Then speed is increased until the rider
(the author) can no longer balance it. During this, the rider is attempting to
travel in a straight line. The precursor to losing balance is a loss of directional
control. Link.
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