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ABSTRACT

Nanoparticles are being used in fluids to enhance the thermal conductivity, but published results are incon-
sistent. A possible explanation for this inconsistency is that nanoparticles may migrate under the action of
temperature gradient counteracting Brownian diffusion. This work focuses on looking at the potential for
particle migration due to thermophoresis.
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1. INTRODUCTION
The low thermal conductivity of traditional heat transfer fluid like water, oil and ethylene glycol reduces the
effectiveness and the compactness of a heat exchanger. Nanometer size particles are added to the base fluid to
enhance the overall thermal conductivity of the fluid. This increased heat transfer helps in lowering the maxi-
mum temperature of the system as well as reducing the size of the heat exchangers.This combination of base
fluid and highly conductive nanoparticles is known as nanofluids and several studies have been carried out
to examine the thermal conductivity of these nanofluids. However, there are discrepancies among the results
published. This is due to the lack of a formidable model that can underline the physics involved with this en-
hancement [1–4]. Evans et al. [5] shows that the enhancement in the thermal conductivity of the nanofluid can
be predicted by effective medium theory and there is no effect of Brownian diffusion. While Choi [2] claimed
Brownian motion governs the thermal behavior of the nanofluid. Eastman [6] discussed the idea of ballistic
transport to be the reason for thermal conductivity enhancement instead of diffusive transport. J. A. Eastman
and Keblinski [7] stated particle size, particle agglomeration, particle-fluid interface and temperature as four
major contributors to thermal transport in nanofluids. Thermophysical properties like viscosity can also play
a significant role in the heat transfer enhancement [8, 9]. The enhancement in thermal conductivity is ex-
perimentally observed to be temperature dependent, Gao [10] showed that thermal conductivity was higher
at higher temperature for the nanofluid made from n-Octadecane and Alumina. Ho and Gao [11] reported a
lower heater enhancement with the increased nanoparticle mass fraction due to reduced convection. [12–15]
claim that the Brownian motion plays the dominant role in thermal conductivity enhancement, while other
claims that Brownian motion only affects the nanoparticles but not the heat transfer.

When particles are added to the base fluid, they move around by virtue of Brownian motion. Brownian dif-
fusion is responsible for keeping the uniform concentration within the system, and continuously negates the
formation of concentration gradient. But, when this nanofluid is exposed to the temperature gradient across
the boundaries, there is diffusion due this temperature gradient. This diffusion is known as thermophoresis.
This thermophoretic behavior tends to move the particles towards the cold end of the system while the Brow-
nian diffusion tries to fight against this build up of concentration gradient. The dominant mode of diffusion
will either result in uniform distribution of particle or non-uniform distribution with potential for particles
to migrate towards the cold side. The analysis of the dominant mode is identified using a thermal diffusion
factor.

The discrepancy between the experimental results in the thermal conductivity enhancement of the base fluid
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might be due to this migration of particles.

2. MODELLING AND FORMULATION OF THERMOPHORESIS
Heat transfer and nanoparticle transport are thermodynamically coupled.
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The transport forces are thermal (T) and chemical (µT ), The L-coefficients are known as Onsager coefficients
[16–19]. Mechanisms such as sedimentation or buoyancy are not considered here. This could potentially open
the gate for microgravity or space applications of nanoparticle enhanced PCMs.

Particle flux can be expressed in terms of gradients in temperature and concentration.
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The total particle flux is given by

Jp = −cDT
dT

dx
−DB

dc

dx
= Jp,c + Jp,T (4)

where DB is Brownian diffusion coefficient, DT is thermal mobility coefficient, c is concentration of particles,
Jp,c and Jp,T are the diffusion flux due to concentration and temperature gradients, respectively. Comparing
equations 3 and 4:

DT =
Lµq

T 2c
– and – DB =

Lµµ

T

µT

c
(5)

The relative strength of Brownian diffusion to thermal mobility is evaluated at net zero mass flux.

at Jp = 0 ,
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The Soret coefficient ST is the ratio of thermal mobility coefficient to Brownian diffusion, ST = DT /DB .
Using Einstein-Stokes and thermal diffusion equations [20, 21], the relative effect of the thermal mobility to
the Brownian diffusion can be written in the non-dimensional form as the thermal diffusion factor, which is
the Soret coefficient scaled with temperature, TST .
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dp is particle diameter, µf is the viscosity of the base fluid, ρp and ρnf are the density of particle and nanofluid,
and kB is Boltzmann constant. Nanofluid is the nanoparticles dispersed in base-fluid.

When TST < 1, Brownian diffusion prevents the development of a nanoparticle concentration gradient .
When TST > 1, then a nanoparticle concentration gradient might develop due to thermophoresis.

We can not assume the thermal conductivity or density of the fluid to be constant over the applicable range
of temperature. So it is necessary to provide these properties as a function of temperature and it is shown in
table 1.
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Table 1 Temperature dependent material properties [22–25]

Ethylene
Glycol Water Acrylic

Acid
Formic
Acid

Caprylic
Acid

Acetic
Acid Paraffin

Density, [g/mL], AB−(1−T/Tc)
n

A 0.32503 0 .34710 0.34645 0.36821 0.29231 0.35182 0.23837
B 0.25499 0.27400 0.25822 0.24296 0.26676 0.26954 0.25763
n 0.172 0.28571 0.30701 0.23663 0.28020 0.26843 0.274

Tc, K 645 647.13 615 580 692 592.71 745.26

Viscosity, [cP], log10 µ = A+B/T + CT +DT 2

A -16.9728 -10.2158 -15.9215 -4.2125 -10.4823 3.8937 -8.5505
B∗103 3.1886 1.7925 2.4408 0.97953 2.067 .784 1.6708

C∗10−2 3.2537 1.7730 3.4383 0.552 1.8423 0.6665 1.5675
D∗10−5 -2.448 -1.2631 -2.7677 -0.57723 -1.3722 -0.75606 -1.2341

Thermal Conductivity [W/m-K]

organic compound: log10 K = A+B
(
1− T

C

)2/7
inorganic compound: K = A+BT + CT 2

A -0.5918 0.2758 -1.6101 -0.8626 -1.6624 -1.2836 -1.5198
B - 4.61E-03 0.9742 0.3692 0.9819 0.5893 0.8067
C 645 -5.5391E-06 615 580 692 592.71 745.26

Specific Heat [J/mol-K], Cp = A+BT + CT 2 +DT 3

A 75.878 92.053 -18.242 -16.110 70.790 -18.944 151.154
B 6.4182E-01 -3.9953E-02 1.2106 8.7229E-01 1.7647 1.0971 2.7878

C∗10−3 -1.6493 -0.21103 -3.1160 -2.3665 -4.1521 -2.8921 -6.1542
D∗10−6 1.6937 0.53469 3.1409 -2.4454 3.9451 2.9275 5.5249

Table 2 Properties of Nanoparticles [22, 25]

Thermal
Density Conductivity

ρp [kg/m3] kp [W/m-K]
Alumina 3950 50
Copper 8960 402
Gold 19300 317.422
Silver 10500 428.227
Titania 4000 11.7

3. RESULTS AND DISCUSSIONS

Five particle materials were included in this study: gold, alumina, titania, copper and silver. The density and
thermal conductivity for these particles are listed in Table 2. These properties are considered constant as the
variation in density and thermal conductivity at the applicable temperature is insignificant.

Six types of PCMs were studied. These were modeled only in the liquid phase without solidification. The base
fluids are acetic acid, acrylic acid, caprylic acid, ethylene glycol, formic acid and water. Nanoparticles of the
five materials listed earlier were paired with these fluids with varying particle size and volume fraction. The
potential for particles to migrate or remain uniformly distributed depends on the size of nanoparticles, volume
fraction, particle type, fluid, and operating temperature range.
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3.1 Impact of Particle Size and Temperature
Variations in thermal diffusion factor with temperature for copper particles of diameter 2, 5 and 20 nm at 5%
volume fraction in all six fluids are shown in Fig 1. There is potential for more uniformly distributed particles
at 2 nm as compared to 20 nm. This observation aligns with the results reported by Lüsebrink and Ripoll [26].
The TSt curves shift to large values as particle size increases indicating Brownnian diffusion is dominant
relative to thermophoresis. Nevertheless, caprylic acid and ethylene glycol always have some potential for
particle migration.

(a) 2 nm diameter (b) 5 nm diameter

(c) 10 nm diameter

Fig. 1 Temperature vs Thermal Diffusion Factor with Copper Particles

We can also see from these figures, that particles are expected to be more uniformly distributed at higher
temperatures and thus, the migration towards cold end. This result is supported by experimental and molecular
dynamic simulation results of Galliero and Volz [27], Duhr and Braun [28].

3.2 Impact of Particle Type
Nanoparticles of alumina, copper, silver, titania and gold were studied for 5 nm diameter and 2% volume
fraction. Alumina (Fig 2a) and titania (Fig 2b) particles have potential for thermophoresis over the entire
range of temperatures. While Brownian diffusion is dominant at temperatures greater than 300 L for gold
(Fig 2c) and silver (Fig 2d) particles in water, acrylic acid, formic acid and acetic acid.

The variation in thermal conductivity between different types of particles affect the migration potential. Alu-
mina and titania have relatively low thermal conductivity as compared to silver, gold, and copper. While
particle density also plays a role, its effect is minor due to the minimal change in nanofluid density caused by
the addition of nanoparticles. The results indicate that to offset the lower thermal conductivity of alumina and
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(a) Alumina Particles (b) Titania Particles

(c) Gold Particles (d) Silver Particles

Fig. 2 Comparison of particle materials at 5 nm diameter.

achieve the same thermal diffusion as copper, its density would need to be increased by 117 times. However,
the impact of density remains insignificant because it changes proportionally with the particle fraction so the
fluid density is primary in determining nanofluid density.

3.3 Impact of Volume Fraction
The effect of volume fraction is not insignificant. Figure 3 shows the change in thermal diffusion factor for
a range of volume fractions up to 5%. Only copper particles at 360 k are shown. Results are similar for other
particle types and temperatures.

3.4 Comparison with Reported Published Data
Figure 4 illustrates the trends in TSt for a few select particle-fluid pairs. All combination except for acetic acid
with 2.5 nm copper particles have thermal diffusion factors greater than one, indicating a potential for non-
uniform particle distributions due to thermophoresis. Figure 4 also includes selected test conditions (square
symbols) from studies on thermal conductivity enhancement of phase change materials [3, 29–32]. Data from
Iyahraja1 and Rajadurai [29] and Kang et al. [31] (black and blue symbols, respectively) align with the pre-
dicted trend lines that indicate an increase in the size of silver nanoparticles dispersed in water increases the
potential for thermophoretic migration. Also, when particles of lower thermal conductivity like alumina are
used, as shown by red square [30], there is a shift towards higher thermophoretic potential. The fluid viscosity
has the most prominent impact on particle migration as can be seen from the dashed green trend line, with
test conditions from Eastman et al. [3] (green square). The thermophoretic potential is 1000 times greater than
Brownian diffusion even though the particle is only 4 nm radius. The most commonly used PCM, paraffin,

5



TFEC-2024-50984

Fig. 3 TSt dependency on volume fraction for 5 nm copper particles at 360 K.

Fig. 4 TSt dependency on particle radius, particle-fluid pair, volume fraction, and temperature.

also shows that the dispersion of copper nanoparticles may result in thermophoretic migration with a particle
radius of 10 nm [32].

The experimental data shown in Figure 4 all have potential for thermophoretic migration except for the sce-
nario of dispersed copper nanoparticles of 5 nm diameter in acetic acid shown by the magenta square. This
combination of particle size, material, and base fluid at 320 K is dominated by Brownian diffusion and ought
to remain uniformly distributed. Choosing the appropriate combination of PCM and nanoparticle might avoid
the development of concentration gradients. Though such concentration gradients have not been reported,
most thermal conductivity studies are not cycled in the same manner as PCM energy storage systems. PCM
thermal storage systems have much longer operational times and particle concentrations become locked be-
tween cycles due to solidification.

4. SUMMARY
The analysis reported herein has accounted for the experimentally verified empirical relations and considers
the nanoparticle and fluid as a continuum. Values of thermal diffusion coefficient DT are determined from
previously validated equations 7 and thermophoretic force FT that match well with experimental values of
Semenov and Schimpf [33], Ramachandran et al. [34]. The work presented here shows that depending on
the range of temperature, particle size, type of fluid and type of particle, the dispersed nanoparticles have the
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potential for migration. Nanoparticles will likely be more uniformly distributed at large temperature gradients
or high viscosity base fluids.

This work looks at the nanoparticles dispersed in PCM in a single phase liquid model. This will be extended
to include the phase transition effect going forward. During the phase transition, the PCM will have certain
interfacial velocity which can be compared to the thermophoretic velocity. This could reveal if the particles
will lag, or always lead the interface leading to the sticking condition at that interface.
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NOMENCLATURE
β non-dimensional nanofluid thermal conductivity (-)
c concentration kg/m3

DB Brownian diffusion coefficient m2/s
dp particle diameter m
DT thermodiffusion coefficient m2/s-K

f subscript for base fluid -
FT thermophoretic force N
Jp mass diffusive flux kg/m2/s
Jp,c mass diffusive flux due to concentration gradient kg/m2/s
Jp,T mass diffusive flux due to temperature gradient kg/m2/s
kB Boltzmann Constant m2kg/s2-K
kf base fluid thermal conductivity W/m-K
knf nanofluid thermal conductivity W/m-K
kp particle thermal conductivity W/m-K
Lµµ Onsager coefficient -
µnf viscosity of nanofluid N-s/m2

µf viscosity of base fluid N-s/m2

nf subscript for nanofluid -
p subscript for particle -
φ volume fraction of particles -
φe equivalent volume fraction of particles -
rp radius of particle nm
ρf density of base fluid kg/m3

ρnf density of nano fluid kg/m3

ρp density of nanoparticle kg/m3

ST Soret Coefficient K−1

T temperature K
Tm melting temperature K
VT drift velocity m/s
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