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Abstract: This paper expands on the exploration of Bayesian problem-solving 
capabilities in large language models (LLMs), specifically ChatGPT, and Gemini. 
Building upon our prior study, where ChatGPT excelled in solving 10 Bayesian 
problems, we extend the scope by introducing four additional tasks to both ChatGPT 
and Gemini in order to compare performance. The results demonstrate ChatGPT and 
Gemini consistent accuracy in tackling all four reasoning problems presented. The 
obtained results suggest the potential of LLM like ChatGPT and Gemini for effectively 
handling Bayesian reasoning tasks relevant to science and engineering fields. 
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1. Introduction 

ChatGPT is a language model developed by OpenAI, built on the GPT (Generative 
Pre-trained Transformer) architecture. It is designed to generate human-like text based 
on the input it receives (ChatGPT, 2024). GPT models are a type of artificial 
intelligence that have been trained on a massive amount of numeric/text data to 
understand and generate coherent and contextually relevant responses. ChatGPT 
specifically refers to a version of the GPT model that has been fine-tuned to perform 
well in generating conversational responses.  

Gemini (previously known as Bard) is the name of the tool using large language 
model (LLM) created by Google AI. This complex model is trained on a huge dataset of 
text and code, which allows to understand and process information, generate different 
creative text formats, and answer questions in an informative way (Gemini, 2024).  

In our previous study (Krohling, 2023), we investigated the capacity of ChatGPT to 
solve 10 probabilistic reasoning problems. In this paper, we aim to extent our test suite 
by applying chatGPT and also Gemini to 4 additional Bayesian reasoning problems. 
Indeed, it is worth mentioning that people often fail in situations where the Bayes´s 
formula is not known. Experiments conducted with children (Zhu & Gigerenzer, 2006) 
indicate that the Bayesian reasoning abilities depend on the representation of 
information. 

In this paper, we show that the generative models can effectively solve Bayesian 
reasoning problems. Next, we present the 4 Bayesian reasoning tasks (Woike, Hertwig, 
and Gigerenzer, 2006) along with the respective solutions provided by ChatGPT and 
Gemini. 

  
 
 



2. Bayesian reasoning problems solved by ChatGPT and Gemini 
 
Next, we present the Bayesian inference tasks. 

Task 1. Cab task (Kahneman & Tversky, 1972) 
Two cab companies operate in a given city, the Blue and the Green (according to the 
color of cab they run). Eighty-five percent of the cabs in the city are Blue, and the 
remaining 15% are Green. A cab was involved in a hit-and-run accident at night. A 
witness later identified the cab as a Green cab. The court tested the witness’ ability to 
distinguish between Blue and Green cabs under nighttime visibility conditions. It found 
that the witness was able to identify each color correctly about 80% of the time, but 
confused it with the other color about 20% of the time. What do you think are the 
chances that the errant cab was indeed Green, as the witness claimed? 
 
ChatGPT answer 
To determine the chances that the errant cab was indeed Green, we can use Bayes' 

Theorem. Let's denote the following: 

G: The event that the cab is Green. 

B: The event that the cab is Blue. 

W: The event that the witness identifies the cab as Green. 

We want to find P(G∣W), the probability that the cab is Green given that the witness 

identified it as Green. 

Bayes' Theorem states: 

P(G∣W)= P(W∣G)⋅P(G)/P(W) 

Where: 

P(W∣G) is the probability that the witness identifies the cab as Green given that it is 

Green. 

P(G) is the prior probability that the cab is Green. 

P(W) is the total probability of the witness identifying the cab as Green. 

The probability that the witness identifies the cab as Green given that it is Green 

P(W∣G)) is the accuracy of the witness, which is given as 80% or 0.8. 

The prior probability that the cab is Green P(G)) is given as 15% or 0.15. 

The total probability of the witness identifying the cab as Green P(W)) can be expressed 

as the sum of two mutually exclusive events: the witness correctly identifying a Green 

cab and the witness mistakenly identifying a Blue cab as Green. 

P(W)=P(W∣G)⋅P(G)+P(W∣B)⋅P(B) 

The probability that the witness identifies a Blue cab as Green P(W∣B)) is the 

complement of the accuracy, which is 1 - 0.8 = 0.2. The prior probability that the cab is 

Blue P(B)) is given as 85% or 0.85. 



Now, we can plug in the values into Bayes' Theorem: 

P(G∣W)= 0.8⋅0.15/(0.8⋅0.15+0.2⋅0.85) 

P(G∣W)≈0.4138 

So, the probability that the errant cab was indeed Green, given the witness's claim, is 

approximately 0.4138 or 41.38%. 

 
Gemini answer 
This situation is a classic application of Bayes' theorem to calculate the probability of 

the event (cab being green) given the evidence (witness identification). Here's how to 

solve it: 

1. Define events: 

Let G be the event that the cab involved in the accident was Green. 

Let B be the event that the cab involved in the accident was Blue. 

Let W be the event that the witness identified the cab as Green. 

2. Given information: 

P(G) = 0.15 (probability of a Green cab, as 15% are Green) 

P(B) = 1 - P(G) = 0.85 (probability of a Blue cab, as 85% are Blue) 

P(W|G) = 0.8 (probability of witness correctly identifying Green, 80% accuracy) 

P(W|B) = 0.2 (probability of witness misidentifying Blue as Green, 20% error) 

3. What we need to find: 

P(G|W) = probability of the cab being Green given the witness identified it as Green 

4. Apply Bayes' theorem: 

P(G|W) = (P(W|G) * P(G)) / (P(W|G) * P(G) + P(W|B) * P(B)) 

5. Substitute the values: 

P(G|W) = (0.8 * 0.15) / (0.8 * 0.15 + 0.2 * 0.85) 

P(G|W) = 0.12 / 0.29 

P(G|W) ≈ 0.4137 (approximately 41.37%). 

 
Task 2. Weather forecast (Dohmen et al., 2009)  
Imagine you are on vacation in an area where the weather is mostly sunny and you ask 
yourself how tomorrow’s weather will be. Suppose that, in the area you are in, on 
average 90 out of 100 days are sunny, while it rains on 10 out of 100 days. The weather 
forecast for tomorrow predicts rain. On average, the weather forecast is correct on 80 
out of 100 days. What do you think is the probability, in percent, that it is going to rain 
tomorrow? 

 
ChatGPT answer 
In this scenario, let's denote the following events: 



R: It will rain tomorrow. 

S: It will be sunny tomorrow. 

F: The weather forecast predicts rain. 

We are interested in finding the probability that it will rain tomorrow given that the 

forecast predicts rain, i.e., 

P(R∣F). 

We can use Bayes' Theorem: 

P(R∣F)= P(F∣R)⋅P(R)/ P(F) 

Where: 

P(F∣R) is the probability that the forecast predicts rain given that it will rain. This is 

given as the accuracy of the forecast, which is 80% or 0.8. 

P(R) is the prior probability that it will rain tomorrow, given as 10% or 0.1. 

P(F) is the total probability of the forecast predicting rain, which can happen either 

because it will rain and the forecast is correct or because it won't rain, but the forecast 

is incorrect. 

P(F)=P(F∣R)⋅P(R)+P(F∣S)⋅P(S) 

We know that P(F∣S) is the probability that the forecast predicts rain given that it will 

be sunny. This is the complement of the accuracy, so it's 1−0.8=0.2. The prior Now, 

let's plug in the values: 

P(F)=0.8⋅0.1+0.2⋅0.9 

P(F)=0.08+0.18 

P(F)=0.26 

Now, we can use Bayes' Theorem to find P(R∣F): 

P(R∣F)= 0.8⋅0.1/0.26 

P(R∣F)= 0.0.8/0.26 

Now, let's perform the division: 

P(R∣F)≈0.3077 

So, the probability that it will rain tomorrow, given that the forecast predicts rain, is 

approximately 30.77%. 

 
Gemini answer 
The probability of rain tomorrow is approximately 30.8%. Here's the breakdown: 

1. Define events: 

Let R be the event that it rains tomorrow. 



Let F be the event that the forecast predicts rain. 

2. Given information: 

P(not R) = 0.9 (probability of a sunny day, as it rains 10% of the time) 

P(F|R) = 0.8 (probability of an accurate forecast for rain) 

P(F|not R) = 0.2 (probability of an inaccurate forecast for no rain) 

3. What we need to find: 

P(R|F) = probability of rain tomorrow given the forecast predicts rain 

4. Apply Bayes' theorem: 

P(R|F) = (P(F|R) * P(R)) / (P(F|R) * P(R) + P(F|not R) * P(not R)) 

5. Substitute the values: 

P(R|F) = (0.8 * 0.1) / (0.8 * 0.1 + 0.2 * 0.9) 

P(R|F) = 0.08 / 0.26 

P(R|F) ≈ 0.3077 (approximately 30.8%). 

 
Task 3. Quality control (Hoffrage et al., 2015)  
The Skiwell Manufacturing Company gets material from two suppliers. Supplier A’s 
materials make up for 30% of what is used, with supplier B providing the rest. Past 
records indicate that 15% of supplier A’s materials are defective and 10% of B’s 
materials are defective. Since it is impossible to tell which supplier the material came 
from once they are in the inventory, the manager wants to know: What is the probability 
that material comes from supplier A given that it has been identified as defective?  
 
ChatGPT answer 
Let's denote the following events: 
A: Material comes from supplier A. 

B: Material comes from supplier B. 

D: Material is defective. 

We want to find P(A∣D), the probability that the material comes from supplier A given 

that it has been identified as defective. 

We can use Bayes' Theorem for this: 

P(A∣D)= P(D∣A)⋅P(A)/ P(D) 

Where: 

P(D∣A) is the probability that the material is defective given that it comes from supplier 

A, given as 15% or 0.15. 

P(A) is the prior probability that the material comes from supplier A, given as 30% or 

0.3. 



P(D) is the total probability of the material being defective, which can happen either 

because it comes from supplier A and is defective or because it comes from supplier B 

and is defective. 

P(D)=P(D∣A)⋅P(A)+P(D∣B)⋅P(B) 

We know that P(D∣B) is the probability that the material is defective given that it comes 

from supplier B, given as 10% or 0.1. The prior probability that the material comes 

from supplier B P(B)) is the complement of P(A), so it's 1−0.3=0.7. 

Now, let's plug in the values into the formula: 

P(A∣D)= 0.15⋅0.3 /(0.15⋅0.3+0.1⋅0.7)  

P(A∣D)= .045 ///  (0.045+0.07) 

P(A∣D)= 0.045/0.115 

Now, let's perform the division: 

P(A∣D)≈0.3913 

So, the probability that the material comes from supplier A given that it has been 

identified as defective is approximately 39.13%. 

 

Gemini answer 
Let's calculate the probability that the defective material comes from supplier A, given 

the information provided: 

Define the probabilities: 

p(A): Probability of material coming from supplier A (30%) = 0.3 

p(defect|A): Probability of defective material from supplier A (15%) = 0.15 

p(B): Probability of material coming from supplier B (1 - p(A)) = 0.7 

p(defect|B): Probability of defective material from supplier B (10%) = 0.1 

Calculate the overall probability of defective material: 

p(defect): Probability of any defective material = p(defect|A)*p(A)+ p(defect|B)*p(B) = 

0.15 * 0.3 + 0.1 * 0.7 = 0.045 + 0.07 = 0.115 

Apply Bayes' theorem: 

p(A|defect): Probability of material coming from supplier A given it is defective = 

p(defect|A)*p(A) / p(defect) = 0.15 * 0.3 / 0.115 = 0.045 / 0.115 ≈ 0.3913 

Therefore, the probability that the defective material comes from supplier A is 

approximately 39.13%. 

  

 



Task 4. Caries detection (Nadanovsky et al., 2018)  
Imagine a population survey for interproximal caries detection using bite-wing 
radiographs. The information below refers to asymptomatic adults who took part in this 
survey. The probability that 1 of these adults has interproximal caries requiring 
restorative treatment, confirmed by tooth separation and direct visual and tactile 
examination, was 8%. The probability of having a positive bite-wing radiograph among 
adults who have a confirmed interproximal caries is 90%. The probability of having a 
positive bite-wing radiograph among adults without interproximal caries is 8%. 
Question: Imagine an adult who had a positive bite-wing radiograph in the survey. What 
is the probability that he actually has interproximal caries? 

 
ChatGPT answer 
Let's denote the following events: 

C: The event that an adult has interproximal caries requiring restorative treatment. 

+: The event that an adult has a positive bite-wing radiograph. 

We want to find P(C∣+), the probability that an adult has interproximal caries given 

that they have a positive bite-wing radiograph. 

We can use Bayes' Theorem for this: 

P(C∣+)= P(+∣C)⋅P(C) / P(+) 

Where: 

P(+∣C) is the probability of having a positive bite-wing radiograph given that an adult 

has interproximal caries. This is given as 90% or 0.9. 

P(C) is the prior probability that an adult has interproximal caries, given as 8% or 

0.08. 

P(+) is the total probability of having a positive bite-wing radiograph, which can 

happen either because an adult has interproximal caries and the radiograph is positive 

or because an adult does not have interproximal caries, but the radiograph is positive. 

P(+)=P(+∣C)⋅P(C)+P(+∣∼C)⋅P(∼C) 

We know that P(+∣∼C) is the probability of having a positive bite-wing radiograph 

given that an adult does not have interproximal caries, given as 8% or 0.08. The prior 

probability that an adult does not have interproximal caries P(∼C) is the complement of 

P(C), so it's 1−0.08=0.92. 

Now, let's plug in the values into the formula: 

P(C∣+)=0.9⋅0.08/ (0.9⋅0.08+0.08⋅0.92) 

P(C∣+)= 0.072/(0.072+0.0736) 

P(C∣+)=.072/0.1456 

Now, let's perform the division: 



P(C∣+)≈0.4945 

So, the probability that an adult actually has interproximal caries, given that they have 

a positive bite-wing radiograph, is approximately 49.45%. 

 
Gemini answer 

Let's calculate the probability that an adult with a positive bite-wing radiograph 
actually has interproximal caries. 

 
We can use Bayes' theorem to approach this problem. This theorem helps determine 

the probability of an event (having caries) given that another event (positive bite-wing 
radiograph) has already occurred. 

 
Here's what we know from the information provided: 
 
Probability of having interproximal caries (P(caries)) = 8% = 0.08 
Probability of a positive bite-wing radiograph among with caries (P(positive | 

caries)) = 90% = 0.9 
Probability of a positive bite-wing radiograph among without caries (P(positive | no 

caries)) = 8% = 0.08 
We need to find the probability of caries given a positive test (P(caries | positive)). 
 
Applying Bayes' theorem: 
 
P(caries | positive) = (P(positive | caries) * P(caries)) / (P(positive | caries) * 

P(caries) + P(positive | no caries) * (1 - P(caries))) 
 
Calculation: 
 
P(caries | positive) = (0.9 * 0.08) / ((0.9 * 0.08) + (0.08 * (1 - 0.08))) = 0.4945 
 
Therefore, the probability that an adult with a positive bite-wing radiograph 

actually has interproximal caries is approximately 49.45%. 
 
 

3. Concluding remarks 
This paper show ChatGPT and Gemini ability to solve all four Bayesian reasoning tasks 
presented. Since both tools can solve Bayesian reasoning problems given text-based 
data, their use, as suggested by Krohling (2023), may prove beneficial for enhancing the 
learning process of pupils/undergraduate students in engineering and other scientific 
disciplines taking probability and statistics courses. 
 
References 
Zhu, L. & Gigerenzer, G. Children can solve Bayesian problems: the role of representation in mental 
computation, Cognition, January 2006. 
 
Krohling, R. A. Bayesian artificial brain with ChatGPT, 2023, available at  arxiv.org/abs/2308.14732 
 
ChatGPT, openAI official website, available from https://platform.openai.com/apps, May 2024. 
 
Gemini, Google AI Generative Chat Tools , available from https://gemini.google.com/app, May 2024 
 



Woike, J. K.,  Hertwig, R., & Gigerenzer, G. Heterogeneity of rules in Bayesian reasoning: A toolbox 
analysis, Cognitive Psychology, V. 143, June 2023, 101564 
 
Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. 
Cognitive Psychology, 3(3), 430–454. 
 
Dohmen, T., Falk, A., Huffman, D., Felix, M., & Sunde, U. (2009). The Non-Use of Bayes Rule: 
Representative Evidence on Bounded Rationality. Technical Report, Maastricht University, Research 
Centre for Education and the Labour Market, ROA-RM-2009/1, February 2009. 
 
Hoffrage, U., Hafenbrädl, S., & Bouquet, C. (2015). Natural frequencies facilitate diagnostic inferences 
of managers. Frontiers in Psychology, 6, 642. 
 
Nadanovsky, P., dos Santos, A. P. P., Lira-Junior, R., & de Oliveira, B. H. (2018). Clinical accuracy data 
presented as natural frequencies improve dentists’ caries diagnostic inference: Evidence from a 
randomized controlled trial. The Journal of the American Dental Association, 149(1), 18–24.  
 


