
Graphical Abstract
Correlation of 2D and 3D Particle Properties with Simulated Particle
Imaging Dataset

Thomas Buchwald, Ralf Ditscherlein, Urs A. Peuker



Highlights
Correlation of 2D and 3D Particle Properties with Simulated Particle
Imaging Dataset

Thomas Buchwald, Ralf Ditscherlein, Urs A. Peuker

• Workflow for simulation of static and dynamic image analysis is
presented.

• Particle characteristics for several solids types are determined.

• Influence of image analysis methods on shape factors are shown.

• A correlation for 3D sphericity from 2D shape factors is found.

• A correlation of particle width from 2D measures is found.



Correlation of 2D and 3D Particle Properties with
Simulated Particle Imaging Dataset

Thomas Buchwald, Ralf Ditscherlein, Urs A. Peuker
Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie

Freiberg, Agricolastr. 1, 09599, Freiberg, Germany

Abstract

Particle size and shape characteristics are commonly measured with two-
dimensional (2D) imaging techniques, two of which are static or dynamic
imaging techniques. These 2D particle characteristics need to be applied to
particulate processes where they model three-dimensional (3D) processes.
The correlation between 2D and 3D particle characteristics is therefore
necessary, but the knowledge is still limited to either mathematically simple
shapes or specific sets of investigated bulk solids.

A particle dataset consisting of six bulk solids measured with X-ray
microscopy was used to simulate the results of 2D imaging techniques to
create a database to test the correlation between sets of particle characteris-
tics. The dataset thus created offers the possibility to study the correlation
between characteristic values and robustly predict the 3D properties of
bulk solids measured with 2D measurement techniques. Several correla-
tions are determined, including 2D shape factors vs. Wadell’s sphericity
(3D), and Feret diameters (2D) vs. particle width (3D).

Keywords: imaging techniques, static image analysis, dynamic image
analysis, circularity, sphericity, shape factors, equivalent particle size,
particle characteristics, correlation
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1. Introduction1

The characterization of particles regarding size and shape is essential2

for most particulate processes. Advances in measuring techniques have3

made the CT measurement of bulk solids and resulting particle-discrete4

datasets possible, enabling new methods of analyzing, e.g., separation5

processes [1, 2].6

However, tomographic measurement is a time-consuming and costly7

process, so the characterization of bulk solids in everyday industrial and8

laboratory applications is mostly done with other well-established tech-9

niques. For the measurement of particle size and shape in orders of10

magnitude from 1 µm to 10 mm, static and dynamic image analysis are11

widely used, and have often replaced traditional sieve analysis [3, 4, 5].12

Furthermore, inline particle measurements are becoming more abundant13

in research and industry [6, 7].14

Wadell introduced the concept of sphericity to account for a particle sed-15

imentation velocity deviating from the sedimentation velocity of a sphere16

[8, 9]. Sphericity has since been used by many researchers and practition-17

ers to represent particle shape in a single value. But Wadell recognized18

that the true sphericity for single particles might be hard to come by – it19

was even deemed unmeasurable by peers [10] – so he proposed the mea-20

surement of the projection of a particle at rest and an alternative definition21

for sphericity from it (Eq. 14).22

The classical approach by Zingg to classify particles into shape cate-23

gories by the ratios of their principal dimensions (elongation and flatness)24

is still widely in use and has been recently implemented in a particle shape25

analysis tool [11, 12]. 2D aspect ratios, along with circularity and convexity,26

are recognized in the literature as meaningful shape descriptors [13].27

Since Wadell, many people have investigated how 2D imaging tech-28

niques may accurately describe the “true”, 3D particle shape [14, 15, 16, 17,29

18, 19]. In many ways, this study tries to retrace the steps of Bagheri et al.30

[20], who compared computed tomography measurements with projection31

images to find correlations to accurately describe 3D shape. Whereas be-32

fore a particle’s three principal dimensions (length, width, and thickness)33

were defined as perpendicular to each other, with length being the dimen-34

sion between the two points on the particle furthest from each other, the35

authors propose the determination from the two projections with mini-36

mum (for thickness) and maximum areas (for width and thickness). Their37
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results are interesting, while lacking statistical robustness because of the38

small sample size.39

To try to overcome the time-consuming task of measuring particles with40

computed tomography, several researchers have shown how to simulate41

realistic 3D particle data. Their work utilizes random fields [21] and spher-42

ical harmonics [22]. Additional work has been done on reconstructing 3D43

particles from 2D projections using convolutional neural networks [23, 24].44

This happens in recognition of the approach of capturing single particles45

from multiple angles to describe the 3D particle shape [25, 26]. The other46

approach is to quantify particle shape accurately only in the statistical sense47

by measuring enough particles to have a good estimate of the mean particle48

shape of a given bulk solid [13].49

In this study, we take the second approach by asking how well 2D50

descriptors can describe 3D particle shape. The text comprises two distinct51

parts. The first part is concerned with an expansive dataset of 3D particles52

provided by the PARROT particle database1 [27] and the simulation of53

both static and dynamic image analysis. The resulting dataset is publicly54

available (see Supplementary Data) and it is our hope that it can serve55

as a foundation for investigation of many effects that accompany image56

analysis and that have yet to be properly quantified. The second part tries57

to correlate some 3D properties with 2D properties determined from the58

simulated particle projections. This part of the study, sections 4.1 through59

4.2, is meant to prove how meaningful the developed dataset is.60

2. Materials and Methods61

2.1. Particle Characteristics62

The term particle characteristic as used in this text includes all parameters63

that can describe the size and shape of a particle. It comprises three sub-64

groups: geometric properties, equivalent diameters and shape factors. Geometric65

properties can be directly measured from the 2D or 3D representation of66

a given particle. Equivalent diameters are typically diameters of the circle67

(2D) or sphere (3D) that share one of the geometrical properties of the par-68

ticle. Finally, shape factors are mostly ratios of two different geometrical69

properties, one of which may be calculated from the particle’s convex hull.70

1parrot.tu-freiberg.de
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2.1.1. 2D Measures71

These geometric properties can all be derived directly from the projec-72

tion or section of a particle in any direction (Fig. 1b); therefore, they are73

applicable to all 2D imaging techniques, like static and dynamic image74

analysis.75

(a) Orthogonal view of 3D surface (b) Vectorized contour (c) Convex hull

(d) Pixelized projection (e) Euclidian distance map with
contours of same distance from
projection border

(f) Minimum enclosing circle
(black) and maximum inscribed
circle (white)

Figure 1: Illustration of methods for generation of 2D descriptors for particle shape

In the current study, only the vector representation of the silhouette76

image is used. The accuracy of the calculated parameters therefore only77

depends on the resolution of the original 3D surface mesh and the marching78

cubes procedure [28] with which it was produced from the voxel represen-79

tations that themselves originated in the reconstructed tomography image80

stack. The contour is voxelized solely to simplify the calculation of bound-81

ing circles, enabling the use of standard Python libraries. Both pixelization82

and orthogonal projection images, as shown in Fig. 1a, offer possibilities83

for testing the effects of image resolution and roughness measurement,84

respectively.85
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Area and perimeter. Both the projection area 𝐴p and the perimeter 𝑃p are86

calculated by methods provided by the Shapely package, directly from the87

projection contour, as shown in Fig. 1b. Because of the inherent fractal88

behavior of many real solids’ surfaces, the perimeter is much less robust89

than the projection area for smaller particles. Still, the effect of measure-90

ment resolution will be more pronounced in the determination of the (3D)91

surface area, where surface roughness comes more into effect than in the92

2D case [29].93

Convex Hull. The convex hull is determined using a method of the Shapely94

polygon object that contains the contour. For the convex hull, both area 𝐴c95

and perimeter 𝑃c are determined.96

Feret Diameters. Minimum and maximum Feret diameters are determined97

by brute force: the projection contour is rotated in 500 steps between98

0◦ and 180◦, and the boundaries in both axis directions are determined.99

The smallest measured distance between boundaries will be the minimum100

Feret diameter 𝑥Fe,min, while the largest distance will be the maximum101

Feret diameter 𝑥Fe,max. The two measures, 𝑥Fe,min and 𝑥Fe,max, are shown102

in Fig. 2a. As can be seen, the two Feret diameters are not necessarily at103

a right angle, which is why two additional Feret diameters are determined:104

𝑥Fe,min90 and 𝑥Fe,max90, which are perpendicular to the 𝑥Fe,max and 𝑥Fe,min,105

respectively.106

(a) Maximum 𝑥Fe,max and minimum 𝑥Fe,min Feret
diameters

(b) Maximum 𝑥Fe,max and perpendicular 𝑥Fe,min90
Feret diameters

Figure 2: Illustration of different definitions of Feret diameters

The use of perpendicular Feret diameters serves two purposes. Firstly,107

for static image analysis, the maximum and minimum Feret diameters will108
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be very close to the length and width of a particle, respectively (Fig. 2b).109

Secondly, the (true) minimum Feret diameter 𝑥Fe,min and its perpendicular110

Feret diameter 𝑥Fe,max90 will, in most cases, be very close to the actual111

dimensions of the oriented bounding box, i.e., the bounding box of least112

area.113

Minimum Enclosing Circle. The diameter of the minimum enclosing circle114

𝑑ec belongs to the circle that has the least area while still containing the115

entire projection contour (Fig. 1f). While dedicated Python packages for116

the task of determining this measure exist, such as miniball, here, the117

computer vision library OpenCV was used [30].118

For the calculation of 𝑑ec, the contour needs to be transformed into an119

array first, equivalent to a pixel representation (Fig. 1d). The pixelization120

is achieved with the Python library scikit-image, which contains the121

polygonmethod that generates pixel coordinates inside a given polygon.122

To increase the accuracy of 𝑑ec (and 𝑑ic), the contour coordinates are123

scaled up by a factor of 2 before pixelization, significantly affecting the124

results of both the center coordinate of the circle as well as its radius.125

Further scale-up is not considered necessary, or even useful, because the126

original 3D mesh does not offer more resolution anyway.127

Maximum Inscribed Circle. The determination of the maximum inscribed128

circle 𝑑ic for a 2D contour, as well as the maximum inscribed circle for a129

3D surface, is not straightforward. For the authors, none of the methods130

found in literature were computationally efficient and more robust than a131

simple brute-force bisection algorithm.132

A solution to efficiently determine the maximum inscribed circle was133

found by discretization of the contour, i.e., pixelization. The method uses134

the Euclidean distance transform as implemented in the Python library135

scipy [31]. The transform calculates the distance of each object pixel from136

the background (Fig. 1e). The pixel that contains the highest value after137

the transform will be the center of the maximum inscribed circle, while138

the corresponding pixel value will be 𝑑ic/2, i.e., the radius of the circle.139

The Euclidean distance transform is computationally inexpensive and is a140

relatively simple method for determining the maximum inscribed circle,141

as it transforms the problem from vector space to pixel space. This reduces142

the complexity of the problem significantly, albeit at the cost of being only143

as accurate as the pixel dimensions allow.144
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It has since been found that the method described here has been used145

in other particle-related research [32, 33].146

2.1.2. 3D Measures147

Volume and Surface Area. Both volume and surface area are properties of the148

trimesh object that contains the particle mesh, so it is defined by functions149

already implemented by the package.150

However, using the surface area of the computed mesh leads to an error151

in the determination of Wadell’s sphericity (cf. Eq. 8), where a maximum152

value of 𝜓Wa ≈ 0.92 is reached even for highly spherical particles like153

soda-lime glass. This maximum sphericity value of 𝜓Wa ≈ 0.92 stems154

from the conversion of the particle volumes from voxel representation to155

a triangular surface. The marching cubes algorithm interpolates between156

the edges of the voxels to smooth the surface, depending on the number157

and configuration of adjacent solid voxels [34, 35]. The resulting error will158

be 8 % to 9 % [36]. In comparison, the error in sphericity determination159

from the voxel representation for a sphere would be > 30 %, because of the160

greatly exaggerated surface area.161

An alternative determination of surface area is achieved with the collec-162

tion of pluginsMorphoLibJ for ImageJ [37]. From it, theParticleAnalysis3D163

plugin is used which computes the surface area of a 3D object with an N-164

dimensional extension of the Crofton formula [38, 39]. Note that the origi-165

nal Java libraries were used, accessed directly in Python through Pyjnius.166

The accuracy of the method was tested by producing incrementally larger167

spheres in discrete voxel representations and meshing them, using both168

voxel representation and mesh for the calculation of surface area and par-169

ticle volume. The result is shown in Fig. 3, where Wadell’s sphericity170

has been calculated using all three permutations of equivalent diameters171

calculated from two volume (𝑥V, Eq. 2) and two surface area (𝑥S, Eq. 3) def-172

initions: 𝑥V,voxel uses the volume equal to the number of voxels, 𝑥V,mesh the173

volume contained in the mesh produced by the marching cubes algorithm,174

𝑥S,crofton the approximation of surface area with the 3D Crofton formula,175

and 𝑥S,mesh the surface area of the mesh directly.176

It can be seen that using volume and surface area of the mesh leads177

to a final sphericity value 𝜓Wa < 1, even for spheres of diameters larger178

than a hundred voxels. Using the information of the voxel representation179

directly, as used in MorphoLibJwill result in sphericity values 𝜓Wa > 1 for180

smaller spheres, which is also counterintuitive. The underlying problem181
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(a) Calculated sphericity values over number of voxels of
sphere 𝑁vx and volume-equivalent diameter 𝑥V

(b) Voxelized sphere
with a diameter of six
voxels

(c) Marching cubes–
meshed surface of the
voxel object in Fig. 3b

Figure 3: Sphericity values for different definitions of particle surface area and volume,
illustration of marching cubes meshing result

is that not every voxel must be fully filled by the particle and the volume182

approximated by counting the voxels is therefore too high. If the volume183

of the mesh is used instead of the volume of the voxelized particle, i.e.,184

𝑥V,mesh instead of 𝑥V,voxel, the resulting sphericity values will approach the185

limit of 𝜓Wa → 1, with small spheres observing sphericity values 𝜓Wa < 1.186

As this definition of sphericity, as shown by the green points in Fig. 3a, is187

the most intuitive and realistic one, the following strategy for 3D particle188

property determination is recommended and used in this study:189

• particle volume 𝑉p is determined directly from the particle mesh,190

• particle surface area 𝑆p is determined with the 3D Crofton formula as191

implemented in MorphoLibJ. For this, the particle mesh is voxelized192

again.193

Specific Surface Area. A combination of volume and area, specific surface194

area is an important measure for all sorts of processes involving heat,195

moment, or mass transfer. It is defined as:196

𝑆V =
𝑆p

𝑉p
(1)

In contrast to most other particle properties, specific surface area will197

decrease with increasing particle volume. As explained above, the surface198
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area 𝑆p is calculated from the voxelized surface, while the particle volume199

𝑉p is computed from the meshed surface.200

Convex Hull. The convex hull is another property of the trimesh object,201

from which both volume 𝑉c and surface area 𝑆c can be calculated.202

Aligned Bounding Box. In this study, a bounding box defines the main di-203

mensions of the particle. The aligned bounding box defines the length 𝑙,204

width 𝑤, and thickness 𝑡 to be the longest, intermediate, and shortest edge205

lengths. This approach is congruent with the definition of particle dimen-206

sions by Krumbein, who measured orthogonal lengths starting with the207

longest one found on the particle [40], which is equivalent to the maximum208

Feret diameter.209

The aligned bounding box is created by tranformation of the particle so210

that its principal axes of inertia align with the cartesian dimension vectors211

(Fig. 4b). The necessary transform is again a property of the trimesh object212

containing the particle mesh. After the transformation, the bounding box,213

again, is a property of the trimesh object (Fig. 4d).214

The definition of 3D particle dimensions in this way also makes it215

possible to directly compare measurements with static image analysis sim-216

ulation results. When the maximum Feret 𝑥Fe,max and the perpendicular217

Feret diameter 𝑥Fe,min90 (Fig. 2b) are used, they will be identical with length218

𝑙 and width 𝑤 for the aligned particle (section 3.1). For stable positions,219

section 3.2, 𝑥Fe,max should still reflect actual particle length 𝑙, while 𝑥Fe,min90220

should differ somewhat because the true particle width is oriented at an221

angle to the projection direction, i.e., surface normal.222

Bagheri et al. favoured the use of uncorrelated Feret extrema for the de-223

termination of particle dimensions to reduce operator error [20]. However,224

with most modern measurement setups particle dimensions are seldom225

determined manually, and determination of a minimum Feret diameter226

for compact projections may still be difficult if done manually anyway.227

Oriented Bounding Box. The oriented bounding box is again calculated by228

trimesh for a given particle mesh and represents the bounding box of least229

volume that still contains the whole mesh surface (Fig. 4c). The dimensions230

of the oriented bounding box are determined from the Cartesian coordi-231

nates after applying the inverse transform on the bounding box, since the232

oriented bounding box is likely to be at random angles toward the Cartesian233

axes, even if the particle was first aligned to its principal axes of intertia.234
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(a) 3D particle in its original position (b) 3D particle of 4a after applying the principal
axis alignment transform

(c) Oriented bounding box for particle in 4a,
𝑉 = 121 486

(d) Bounding box along Cartesian axes for
aligned particle in 4b, 𝑉 = 146 740

Figure 4: Illustration of the two different definitions for bounding boxes, volumes given
in axis units
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Fig. 5 shows comparisons of the dimensions of aligned bounding boxes235

and oriented bounding boxes for all investigated particles. The oriented236

bounding box has on average smaller dimensions than the aligned bound-237

ing box. The effect increases for the longer dimensions: length will mostly238

be smaller for the oriented bounding box, whereas there is a more random239

scatter for thickness.240

(a) Thickness (b) Width (c) Length

Figure 5: Comparison of dimensions determined by aligned and oriented bounding boxes

On average, the oriented bounding box will be 14 % smaller than the241

aligned bounding box for compact particles. In contrast, the oriented242

bounding box will only be 12 % smaller for mica particles which, because243

of their flat nature, should, in their aligned position, already be closer to244

the smallest box possible. Finally, soda-lime glass spheres have on average245

oriented bounding boxes that are only 5.5 % smaller.246

The aligned bounding box is preferred here over the oriented bounding247

box because of its congruence with Krumbein’s definition who chose it248

because it is easier to understand and determine by the practitioner.249

Bounding Spheres. The minimum bounding sphere again is a property of250

the mesh object defined by the trimesh library, so the diameter of the251

minimum enclosing sphere 𝑑es is determined in a single line of code. A252

visualization of both bounding spheres is found in Fig. 6.253

The maximum inscribed sphere is approximated as the maximum in-254

scribed circle in the 2D case. In both cases, the functiondistance_transform_edt255

from the scripy library [31] is used to calculate the Euclidean distance256

transform to find the pixel/voxel that is furthest from the particle sur-257

face. This maximum value will be the diameter of the maximum inscribed258

sphere 𝑑is.259
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(a) Minimum enclosing sphere (b) Minimum inscribed sphere (c) Voxelized particle from original
surface in Fig. 4a

Figure 6: Illustration of both minimum enclosing sphere and maximum inscribed sphere

In order to perform the Euclidean distance transform, the surface mesh260

needs to be discretized into a voxel representation (Fig. 6c). The voxeliza-261

tion is also done with methods provided by trimesh, and, as with the262

2D case, at a scale factor of 2, which increases the accuracy of the diame-263

ter estimation significantly. Care must be taken to produce a filled voxel264

representation: most voxelization algorithms will only return solid voxels265

where the surface of the mesh touches. An extra step is involved to fill the266

hollow discretized surface with scipy’s method binary_fill_holes.267

2.1.3. Equivalent Diameters268

Several properties in 2D and 3D can be compared to that of the idealized269

shapes, a circle in two and a sphere in three dimensions. In 3D, the diameter270

of a sphere can be calculated that has the same volume 𝑉p as that of the271

particle. This diameter will be called the volume-equivalent diameter:272

𝑥V =
3

√
6𝑉p

𝜋
(2)

In the same sense, the diameter of the sphere that has the same surface273

area 𝑆p as that of the particle (surface-equivalent diameter) is:274

𝑥S =

√
𝑆p

𝜋
(3)

In two dimensions, the particle properties volume 𝑉p and surface area275

𝑆p reduce to projection properties, projection area 𝐴p and perimeter 𝑃p.276
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The diameter of the circle that has the same area as the projection area, the277

area-equivalent diameter, is:278

𝑥A =

√
4𝐴p

𝜋
(4)

Lastly, the perimeter-equivalent diameter is the diameter of the circle279

that has the same perimeter as that of the particle projection, defined as:280

𝑥P =
𝑃p

𝜋
(5)

2.1.4. Shape Factors281

Shape factors are derived from two or three of the particle properties or282

equivalent diameters introduced above. All shape factors described below283

are dimensionless, which means they can be used to good effect to find284

correlations between 2D projections and 3D particle properties.285

Length Ratios. Flatness 𝑡/𝑤 and elongation 𝑤/𝑙 have been used before in286

Fig. 8d to classify particles into shape categories.287

In 2D, two more length ratios are used in this study. First the aspect288

ratio is defined as the ratio of minimum and maximum Feret diameter:289

AR =
𝑥Fe,min

𝑥Fe,max
(6)

As discussed before, the two Feret diameters often at an angle ≠ 90◦.290

Because the 3D particle dimensions are defined by their bounding boxes,291

they are necessarily at a right angle to each other. It therefore makes sense292

to define an additional, orthogonal aspect ratio of perpendicular Feret293

diameters:294

AR90 =
𝑥Fe,min90

𝑥Fe,max
(7)

Sphericity. Several shericity definitions exist, some of them fundamentally295

different from each other, but for all of them, the sphericity 𝜓 < 1 for296

particles deviating from a sphere.297

The original definition of sphericity comes from Wadell for application298

on sedimentary particles [8]. Wadell defined sphericity as the ratio of the299
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surface area of a sphere of equal volume as that of the particle to the actual300

surface area of the particle:301

𝜓Wa =
𝑆sp

𝑆p
=

(
𝑥V
𝑥S

)2

(8)

𝑆sp is the surface area of the sphere having the same volume as the302

particle.303

Krumbein defined a sphericity by comparing a given particle to a triaxial304

ellipsoid [40]. After determining the longest dimension of the particle, the305

second longest dimension perpendicular to the first is determined, with the306

third dimension being perpendicular to the other two. In this sense, the307

three dimensions are equivalent to length 𝑙, width 𝑤, and thickness 𝑡 of the308

bounding box of the principally aligned particle, as described in section309

2.1.2.310

𝜓Kr =
3

√
𝑤 𝑡

𝑙2
(9)

Another definition for sphericity has been defined by Sneed and Folk311

as 𝜓SF =
3
√
𝑡2/(𝑤 𝑙) [41], but will not be used in this study.312

Another sphericity definition is the ratio of the diameters of the two313

bounding spheres, i.e., maximum inscribed sphere to minimum enclosing314

sphere [42]:315

𝜓bs =
𝑑is
𝑑es

(10)

Lastly, Hofmann applied the concept of statistical entropy to the particle316

shape description [43]:317

𝜓Ho =
1

ln (1/3)

3∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 , (11)

where 𝑝𝑖 =
𝑑𝑖

𝑑1+𝑑2+𝑑3
, 𝑑1 = 𝑙, 𝑑2 = 𝑤, and 𝑑3 = 𝑡.318

Hofmann’s sphericity is supposed to be the most representative mea-319

sure for the prediction of particle settling velocity [44].320
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Circularity. “Circularity” is the name chosen according to the definitions321

of Wadell [9] for the 2D equivalent of sphericity, basically a “projection322

sphericity”, sometimes also called “roundness” [45]. Like sphericity, circu-323

larity approaches a value of one for particles that closely resemble circular324

shapes and will decrease in value for particles becoming less compact.325

The original circularity definition as ratio of perimeter of the area-326

equivalent circle to the actual projection perimeter is due to Wadell [9].327

Wadell stressed that circularity and sphericity are fundamentally differ-328

ent from roundness in the sense that roundness is a mesoscopic measure329

and circularity is a macroscopic measure. In other words, circularity and330

sphericity show shape deviations, whereas roundness shows surface devia-331

tions.332

𝜓c =
𝑃c
𝑃p

=
𝑥A
𝑥P

=

√
4𝜋𝐴p

𝑃2
p

(12)

The square of circularity 𝜓c is called the form factor and is equivalent333

to the “roundness” factor defined by Cox [46, 47, 48].334

FF =
4𝜋𝐴p

𝑃2
p

(13)

Because one early criticism of 𝜓Wa was the difficulty of measurement,335

Wadell proposed more easily attainable circularity measure:336

𝜓c,Wa =
𝑥A,stable

𝑑ec
(14)

In the above equation, 𝑥A,stable is the diameter of a circle of equal projec-337

tion area as that of a given particle at rest, i.e., lying on a surface in a stable338

position. 𝑑ec is, as per previous definition, the diameter of the minimum339

enclosing circle.340

Another method of defining circularity is through both bounding cir-341

cles, i.e., the radius of the maximum inscribed circle 𝑑ic and the radius of342

the minimum enclosing circle 𝑑ec:343

𝜓c,bc =
𝑑ic
𝑑ec

(15)

Eq. 15 is the square of the circularity definition by Riley [45].344
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Solidity. As a measure of concavity, a solidity factor 𝑆x can be calculated in345

both 2D and 3D. It compares the actual particle volume or projection area346

to its convex hulls. If there are no concavities, the solidity will be 1 and the347

particle or projection will be its own convex hull.348

𝑆x,3D =
𝑉p

𝑉c
(16)

𝑆x,2D =
𝐴p

𝐴c
(17)

Convexity. Another measure for deviation from a convex object is the con-349

vexity, for which the symbol 𝐶x is used. It compares the surface of particle350

or projection directly to the convex hull.351

𝐶x,3D =
𝑆c
𝑆p

(18)

𝐶x,2D =
𝑃c
𝑃p

(19)

2.2. Particle Datasets352

2.2.1. Acquisition353

The solids particle data used in this study was prepared previously for354

the stated purpose of providing reference 3D datasets. A methodology was355

developed to produce isolated, i.e., non-touching, particles in a wax matrix356

[49, 50]. Tomographic reconstruction of X-ray microscopy measurements357

of these wax matrices offers the possibility to easily segment and extract the358

single 3D particles. The particle data is available in the form of the original359

reconstructed tomography stacks as well as single particle surfaces in STL360

format in the dedicated particle database PARROT [27].361

VTK files that represent cropped voxel-based regions of interest for ev-362

ery particle from the tomographic reconstructions were used to recalculate363

STL meshes for the particles, as some STL surfaces in the PARROT dataset364

were not watertight, which would have led to problems in later analysis.365

The STL data used in this study is available in the supplementary data.366

Table 1 gives an overview of the six solids of which particle surface367

data has been used. The particle size distributions are shown in the form368

of cumulative sums in Fig. 7. Thee solids are typically in a particle size369
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range between 50 µm to 300 µm. The X-ray microscopy measurements were370

performed for a final voxel size, i.e., edge length, of 2 µm.371

Table 1: Used particle systems, provided in the PARROT particle database [27]

type production process particle size particles
aluminium oxide crushing 55 µm to 200 µm 1571
dolomite calcination and

crushing
90 µm to 200 µm 642

soda-lime glass spray drying 150 µm to 300 µm 602
limestone dry milling 55 µm to 200 µm 1271
mica comminution and

magnetic separation
90 µm to 300 µm 415

quartz crushing < 200 µm 1656

Figure 7: Number-base (𝑄0) and volume-based (𝑄3) particle size distributions for the six
solids provided by the PARROT database

2.2.2. Description372

The properties of the six solids (cf. Table 1) are shown in Fig. 8. From373

the plot of sphericity 𝜓Wa over volume-equivalent diameter (Eqs.8 and 2)374
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in Fig. 8a, it can be seen that four solids—quartz, limestone, dolomite,375

and aluminum oxide—are clustered in the same area with relatively high376

sphericity values of 𝜓Wa > 0.5. The soda-lime glass particles are the largest377

and also have the highest sphericity values. The high sphericity values can378

be traced to the production process by spray drying, resulting in mostly379

spherical shapes. In contrast, the mica particles show very low sphericities.380

(a) Sphericity vs. particle size (b) Width vs. thickness

(c) Explanation of particle shape classification chart in
Fig. 8d; isolines show values for Krumbein’s spheric-
ity 𝜓Kr

(d) Zingg’s particle shape classification chart for as-
pect ratios of the three particle dimensions, elongation
𝑤/𝑙 and flatness 𝑡/𝑤

Figure 8: Properties of the six particle datasets

In Fig. 8d, the particles are plotted along two aspect ratios, flatness 𝑡/𝑤381

and elongation 𝑤/𝑙, which makes classification according to particle shape382

possible. 𝑙, 𝑤, and 𝑡 are the three main dimensions of a particle: length,383

width, and thickness, respectively, defined by the aligned bounding box384

(cf. section 2.1.2). The plot was first introduced by Zingg and later devel-385
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oped by Krumbein and Janoo [11, 40, 51]. Fig. 8c serves as an explanation,386

also showing isolines for sphericity, though Krumbein’s sphericity defini-387

tion is used, cf. Eq. 9. Alternative descriptors for the particle shape groups388

"disc," "cubic," and "rod" are "oblate," "compact," and "prolate," respectively389

[52].390

Soda-lime glass spheres are expectedly clustered at values close to one391

for both aspect ratios, while the majority of particles of the other solids392

are mostly compact and could be classified as cubic and slightly rod- or393

disc-shaped, depending on their particular flatness or elongation values.394

In contrast, the mica particles are very flat and may be classified as disc-395

and blade-like.396

Fig. 9 provides an example for each of the four categories according to397

the Zingg classification chart. The examples also serve to give an impres-398

sion of what the different solids look like. While most of the limestone399

and quartz particles can be classified as compact/cubic, the two particles400

shown in Figs. 9a and 9d can be clearly identified as belonging to their re-401

spective categories of disc- and rod-like. The soda-lime glass particles are402

mostly near-perfect spheres, resulting in the aforementioned high spheric-403

ity values. The mica is mostly flaky in nature, resulting in very low flatness404

values, an effect that can be predicted from the plot of width vs. thickness405

in Fig. 8b.406

Because their properties are very similar, the group of quartz, limestone,407

dolomite, and aluminum oxide will be grouped as "compact particles" in408

section 3.409

2.3. 2D Imaging Simulation410

2.3.1. Static Image Analysis411

Static image analysis, as defined by ISO 13322-1, involves image acqui-412

sition to determine particle size where the particles are not moving against413

the axis of the optical equipment [53]. If a particle is large enough that414

adhesion forces with respect to the surface it is resting on are negligible,415

the particle will orient itself in a position in which at least its longest di-416

mension is measurable. Two possibilities for the simulation of static image417

analysis were calculated:418

• alignment of the principal inertia vectors on the Cartesian axes and419

• alignment of the particle in one of its stable resting positions.420
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(a) disc (limestone) (b) cubic (soda-lime glass)

(c) blade (mica) (d) rod (quartz)

Figure 9: Examples from the datasets for particles belonging to the four shape categories
of Figs. 8c and 8d with solid type in brackets

3D manipulation of the provided STL files was done with the Python421

library trimesh, which, as the name implies, focuses on triangular meshes422

[54]. The trimeshpackage offers options for both the procedures named, in423

particular a method that returns a list of the most likely stable positions of424

a given mesh, containing both the necessary transform and the respective425

probability of the particle settling in this position. Any resting positions426

with a probability 𝑝 > 0.1 were used for further 2D analysis. Because427

highly spherical particles can easily have no positions of especially high428

resting probability, for each particle at least the two most probable positions429

were calculated. Fig. 10 gives an example of the stable positions of a particle430

and the resulting projections, in this case in 𝑧-direction, i.e., onto the 𝑥𝑦-431

plane.432

The imaging simulation involves getting the projection perpendicular433

to the plane that acts as the resting surface when calculating the stable434

position transforms (𝑥𝑦). For the mesh aligned along its principal inertia435
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vectors, the projection is calculated perpendicular to the plane that contains436

the two major inertia vectors: when considering the aligned particle in437

Fig. 4b, the projection would be in direction of the 𝑥 vector, onto the 𝑦𝑧438

plane.439

The subsequent procedure involves a custom function that calculates440

the orthogonal projection of the triangular mesh onto a plane defined by441

a given normal. With a given plane normal, the particle is first rotated to442

the correct position, and a projection transform is performed onto the 𝑦𝑧443

(𝑥-axis) plane (Fig. 1a). The projected triangles are then transformed into444

a single 2D polygon using the Python package Shapely [55]. Thus, a single445

contour is returned which can be used for further analysis. The relevant446

code can be found in the supplementary materials, see section 6.447

In principle, the effects of image resolution may be investigated by448

scaling the projection and calculating a masked array that represents the449

pixel image. However, pixelization in this sense has only been used for the450

calculation of the enclosing and inscribed circles, cf. section 2.1.1.451

2.3.2. Dynamic Image Analysis452

In contrast to static analysis, dynamic image analysis is concerned with453

the image acquisition and analysis of moving particles [56]. Particles are454

therefore imaged in random orientations, unless the flow is highly turbu-455

lent. Depending on the setup, particles may be imaged more than once if456

they are not fast enough to leave the field of view. In many dynamic image457

analysis devices, these images will be taken as separate particle entities,458

while devices exist that track the particle while moving through the field459

of view to measure as many rotations as possible, e.g., the Camsizer 3D460

(Microtrac).461

The procedure to produce a projection image is mostly the same as462

before, except that the particle is first rotated randomly. For every parti-463

cle, three random orientations were used to produce projections, thereby464

increasing the number of simulated data points. Of course, the number465

of projections can be increased at will; however, to stay in line with the466

number of projections achieved through the stable positions as described467

in the previous section, three positions were considered sufficient. A larger468

dataset of ten projections per particle has been produced as well; however,469

the results achieved with it are the same as with the smaller one.470
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(a) 𝑝 = 0.403 (b) 𝑝 = 0.315 (c) 𝑝 = 0.167

(d) (e) (f)

Figure 10: Stable position of the particle shown in Fig. 4 with the respective occurrence
probabilities (Figs. 10a, 10b, and 10c) and resulting projection silhouettes along 𝑧-axis
(Figs. 10d, 10e, and 10f)

3. Simulation Results471

With the methods given above, a dataset was produced that contains472

the properties of the 3D particles and properties of their respective projec-473

tions, produced in aligned, resting, and random orientations. The aligned474

orientations table naturally contains a single projection per particle, so 6157475

in total. The stable orientations table contains, on average, three projections476

per particle for a total of 19 720 projections, though the absolute number477

per particle varies, cf. section 3.2. For random orientations, every particle478

produced three projections, for a total of 18 471.479

3.1. Aligned Orientation480

The aligned projection dataset is in many ways the simplest one and is481

used for verification of the analysis methods which are then used for the482

datasets of stable orientations and random projections. Because there483
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is exactly one aligned projection for every particle, there are as many484

projections as particles in the complete dataset of all solids, 6157 in total.485

Because of the large number of particles, any effects found are considered486

at least interesting, though maybe not statistically robust.487

Overall, 49 particle characteristics are calculated and used to build a488

correlation matrix, 25 comprising 3D and 24 comprising 2D measures and489

descriptors. Table B.1 lists all particle characteristics. The characteristics490

have been grouped into categories for easier comprehension of the corre-491

lation matrix.492

A resulting matrix of Pearson correlation coefficients is shown in Fig. 11a.493

The resulting 49×49 grid contains many duplicates as well as areas not nec-494

essarily interesting, like the correlation of 2D and 3D parameters against495

themselves. The more interesting part of the matrix is the upper right or496

lower left quadrant, where the correlations between 2D and 3D character-497

istics are shown. This is why Fig. 11b only shows the upper right quadrant.498

From Arabic numbers and Roman numerals a specific characteristic may499

be determined with Table B.1.500

Furthermore, only the compact particles (quartz, limestone, dolomite,501

and aluminium oxide) are used to calculate the correlation matrices. This502

is to avoid errors from the highly spherical soda-lime glass particles, as503

discussed in section 2.2.2, and the much higher scatter introduced by the504

plate-like mica.505

Because some correlations are not linear, e.g., between equivalent diam-506

eters and specific surface area, the Spearman rank coefficient is chosen over507

the Pearson correlation coefficient. When comparing the two correlation508

matrices of Fig. 11, the choice of the Spearman rank coefficient (Fig. 11b)509

indeed results in much higher values. Values greater than zero will sig-510

nify a positive correlation, whereas, if rarely, negative values will signify511

negative correlations.512

The comparison of different geometric measures and/or equivalent513

diameters will result in very high correlations, as observed by the much514

more pronounced coloring of the upper left area of Fig. 11b. The brighter515

regions of less correlation are all in areas where shape factors are compared516

with geometric measures, equivalent diameters, or other shape factors.517

This behavior should be expected, because geometric properties all scale518

with absolute particle size, while shape factors are limited to the unit519

interval [0, 1].520

The most fruitful task is to search for high coefficient values where521
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(a) Correlation matrix showing standard correlation coefficient
between all computed particle characteristics for all particles; 3D
characteristics before, 2D after the dashed red line

(b) Spearman rank correlation coefficient ma-
trix for compact particles only

Figure 11: Correlation matrices for particle characteristics determined from aligned pro-
jections; Fig. 11b only shows the first quadrant (upper right) of the complete correlation
matrix, with dashed red lines separating geometric properties and equivalent diameters
from shape factors (cf. Table B.1 for a list of parameters)

2D and 3D shape factors are correlated, which is the lower right area of522

the correlation matrix in Fig. 11b. Because of the definition of particle523

dimensions via the bounding boxes, elongation 𝑤/𝑙 (18 in Fig. 11b) will524

correlate very well with aspect ratio AR (17), though the correlation with525

AR90 (18) naturally is perfect.526

Interestingly, elongation (18) also correlates well with Wadell’s alter-527

native circularity definition 𝜓c,Wa (21) and the bounding circles circularity528

𝜓bc (22). In a sense, 𝜓bc forms a kind of aspect ratio, which is why it scales529

well with elongation: the inscribed 𝑑ic and enclosed circle diameters 𝑑ec530

show good correlation with minimum 𝑥Fe,min and maximum Feret diame-531

ters 𝑥Fe,max, respectively. Krumbein sensibly took the square of elongation532

in his sphericity definition, Eq. 9, because elongation is a much better de-533

scriptor for the overall change from the cubic shape than flatness. In this534

sense, Krumbein’s sphericity (21) shows pronounced, but not as high, cor-535

relations with the aspect ratios (17, 18) and Wadell’s (21) and bounding536

circles circularity (22). The relationship between 𝜓c,Wa and 𝜓bc is briefly537

explored in Appendix A.538

A final notable correlation is found between the 3D (24) and 2D solidities539

(23), indicating that 2D solidity is a good indicator of its 3D counterpart.540

However, the correlation is not linear and found to be 𝑆x,3D ≈ 𝑆𝑛
x,2D, with541
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𝑛 = 3 to 4.542

3.2. Stable Orientation543

As described in section 2.3.1, at least the two most probable resting544

positions were used to produce projections. However, it is instructive to545

plot the distribution of stable positions with a probability 𝑝 > 0.1 per solids546

type, as shown in Fig. 12a.547

(a) Distribution of stable positions of all solids;
dashed vertical lines indicate mean number of po-
sitions

(b) Stable positions of a single limestone particle

Figure 12: Stable positions of investigated solid particles for a position probability of
𝑝 > 0.1

Again, the soda-lime glass and mica particles clearly deviate from the548

compact particles (quartz, limestone, dolomite, and aluminium oxide). The549

compact particles on average have three to four stable positions. There are550

some outliers at six and even seven stable positions. One limestone particle551

is shown in its seven stable positions in Fig. 12b. In contrast, the soda-lime552

glass spheres have no stable positions 𝑝 > 0.1 for 80 % of particles. The553

flaky mica particles expectedly find stable resting positions only on either554

of their flat sides, and so obtain on average two stable positions.555

For the simulation of static image analysis via stable positioning, the556

correlation matrix in Fig. 13a exhibits a slight drop in very high correla-557

tions. The correlations found between shape factors for aligned projections558

(Fig. 11b) are still present though.559
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(a) Correlation matrix stable positions (b) Correlation matrix for random orientations

Figure 13: Correlation matrices of Spearman rank correlation coefficients for compact parti-
cles and random orientations; dashed red lines separate geometric properties and equivalent
diameters from shape factors (cf. Table B.1 for a list of parameters)

A typical example of decreasing correlation coefficients are the 3D par-560

ticle widths (IV, 12/13) compared with minimum Ferets (12, 13) and 2D561

bounding box width (14). The reason is that a particle at an angle will562

not show its true width 𝑤 anymore. Compared to the aligned projections,563

the correlation between elongation (18) and aspect ratios (VI, 17/18) is564

therefore slightly decreasing. Fig. 14 shows the correlation of several Feret565

diameters with their respective 3D particle dimensions. The perpendicular566

definition of minimum Feret 𝑥Fe,min90 scatters around the “true” particle567

width, whereas the true minimum Feret 𝑥Fe,min systematically underesti-568

mates it. 𝑥Fe,min90 is therefore considered the more suitable estimate of569

particle width. Because of the definition of elongation 𝑤/𝑙 via the aligned570

bounding box, it will be better estimated by the orthogonal aspect ratio571

AR90 then the unaligned aspect ratio AR.572

Of course, most correlations between 2D and 3D particle characteristics573

for static image analysis, as was discussed in this and the previous section,574

could have been found from careful thought experiments. Wadell based575

his alternative sphericity definition (Eq. 14) on a projection of a particle at576

rest exactly because length and width should always be measurable in this577

situation, and most shape factors should scale will with the derived aspect578

ratio/elongation, as long as the particles are not deviating too much from579

the cubic shape.580
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(a) Minimum Feret vs. width (b) Orthogonal minimum Feret
vs. width

(c) Maximum Feret vs. length

Figure 14: Comparison of Feret diameters to 3D measures for all solids in stable positions
(static image analysis simulation)

3.3. Random Orientation581

When comparing the correlation matrices of the stable position analysis582

(Fig. 13a) and that for dynamic simulation, i.e., projections of particles583

at random orientations (Fig. 13b), the amount of correlation is notably584

decreasing.585

Mostly, the properties of the 3D convex hull, 𝑉c (2), 𝑥V,c (4), 𝑆c (6),586

𝑥S,c (8), and 𝑆V (9) scale well with projection area–related characteristics587

𝐴c (1), 𝑥A (2), 𝐴c (3), and 𝑥A,c (4). Additionally, the 3D convex hull’s588

surface area (6, 8) correlates well with the 2D convex hull’s perimeter (6,589

8). However, remember that the Spearman rank correlation coefficient is590

used: correlations here need not be linear.591

In case of the derived shape factors, the only good correlation exists be-592

tween 3D (24) and 2D solidity (23), 𝑆x,3D and 𝑆x,2D, respectively. Otherwise,593

correlation between shape factors has decreased considerably.594

In the following, relationships between 2D and 3D particle properties595

are investigated more closely. These investigations serve as examples on596

how the described dataset may be used for further insights by interested597

researchers.598

4. Correlations599

4.1. Cauchy’s surface area formula600

The relationship between projection area and particle surface area is601

well known as Cauchy’s theorem or Cauchy’s surface area formula, [57, 58].602
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The formula states that the surface area of a convex body 𝑆p,c is four times603

the projection area averaged over several projections 𝐴p,c.604

𝑆p,c = 4𝐴p,c (20)

This theorem can be tested directly on the simulated data, not so much605

to prove the theorem, but to test the validity of the dataset. Fig. 15 shows the606

relations of surface area and projection area, both for the actual particles607

and their convex hulls. Note that single points are plotted, not actual608

averaged values, so Cauchy’s theorem may only hold on the average, which609

is why linear regression lines are included. For the soda-lime glass convex610

hulls (Fig. 15b), the value of 3.98 is particularly close to the theoretical611

value, while for the compact particles it is only slightly smaller at 3.90.612

For mica particles, the values significantly decrease. The lower regression613

value for mica is expected, as it is very likely for a flaky particle to produce614

silhouettes of comparably lower projection area.615

(a) Particle surface area vs. projec-
tion area

(b) Convex surface area vs. convex
projection area

Figure 15: Correlations of surface area and projection area for random orientations

For the relation of actual particle surface and projection area, i.e., of the616

non-convex shapes, surface area is underestimated for all particles: when617

Cauchy’s theorem would be used, surface area would be predicted to be618

smaller than the actual value(s). This trend is caused by the rugged surface619

that cannot be properly estimated by projections, as most concavities will620

be hidden in the projection image – an effect that can be much larger for621

very rough particles [29].622
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4.2. Particle Width–Feret Correlation623

As mentioned in the introduction, dynamic image analysis is widely624

used to replace sieve analysis. More often than not, data from a dynamic625

image analysis system needs to be adjusted to account for divergence of626

the measurements from a sieve analysis. When sieving is done on square627

aperture sieve meshes, particles will be classified according to their in-628

termediate dimension, width 𝑤. In static image analysis, particle width is629

very well determined by the minimum Ferets, 𝑥Fe,min or 𝑥Fe,min90 (cf. Fig 14).630

However, in dynamic image analysis it is only possible to know the three631

main particle dimensions 𝑙, 𝑤, and 𝑡 by imaging single particles from dif-632

ferent angles or by tracking rotating particles while they fall through the633

measurement system [26, 60].634

Using the dataset of random orientations, aspect ratio AR was found to635

be the underlying variable explaining the deviation of both the minimum636

𝑥Fe,min and maximum Feret diameters 𝑥Fe,max from particle width 𝑤. The637

following correlation was found to predict particle width very well:638

𝑤 ≈ 𝑥Fe,max
√

AR (21)

Furthermore, because of the definition of aspect ratio, Eq. 6:639

𝑤 ≈ 𝑥Fe,max
√

AR =
𝑥Fe,min√

AR
=
√
𝑥Fe,max 𝑥Fe,min (22)

The correlation defined by Eq. 21 is shown in Fig. 16a. For the compact640

particles, the agreement between 2D and 3D parameters is quite excellent.641

Even for the non-compact mica particles, the correlation holds, though the642

scatter is expectedly larger. Fig. 16b gives the relative deviation of width643

estimates from actual particle width. For compact particles, the 95 % CI is644

within a deviation of ±25 %, while the mean is within a ±5 % interval.645

The relevant particle dimension for sieve analysis, width 𝑤, is therefore646

expected to be approximated well with any of the expressions of Eq. 22.647

4.3. Sphericity Correlation648

Circularity 𝜓c (Eq. 12) is often used in place of sphericity 𝜓Wa (Eq. 8)649

because the former is much easier to measure in static or dynamic imaging650

setups [59]. It was therefore deemed a worthwhile exercise to see how well651

circularity and sphericity correlate for the dynamic imaging simulation.652
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(a) 95 % confidence ellipses (b) Relative error over area–equivalent diameter
for compact particles

Figure 16: Correlation of Feret diameters with particle width 𝑤

4.3.1. Mica653

Fig. 17 shows plots of Wadell’s sphericity 𝜓Wa over circularity 𝜓c. The654

first insight is in regards to extremely small correlation values of the shape655

factors in the correlation matrices (Fig. 13b): at first sight, there is only a656

point cloud with no tendency whatsoever.657

At second sight, because of the nature of the two shape factors, both658

should be zero for infinitely stretched objects and one for spheres. Because659

of this unique relationship, a linear regression needs no offset, i.e., should660

start from zero. If a linear regression then returns a slope of one, the two661

shape factors are perfectly correlated. Any spread in either direction is662

then purely stochastic. The term “stochastic” here signifies the inherent663

scatter of imaging particles at random orientations, not measurement error.664

From Fig. 17a it can be seen that the correlation between circularity665

𝜓c and sphericity 𝜓Wa is rather non-ideal, whereas the square root of666

sphericity
√
𝜓Wa leads a much better linear regression slope of 1.06.667

Another way to evaluate the two parameter pairs is to plot the 95 %668

confidence interval (CI). Because the data is two-dimensional, confidence669

ellipses are calculated, as shown in Fig. 17b, that include 95 % of particles670

under the assumption that the point cloud is normally distributed for both671

variables. As shown, the center of the ellipse of
√
𝜓Wa vs. 𝜓c (in green) is672

much closer to the equality line then the ellipse for 𝜓Wa vs. 𝜓c (in blue).673

Squaring the new-found relationship gives sphericity𝜓Wa over the form674
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(a) Linear regression results (b) 95 % confidence ellipses

Figure 17: Correlation of sphericity and its square root with circularity for mica particles at
random orientations

factor FF = 𝜓2
c :675

𝜓Wa ≈ FF (23)
Estimates of the shape factors are summarized for all solids in Table 2.676

Interestingly, the correlation works very well for the flaky mica, whereas it677

doesn’t fit nearly as well for the other solids.678

4.3.2. Compact Particles679

Starting from the relationship found for mica, Eq. 23, variables where680

evaluated that could explain the deviation of the compact particles from681

true equality. The best relationship, which is an extension of Eq. 23, is:682

𝜓Wa ≈ FF
√
𝜓c,bc /𝐶2

x,2D (24)

The linear regression results and confidence ellipses for Eq. 24 are683

shown in Figs. 18a and 18c. Except for the highly spherical soda-lime684

glass, the relationship seems to slightly overestimate Wadell’s sphericity.685

Additionally, Fig. 18e shows the relative error of Eq. 24’s estimates for686

sphericity as a rolling mean over projection area–equivalent particle diam-687

eter 𝑥A and the corresponding 95 % CI. The relative error for the compact688

particles is again showing a slight overestimation of sphericity for particle689

sizes, hinting at a yet to be found explanatory variable. However, the error690

for the mean is below 10 % for all particle sizes.691

A downside in the usability of Eq. 24 for prediction of Wadell’s spheric-692

ity is that both the form factor FF (Eq. 13) and convexity 𝐶x,2D (Eq. 19)693

depend on accurate determination of the projection perimeter 𝑃p, which694
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(a) Linear regression results for Eq. 24 (b) Linear regression results for Eq. 25

(c) 95 % CI ellipses for Eq. 24 (d) 95 % CI ellipses for Eq. 25

(e) Relative error for compact particles over (projection)
area–equivalent diameter for Eq. 24

(f) Relative error for compact particles over (projection)
area–equivalent diameter for Eq. 25

Figure 18: Correlation of 2D shape factors and Wadell’s sphericity for the dynamic image
analysis case (random orientations)
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will lead to resolution problems for small particles, as demonstrated by the695

increased error for smaller particle sizes in Fig. 18e.696

Therefore another correlation was developed which does not depend697

on the accurate determination of perimeter. Instead, it only uses aspect698

ration and bounding circles’ circularity:699

𝜓Wa ≈ 𝜓c,bc / 3
√

AR90 (25)

While this second correlation is simpler, it also leads to an improved700

prediction of Wadell’s sphericity, as shown in Figs. 18b, 18d, and 18f. The701

relative error for the mean stays below 2 %. The correlation may even be702

useful for estimation of single particle sphericity values, because the 95 %703

CI stays within a range of ±25 %.704

Average sphericity predictions are summarized in Table 2. Eq. 25 is705

clearly superior compared to Eq. 24. Only in the case of mica, Eq. 24706

provides a better average estimate of sphericity, which may hint at the707

correlation being more accurate in the case of plate-like particles. However,708

for mica even the form factor is a fairly accurate predictor of sphericity.709

Table 2: Average sphericities 𝜓Wa determined with the correlation equations 23, 24, and
25; intervals shown are the standard deviations from the mean

equation
23 24 25

material 𝜓Wa (3D) FF FF
√
𝜓c,bc /𝐶2

x,2D2 𝜓c,bc / 3√AR90

quartz 0.73 ± 0.05 0.63 ± 0.16 0.69 ± 0.09 0.71 ± 0.08
limestone 0.73 ± 0.05 0.58 ± 0.16 0.65 ± 0.11 0.69 ± 0.08
mica 0.46 ± 0.12 0.43 ± 0.13 0.44 ± 0.17 0.52 ± 0.13
dolomite 0.69 ± 0.04 0.59 ± 0.12 0.68 ± 0.09 0.70 ± 0.07
soda-lime 0.91 ± 0.05 0.78 ± 0.18 0.93 ± 0.11 0.93 ± 0.09
Al2O3 0.63 ± 0.05 0.54 ± 0.13 0.61 ± 0.10 0.65 ± 0.08

Note that the predictive value is reasonably good because of the large710

number of data points. If there had been only a handful of particles, the711

final correlation would have been nearly impossible to find. Furthermore,712

the predictive power may not hold for all types of solids.713

Especially for Eq. 24, because of the use of convexity, effects of image714

resolution could come into play which have not been part of this study,715
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but are planned to be investigated in the future. If surface roughness716

significantly increases, surface area effects could be underestimated by 2D717

convexity [29], because the fractal behavior of surface roughness cannot be718

accurately determined by 2D imaging techniques. Because the resolution719

of STL mesh, voxel image, and projection silhouette are directly linked720

in this study, the correlation is expected to give sphericity values for the721

resolution of the image acquisition.722

Consider the following example. At a pixel dimension of 2 µm, Eq. 24723

will give a sphericity value that is valid at the same (3D) voxel resolution of724

2 µm. If a highly rugged 3D particle surface is measured at a higher resolu-725

tion, i.e., ≪ 2 µm in the example, particle surface will increase and Wadell’s726

sphericity value decrease. Of course, this resolution effect is mostly mit-727

igated by use of Eq. 25, which does not rely on projection perimeter at728

all.729

How could Eq. 25 be used in practice? It needs to be understood730

that this correlation is not able to predict sphericities of single particles731

accurately, which is apparent from the scatter in Fig. 18a. However, what732

the correlation can achieve is the prediction of a mean sphericity for a given733

bulk solids, which is in most cases the only needed information. Of course,734

as demonstrated by Fig. 18f, size-dependent sphericity determination is735

possible in principle.736

5. Validation Measurements737

Dynamic image analysis measurements were performed to validate738

the correlations found in sections 4.3 and 4.2. For the experiments, the739

Fritsch Analysette 28 ImageSizer was used. An example image is shown740

in Fig. 19a. The acquired images were evaluated externally with a Python741

script, because the machine’s software doesn’t calculate all the necessary 2D742

shape factors, in particular the bounding circle diameters. Only particles743

with very sharp contours were extracted and particles that were not clearly744

isolated or touched the image boundaries were discarded. Fig. 19b shows745

particles isolated from the example image. Distributions of minimum Feret746

diameters and circularities as given by the ImageSizer analysis software747

were found to be in excellent agreement with the distributions found by748

the Python script.749

All six solids used in this text were measured with the dynamic image750

analysis system. However, only the compact particles were evaluated,751
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(a) Example image with extracted particles high-
lighted in green

(b) Extracted (sharp) particles

Figure 19: Example image of dynamic image measurement of limestone

because the mica particles reflected light extremely well, which led to752

problems in image evaluation. Images are still available in a supplementary753

dataset, see below.754

Fig. 20a shows the distribution of minimum Feret diameters 𝑥Fe,min755

extracted from the dynamic image measurements in comparison to the756

3D particle widths for limestone particles. The discrepancy between the757

two distributions is noticeably decreased by use of Eq. 22. Not only is the758

average particle width estimated well, the overall distribution is predicted759

well, with percentiles shown in Table 3; as expected, the predicted values760

are a little further spread apart, with additional spread originating in761

the random particle orientations that themselves produce an element of762

dispersion.763

Table 3: Quantiles for particle width estimators

percentile 𝑤 𝑥Fe,min 𝑥Fe,min
√

AR
10 65.0 50.9 62.6
20 71.7 57.7 70.4
50 95.3 75.9 94.9
80 131.4 114.7 138.1
90 153.2 138.0 168.8

Using log-spaced size classes for the actual and estimated particle764
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(a) Probability densities for limestone particles: 2D minimum Feret di-
ameter 𝑥Fe,min and estimated particle width 𝑥Fe,min/

√
AR according to

section 4.2 in comparison to actual 3D particle width 𝑤

(b) Estimated sphericities (Eq. 25) as function of particle
width for limestone particles

(c) Estimated sphericities for the investi-
gated compact solids

Figure 20: Validation of the correlations found in the text with dynamic image analysis
measurements

widths, particle sphericity 𝜓Wa is estimated with Eq. 25, the result of which765

is shown in Fig. 20b. As shown, the actual sphericity per the 3D particle766

data is slightly underestimated. However, the estimate is much more us-767

able than using circularity 𝜓c. In fact, Eq. 25 is very much usable for all the768

investigated solids, with Fig. 20c showing the average sphericity values in769

3D against the 2D estimates.770

In theory, the correlations validated here could have been found through771

separate, i.e., stand-alone, 3D and 2D measurements. However, the sim-772

ulated dataset gives the direct relation between 2D and 3D particle char-773

acteristics for every single particle, which makes the analysis much more774

robust. Note that the use of the dataset is not limited to the findings of775

this text, but is expected to hold many more insights into the relationships776

between 2D and 3D particle measurements.777
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6. Conclusions778

A collection of particle surface meshes, resulting from X-ray tomo-779

graphic measurements, has been used to simulate both static and dynamic780

image analysis. The results have been evaluated to find the highest cor-781

relations between 2D and 3D geometric measures and shape factors. The782

dataset and methods described prove to be physically accurate and are783

tested against validation measurements.784

Examples have been given of the potential insights this dataset may785

generate. Predictive correlations for Wadell’s sphericity in 3D have been786

found that are expected to predict sphericity values well for a wide range of787

particles using only 2D shape descriptors, provided that enough particles788

are measured. The most suitable correlation was found to be Eq. 24:789

𝜓Wa ≈ 𝜓c,bc / 3
√

AR90

In the same vein, a correlation for estimating particle width from 2D790

Feret diameters has been determined, Eq. 21:791

𝑤 ≈ 𝑥Fe,max
√

AR = 𝑥Fe,min /
√

AR =
√
𝑥Fe,max 𝑥Fe,min

Confirmation experiments with a broader set of particles are planned792

in the future. An inherent measurement artifact of image analysis, pixel793

resolution, needs to be investigated, but is expected to be negligible for a794

large enough number of pixels as proven by validation experiments (??).795

The dataset, as provided in the supplementary data, offers the possi-796

bility to discover numerous correlations and insights regarding geometric797

measures and shape factors, as well as their relationships across two and798

three dimensions. We encourage researchers to use the dataset for their799

research questions and to shed light into questions that had long been800

obscured by computational complexity.801

Supplementary Data802

Supplementary files are available in the Open Access Repository and803

Archive for Research Data of Saxon Universities (OPARA):804

https://doi.org/10.25532/OPARA-479805

https://doi.org/10.25532/OPARA-587806

https://doi.org/10.25532/OPARA-595807
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The supplementary files enable users to reproduce imaging datasets as808

used in this study and demonstrate the methods for acquisition of all par-809

ticle characteristics for an example particle. Particle STL files are included810

in the first entry above. The second entry extends the code by determi-811

nation of surface area via MorphoLibJ and a dynamic imaging dataset of812

ten random orientations per particle instead of the previous three. The813

final entry includes results from dynamic image analysis measurements814

for validation. Note that you need a working Python setup and that all815

code is made available as Jupyter notebooks.816
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Appendix A. Wadell’s Circularity824

One correlation found, that is not necessarily expected, is between825

Wadell’s alternative circularity definition 𝜓c,Wa (Eq. 14) and the bounding826

circles circularity 𝜓c,bc (Eq. 15). Though it is a correlation between two 2D827

shape factors, it is too interesting to ignore. As predicted by the correlation828

matrix in Fig. 11a, where the correlation is found in the lower right (second)829

quadrant between values 46 (𝜓c,Wa) and 47 (𝜓c,bc), there is a near-perfect830

linear relationship. However, to have the two circularities directly coincide,831

Wadell’s circularity is squared, 𝜓2
c,Wa. The resulting correlation is shown832

in Fig. A.21a.833

Because of the definitions of the two circularities, it is found that the834

area–equivalent diameter is directly related to the bounding circle diame-835

ters.836

𝑥2
A ≈ 𝑑ic 𝑑ec (A.1)

The above relationship is shown in Fig. A.21b.837
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(a) Wadell’s circularity vs. bound-
ing circles circularity

(b) Area-equivalent diameter vs.
bounding circles diameters

Figure A.21: Correlation of Wadell’s alternative definition for circularity (Eq. 14) and
bounding circles circularity (Eq. 15)

Appendix B. Particle characteristics838

Table B.1 gives a list of the particle characteristics as used in the corre-839

lation matrices, Figs. 11 and 13.840
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