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Abstract

Particle size and shape characteristics are commonly measured with two-
dimensional (2D) imaging techniques, two of which are static or dynamic
imaging techniques. These 2D particle characteristics need to be applied to
particulate processes where they model three-dimensional (3D) processes.
The correlation between 2D and 3D particle characteristics is therefore
necessary, but the knowledge is still limited to either mathematically simple
shapes or a certain set of investigated bulk solids.

A particle dataset consisting of six bulk solids measured with X-ray
microscopy was used to simulate the results of 2D imaging techniques to
create a database to test the correlation between sets of particle characteris-
tics. The dataset thus created offers the possibility to study the correlation
between characteristic values and robustly predict the 3D properties of
bulk solids measured with 2D measurement techniques. It is found that
the form factor, the square of circularity, is a good predictor of Wadell’s
sphericity, while the correlation can be improved by including additional
2D characteristics, namely convexity and the ratio of bounding circles.

Keywords: imaging techniques, static image analysis, dynamic image
analysis, circularity, sphericity, shape factors, equivalent particle size,
particle characteristics, correlation
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1. Introduction1

The characterization of particles regarding size and shape is essential2

for most particulate processes. Advances in measuring techniques have3

made the tomographic measurement of bulk solids and resulting particle-4

discrete datasets possible, enabling new methods of analyzing, e.g., sepa-5

ration processes [1, 2].6

However, tomographic measurement is a time-consuming and costly7

process, so the characterization of bulk solids in everyday industrial and8

laboratory applications is mostly done with other well-established tech-9

niques. For the measurement of particle size and shape in orders of10

magnitude from 1 µm to 10 mm, static and dynamic image analysis are11

widely used, and have often replaced traditional sieve analysis [3, 4, 5].12

Furthermore, inline particle measurements are becoming more abundant13

in research and industry [6, 7].14

Wadell introduced the concept of sphericity to account for a particle sed-15

imentation velocity deviating from the sedimentation velocity of a sphere16

[8, 9]. It has since been used by many researchers and practitioners to17

represent particle shape as a single value. But Wadell recognized that the18

true sphericity for single particles might be hard to come by – it was even19

deemed unmeasurable by peers [10] – so he proposed the measurement of20

the projection of a particle at rest and an alternative definition for sphericity21

from it (Eq. 14).22

The classical approach by Zingg to classify particles into shape cate-23

gories by the ratios of their principal dimensions (elongation and flatness)24

is still widely in use and has been recently implemented in a particle shape25

analysis tool [11, 12]. 2D aspect ratios, along with circularity and convexity,26

are recognized in the literature as meaningful shape descriptors [13].27

Since Wadell, many people have investigated how 2D imaging tech-28

niques may accurately describe the “true”, 3D particle shape [14? , 15, 16,29

17, 18]. In many ways, this study tries to retrace the steps of Bagheri et al.30

[19], who compared computed tomography measurements with projection31

images to find correlations to accurately describe 3D shape. Whereas be-32

fore a particle’s three principal dimensions (length, width, and thickness)33

were defined as perpendicular to each other, with length being the dimen-34

sion between the two points on the particle furthest from each other, the35

authors propose the determination from the two projections with mini-36

mum (for thickness) and maximum areas (for width and thickness). Their37
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results are interesting, while lacking statistical robustness because of the38

small sample size.39

Recent developments include the prediction of 3D particle shapes from40

2D images by the use of neural networks [20]. This happens in recogni-41

tion of the approach of capturing single particles from multiple angles to42

describe the 3D particle shape [21, 22]. The other approach is to quantify43

particle shape accurately only in the statistical sense by measuring enough44

particles to have a good estimate of the mean particle shape of a given bulk45

solid [13].46

In this study, we take the second approach by asking how well 2D47

descriptors can describe 3D particle shape. We start with an expansive48

dataset of 3D particles provided by the PARROT particle database1 and49

simulate the results of both static and dynamic image analysis with the50

intent of finding suitable correlations for both methods.51

2. Materials and Methods52

2.1. Particle Datasets53

2.1.1. Acquisition54

The solids particle data used in this study was prepared previously for55

the stated purpose of providing reference 3D datasets. A methodology was56

developed to produce isolated, i.e., non-touching, particles in a wax matrix57

[23, 24]. Tomographic reconstruction of X-ray microscopy measurements58

of these wax matrices offers the possibility to easily segment and extract the59

single 3D particles. The particle data is available in the form of the original60

reconstructed tomography stacks as well as single particle surfaces in STL61

format in the dedicated particle database PARROT [25].62

VTK files that represent cropped ROIs for every particle from the to-63

mographic reconstructions were used to recalculate STL meshes for the64

particles, as some STL surfaces in the PARROT dataset were not water-65

tight, which would have led to problems in later analysis. The STL data66

used in this study is available in the supplementary data.67

Table 1 gives an overview of the six solids of which particle surface data68

has been used. They are typically in a particle size range between 50 µm to69

1parrot.tu-freiberg.de
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300 µm. The X-ray microscopy measurements were performed for a final70

voxel size, i.e., edge length, of 2 µm.71

Table 1: Used Particle Systems, provided in the PARROT particle database [25]

type production process particle size particles
aluminium
oxide

crushing 55 µm to 200 µm 1571

dolomite calcination and
crushing

90 µm to 200 µm 642

soda-lime
glass

spray drying 150 µm to 300 µm 602

limestone dry milling 55 µm to 200 µm 1271
mica comminution and

magnetic separa-
tion

90 µm to 300 µm 415

quartz crushing < 200 µm 1656

2.1.2. Description72

The properties of the six solids (cf. Table1) are shown in Fig.1. From73

the plot of sphericity 𝜓Wa over volume-equivalent diameter (Eqs.8 and74

2) in Fig.1a, it can be seen that four solids—quartz, limestone, dolomite,75

and aluminum oxide—are clustered in the same area with relatively high76

sphericity values of 𝜓Wa > 0.5. The soda-lime glass particles are the largest77

and also have the highest sphericity values. The high sphericity values can78

be traced to the production process by spray drying, resulting in mostly79

spherical shapes. In contrast, the mica particles show very low sphericities.80

The maximum sphericity value of𝜓Wa ≈ 0.92 stems from the conversion81

of the particle volumes from voxel representation to a triangular surface.82

The marching cubes algorithm interpolates between the edges of the vox-83

els to smooth the surface, depending on the number and configuration of84

adjacent solid voxels [26, 27]. The resulting error will be 8 % to 9 % [28].85

In comparison, the error in sphericity determination from the voxel repre-86

sentation for a sphere would be > 30 %, because of the greatly exaggerated87

surface area.88

In Fig.1d, the particles are plotted along two aspect ratios, flatness 𝑡/𝑤89

and elongation 𝑤/𝑙, which makes classification according to particle shape90
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(a) Sphericity vs. particle size (b) Width vs. Thickness

(c) Explanation of particle shape classification chart in
fig. 1d

(d) Particle shape classification chart for three main
dimensions

Figure 1: Properties of the six particle datasets

possible. 𝑙, 𝑤, and 𝑡 are the three main dimensions of a particle: length,91

width, and thickness, respectively, defined by the aligned bounding box (cf.92

section2.3.2). The plot was first introduced by Zingg and later developed93

by Krumbein and Janoo [11, 29, 30]. Fig.1c serves as an explanation, also94

showing isolines for sphericity, though Krumbein’s sphericity definition is95

used, cf. Eq.11. Alternative descriptors for the particle shape groups "disc,"96

"cubic," and "rod" are "oblate," "compact," and "prolate," respectively [31].97

Soda-lime glass spheres are expectedly clustered at values close to one98

for both aspect ratios, while the majority of particles of the other solids99

are mostly compact and could be classified as cubic and slightly rod- or100

disc-shaped, depending on their particular flatness or elongation values.101
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In contrast, the mica particles are very flat and may be classified as disc-102

and blade-like.103

Fig.2 provides an example for each of the four categories according to104

the Zingg classification chart. The examples also serve to give an impres-105

sion of what the different solids look like. While most of the limestone106

and quartz particles can be classified as compact/cubic, the two particles107

shown in Figs.2a and 2d can be clearly identified as belonging to their re-108

spective categories of disc- and rod-like. The soda-lime glass particles are109

mostly near-perfect spheres, resulting in the aforementioned high spheric-110

ity values. The mica is mostly flaky in nature, resulting in very low flatness111

values, an effect that can be predicted from the plot of width vs. thickness112

in Fig. 1b.113

(a) disc (limestone) (b) cubic (soda-lime glass)

(c) blade (mica) (d) rod (quartz)

Figure 2: Examples from the datasets for particles belonging to the four shape categories
of Figs. 1c and 1d with solid type in brackets

Because their properties are very similar, the group of quartz, limestone,114

dolomite, and aluminum oxide will be grouped as "compact particles"115

in section 3, while it will be instructive to see certain deviations for the116

6



mica and soda-lime glass particles occur in the calculation of form factors117

because of their unique shape properties.118

2.2. 2D Imaging Simulation119

2.2.1. Static Image Analysis120

Static image analysis, as defined by ISO 13322-1, involves image acqui-121

sition to determine particle size where the particles are not moving against122

the axis of the optical equipment [32]. If a particle is large enough that123

adhesion forces with respect to the surface it is resting on are negligible,124

the particle will orient itself in a position in which at least its longest di-125

mension is measurable. Two possibilities for the simulation of static image126

analysis were calculated:127

• alignment of the principal inertia vectors on the Cartesian axes and128

• alignment of the particle in one of its stable resting positions.129

3D manipulation of the provided STL files was done with the Python130

library trimesh, which, as the name implies, focuses on triangular meshes131

[33]. The trimeshpackage offers options for both the procedures named, in132

particular a method that returns a list of the most likely stable positions of133

a given mesh, containing both the necessary transform and the respective134

probability of the particle settling in this position. Any resting positions135

with a probability 𝑝 > 0.1 were used for further 2D analysis. Because136

highly spherical particles can easily have no positions of especially high137

resting probability, for each particle at least the two most probable positions138

were calculated. Fig. 3 gives an example of the stable positions of a particle139

and the resulting projections, in this case in 𝑧-direction, i.e., onto the 𝑥𝑦-140

plane.141

The imaging simulation involves getting the projection perpendicular142

to the plane that acts as the resting surface when calculating the stable143

position transforms (𝑥𝑦). For the mesh aligned along its principal inertia144

vectors, the projection is calculated perpendicular to the plane that contains145

the two major inertia vectors: when considering the aligned particle in146

Fig. 6b, the projection would be in direction of the 𝑥 vector, onto the 𝑦𝑧147

plane.148

The subsequent procedure involves a custom function that calculates149

the orthogonal projection of the triangular mesh onto a plane defined by150

a given normal. With a given plane normal, the particle is first rotated to151
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the correct position, and a projection transform is performed onto the 𝑦𝑧152

(𝑥-axis) plane (Fig. 4a). The projected triangles are then transformed into153

a single 2D polygon using the Python package Shapely [34]. Thus, a single154

contour is returned which can be used for further analysis. The relevant155

code can be found in the supplementary materials, see section 4.156

In principle, the effects of image resolution may be investigated by157

scaling the projection and calculating a masked array that represents the158

pixel image. However, pixelization in this sense has only been used for the159

calculation of the enclosing and inscribed circles, cf. section 2.3.1.160

(a) 𝑝 = 0.403 (b) 𝑝 = 0.315 (c) 𝑝 = 0.167

(d) (e) (f)

Figure 3: Stable position of the particle shown in fig. 6 with the respective occurrence
probabilities (figs. 3a, 3b, and 3c) and resulting projection silhouettes along 𝑧-axis (figs. 3d,
3e, and 3f)

2.2.2. Dynamic Image Analysis161

In contrast to static analysis, dynamic image analysis is concerned with162

the image acquisition and analysis of moving particles [35]. Particles are163

therefore imaged in random orientations, unless the flow is highly turbu-164

lent.165
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The procedure to produce a projection image is mostly the same as166

before, except that the particle is first rotated randomly. For every parti-167

cle, three random orientations were used to produce projections, thereby168

increasing the number of simulated data points.169

2.3. Particle Characteristics170

The term particle characteristic as used in this text includes all parameters171

that can describe the size and shape of a particle. It comprises three sub-172

groups: geometric properties, equivalent diameters and shape factors. Geometric173

properties can be directly measured from the 2D or 3D representation of174

a given particle. Equivalent diameters are typically diameters of the circle175

(2D) or sphere (3D) that share one of the geometrical properties of the par-176

ticle. Finally, shape factors are mostly ratios of two different geometrical177

properties, one of which may be calculated from the particle’s convex hull.178

2.3.1. 2D Measures179

These geometric properties can all be derived directly from the projec-180

tion or section of a particle in any direction (Fig. 4b); therefore, they are181

applicable to all 2D imaging techniques, like static and dynamic image182

analysis.183

In the current study, only the vector representation of the silhouette184

image is used. The accuracy of the calculated parameters therefore only185

depends on the resolution of the original 3D surface mesh and the marching186

cubes procedure with which it was produced from the voxel representa-187

tions that themselves originated in the reconstructed tomography image188

stack. The contour is voxelized solely to simplify the calculation of bound-189

ing circles, enabling the use of standard Python libraries. Both pixelization190

and orthogonal projection images, as shown in Fig. 4a, offer possibilities191

for testing the effects of image resolution and roughness measurement,192

respectively.193

Area and perimeter. Both the projection area 𝐴p and the perimeter 𝑃p are194

calculated by methods provided by the Shapely package, directly from the195

projection contour, as shown in Fig. 4b. Because of the inherent fractal196

behavior of many real solids’ surfaces, the perimeter is much less robust197

than the projection area for smaller particles. Still, the effect of measure-198

ment resolution will be more pronounced in the determination of the (3D)199

surface area, where surface roughness comes more into effect than in the200

2D case [36].201

9



(a) Orthogonal projection (b) Vectorized contour (c) Convex hull

(d) Pixelized projection (e) Euclidian distance map with
contours of same distance from
projection border

(f) Minimum enclosing circle
(black) and maximum inscribed
circle (white)

Figure 4: Illustration of methods for generation of 2D descriptors for particle shape

Convex Hull. The convex hull is determined using a method of the Shapely202

polygon object that contains the contour. For the convex hull, both area 𝐴c203

and perimeter 𝑃c are determined.204

Feret Diameters. Minimum and maximum Feret diameters are determined205

by brute force: the projection contour is rotated in 500 steps between206

0◦ and 180◦, and the boundaries in both axis directions are determined.207

The smallest measured distance between boundaries will be the minimum208

Feret diameter 𝑥Fe,min, while the largest distance will be the maximum209

Feret diameter 𝑥Fe,max. The two measures, 𝑥Fe,min and 𝑥Fe,max, are shown210

in Fig. 5a. As can be seen, the two Feret diameters are not necessarily at211

a right angle, which is why two additional Feret diameters are determined:212

𝑥Fe,min90 and 𝑥Fe,max90, which are perpendicular to the 𝑥Fe,max and 𝑥Fe,min,213

respectively.214

The use of perpendicular Feret diameters serves two purposes. Firstly,215
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(a) Maximum 𝑥Fe,max and minimum 𝑥Fe,min Feret
diameters

(b) Maximum 𝑥Fe,max and perpendicular 𝑥Fe,min90
Feret diameters

Figure 5: Illustration of of different definitions of Feret diameters

for static image analysis, the maximum and minimum Feret diameters will216

be very close to the length and width of a particle, respectively (Fig. 5b).217

Secondly, the (true) minimum Feret diameter 𝑥Fe,min and its perpendicular218

Feret diameter 𝑥Fe,max90 will, in most cases, be very close to the actual219

dimensions of the oriented bounding box, i.e., the bounding box of least220

area.221

Minimum Enclosing Circle. The diameter of the minimum enclosing circle222

𝑑ec belongs to the circle that has the least area while still containing the223

entire projection contour (Fig. 4f). While dedicated Python packages for224

the task of determining this measure exist, such as miniball, here, the225

computer vision library OpenCV was used [37].226

For the calculation of 𝑑ec, the contour needs to be transformed into a227

array first, equivalent to a pixel representation (Fig. 4d). The pixelization228

is achieved with scikit-image, which contains the polygon method that229

generates pixel coordinates inside a given polygon.230

To increase the accuracy of 𝑑ec (and 𝑑ic), the contour coordinates are231

scaled up by a factor of 2 before pixelization, significantly affecting on232

the results of both the center coordinate of the circle as well as its radius.233

Further scale-up is not considered necessary, or even useful, because the234

original 3D mesh does not offer more resolution anyway.235

Maximum Inscribed Circle. The determination of the diameter of the maxi-236

mum inscribed circle 𝑑ic also requires a pixel representation of the contour.237

The method uses the Euclidean distance transform as implemented in238

scipy [38]. The transform calculates the distance of each object pixel from239
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the background (Fig. 4e). The pixel that contains the highest value after240

the transform will be the center of the maximum inscribed circle, while241

the corresponding pixel value will be 𝑑ic/2, i.e., the radius of the circle.242

The Euclidean distance transform is computationally inexpensive and is a243

relatively simple method for determining the maximum inscribed circle,244

as it transforms the problem from vector space to pixel space. This reduces245

the complexity of the problem significantly, albeit at the cost of being only246

as accurate as the pixel dimensions allow.247

2.3.2. 3D Measures248

Volume and Surface Area. Both volume and surface area are properties of the249

trimesh object that contains the particle mesh, so it is defined by functions250

already implemented by the package.251

Specific Surface Area. A combination of volume and area, specific surface252

area is an important measure for all sorts of processes involving heat,253

moment, or mass transfer. It is defined as:254

𝑆V =
𝑆

𝑉
(1)

In contrast to most other particle properties, specific surface area will255

decrease with increasing volume.256

Convex Hull. The convex hull is another property of the trimesh object,257

from which both volume 𝑉c and surface area 𝑆c can be calculated.258

Aligned Bounding Box. A bounding box in this study defines the main259

dimensions of the particle. In this study, the aligned bounding box defines260

the length 𝑙, width 𝑤, and thickness 𝑡 to be the longest, intermediate,261

and shortest edge lengths. This approach is congruent with the definition262

of particle dimensions by Krumbein, who measured orthogonal lengths263

starting with the longest one found on the particle [29].264

The aligned boudning box is created by tranformation of the particle so265

that its principal axes of inertia align with the cartesian dimension vectors266

(Fig. 6b). The necessary transform is again a property of the trimesh object267

containing the particle mesh. After the transformation, the bounding box,268

again, is a property of the trimesh object (Fig. 6d).269

The definition of 3D particle dimensions in this way also makes it270

possible to directly compare measurements with static image analysis sim-271

ulation results. When the maximum Feret 𝑥Fe,max and the perpendicular272
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(a) 3D particle in its original position (b) 3D particle of 6a after applying the principal
axis alignment transform

(c) Oriented bounding box for particle in 6a,
𝑉 = 121 486

(d) Bounding box along Cartesian axes for
aligned particle in 6b, 𝑉 = 146 740

Figure 6: Illustration of the two different definitions for bounding boxes, volumes given
in axis units
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Feret diameter 𝑥Fe,min90 (Fig. 5b) is used, they will be identical with length273

𝑙 and width 𝑤 for the aligned particle (section 3.1). For stable positions,274

section 3.2, 𝑥Fe,max should still reflect actual particle length 𝑙, while 𝑥Fe,min90275

should differ somewhat.276

Bagheri et al. favoured the use of uncorrelated Feret extrema for the de-277

termination of particle dimensions to reduce operator error [19]. However,278

with most modern measurement setups particle dimensions are seldom279

determined manually, and determination of a minimum Feret diameter280

for compact projections may still be difficult if done manually anyway.281

Oriented Bounding Box. The oriented bounding box is again calculated by282

trimesh for a given particle mesh and represents the bounding box of least283

volume that still contains the whole mesh surface (Fig. 6c). The dimensions284

of the oriented bounding box are determined from the Cartesian coordi-285

nates after applying the inverse transform on the bounding box, since the286

oriented bounding box is likely to be at random angles toward the Cartesian287

axes, even if the particle was first aligned to its principal axes of intertia.288

Fig. 7 shows comparisons of the dimensions of aligned bounding boxes289

and oriented bounding boxes for all investigated particles. The oriented290

bounding box has on average smaller dimensions than the aligned bound-291

ing box. The effect increases for the longer dimensions: length will mostly292

be smaller for the oriented bounding box, wheras there is a more random293

scatter for thickness.294

(a) Thickness (b) Width (c) Length

Figure 7: Comparison of dimensions determined by aligned and oriented bounding boxes

On average, the oriented bounding box will be 14 % smaller than the295

aligned bounding box for compact particles. In contrast, the oriented296

bounding box will only be 12 % smaller for mica particles which, because297
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of their flat nature, should, in their aligned position, already be closer to298

the smallest box possible. Finally, soda-lime glass spheres have on average299

oriented bounding boxes that are only 5.5 % smaller.300

The aligned bounding box is preferred here over the oriented bounding301

box because of its congruence with Krumbein’s definition and because the302

resulting dimensions could be found more easily by hand.303

Bounding Spheres. The minimum bounding sphere again is a property of304

the mesh object defined by the trimesh library, so the diameter of the305

minimum enclosing sphere 𝑑es is determined in a single line of code. A306

visualization of both bounding spheres is found in Fig. 8.307

(a) Minimum enclosing sphere (b) Minimum inscribed sphere (c) Voxelized particle from original
surface in fig. 6a

Figure 8: Illustration of both minimum enclosing sphere and maximum inscribed sphere

The maximum inscribed sphere is approximated as the maximum in-308

scribed circle in the 2D case. In both cases, the functiondistance_transform_edt309

from the scripy library [38] is used to calculate the Euclidean distance310

transform to find the pixel/voxel that is furthest from the particle sur-311

face. This maximum value will be the diameter of the maximum inscribed312

sphere 𝑑is.313

In order to perform the Euclidean distance transform, the surface mesh314

needs to be discretized into a voxel representation (Fig. 8c). The voxeliza-315

tion is also done with methods provided by trimesh, and, as with the316

2D case, at a scale factor of 2, which increases the accuracy of the diame-317

ter estimation significantly. Care must be taken to produce a filled voxel318

representation: most voxelization algorithms will only return solid voxels319

where the surface of the mesh touches. An extra step is involved to fill the320

hollow discretized surface with scipy’s method binary_fill_holes.321
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2.3.3. Equivalent Diameters322

Several properties in 2D and 3D can be compared to that of the idealized323

shapes, a circle in two and a sphere in three dimensions. In 3D, the diameter324

of a sphere can be calculated that has the same volume as that of the particle.325

This diameter will be called the volume-equivalent diameter:326

𝑥V =
3

√
6𝑉p

𝜋
(2)

In the same sense, the diameter of the sphere that has the same surface327

area as that of the particle (surface-equivalent diameter) is:328

𝑥S =

√
𝑆p

𝜋
(3)

In two dimensions, the particle properties volume 𝑉p and surface area329

𝐴p reduce to projection properties, projection area 𝐴p and perimeter 𝑃p.330

The diameter of the circle that has the same area as the projection area, the331

area-equivalent diameter, is:332

𝑥A =

√
4𝐴p

𝜋
(4)

Lastly, the perimeter-equivalent diameter is the diameter of the circle333

that has the same perimeter as that of the particle projection, defined as:334

𝑥P =
𝑃p

𝜋
(5)

2.3.4. Shape Factors335

Shape factors are derived from two or three of the particle properties or336

equivalent diameters introduced above. All shape factors described below337

are dimensionless, which means they can be used to good effect to find338

correlations between 2D projections and 3D particle properties.339

Length Ratios. Flatness 𝑡/𝑤 and elongation 𝑤/𝑙 have been used before in340

Fig. 1d to classify particles into shape categories.341

In 2D, two more length ratios are used in this study. First the aspect342

ratio is defined as the ratio of minimum and maximum Feret diameter:343

AR =
𝑥Fe,min

𝑥Fe,max
(6)
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As discussed before, the two Feret diameters often at an angle ≠ 90◦.344

Because the 3D particle dimensions are defined by their bounding boxes,345

they are necessarily at a right angle to each other. It therefore makes sense346

to define an additional aspect ratio of perpendicular Feret diameters:347

AR90 =
𝑥Fe,min90

𝑥Fe,max
(7)

Sphericity. Several shericity definitions exist, some of them fundamentally348

different from each other, but for all of them, the sphericity 𝜓 < 1 for349

particles deviating from a sphere.350

The original definition of sphericity comes from Wadell for application351

on sedimentary particles [8]. Wadell defined sphericity as the ratio of the352

surface area of a sphere of equal volume as that of the particle to the actual353

surface area of the particle:354

𝜓Wa =
𝑆sp

𝑆p
=

(
𝑥V
𝑥A

)2

(8)

𝑆sp is the surface area of the sphere having the same volume as the355

particle.356

Another sphericity definition is the ratio of the two bounding spheres,357

i.e., maximum inscribed sphere to minimum enclosing sphere [39]:358

𝜓bs =
𝑑is
𝑑es

(9)

Hofmann applies the concept of statistical entropy to the particle shape359

description [40]:360

𝜓Ho =
1

ln (1/3)

3∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 , (10)

where 𝑝𝑖 =
𝑑𝑖

𝑑1+𝑑2+𝑑3
, 𝑑1 = 𝑙, 𝑑2 = 𝑤, and 𝑑3 = 𝑡.361

Hofmann’s sphericity is supposed to be the most representative mea-362

sure for the prediction of particle settling velocity [41].363

Lastly, Krumbein defined a sphericity by comparing a given particle to364

a triaxial ellipsoid [29]. After determining the longest dimension of the365

particle, the second longest dimension perpendicular to the first is deter-366

mined, with the third dimension being perpendicular to the other two.367
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In this sense, the three dimensions are equivalent to length 𝑙, width 𝑤,368

and thickness 𝑡 of the bounding box of the principally aligned particle, as369

described in section 2.3.2.370

𝜓Kr =
3

√
𝑤 𝑡

𝑙2
(11)

Another definition for sphericity has been defined by Sneed and Folk371

as 𝜓SF =
3
√
𝑡2/(𝑤 𝑙) [42], but will not be used in this study.372

Circularity. “Circularity” is the name chosen according to the definitions373

of Wadell [9] for the 2D equivalent of sphericity, basically a “projection374

sphericity”, sometimes also called “roundness” [43]. Like sphericity, circu-375

larity approaches a value of one for particles that closely resemble circular376

shapes and will decrease in value for particles becoming less compact.377

The original circularity definition as ratio of perimeter of the area-378

equivalent circle to the actual projection perimeter is due to Wadell [9].379

Wadell stressed that circularity and sphericity are fundamentally differ-380

ent from roundness in the sense that roundness is a mesoscopic measure381

and circularity is a macroscopic measure. In other words, circularity and382

sphericity show shape deviations, whereas roundness shows surface devia-383

tions.384

𝜓c =
𝑃c
𝑃p

=
𝑥A
𝑥P

=

√
4𝜋𝐴p

𝑃2
p

(12)

The square of circularity 𝜓c is called the form factor and is equivalent385

to the “roundness” factor defined by Cox [44, 45, 46].386

FF =
4𝜋𝐴p

𝑃2
p

(13)

Because one early criticism of 𝜓Wa was the difficulty of measurement,387

Wadell proposed more easily attainable circularity measure:388

𝜓c,Wa =
𝑥A,stable

𝑑ec
(14)

In the above equation, 𝑥A,stable is the diameter of a circle of equal projec-389

tion area as that of a given particle at rest, i.e., lying on a surface in a stable390
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position. 𝑑ec is, as per previous definition, the diameter of the minimum391

enclosing circle.392

Another method of defining circularity is through both bounding cir-393

cles, i.e., the radius of the maximum inscribed circle 𝑑ic and the radius of394

the minimum enclosing circle 𝑑ec:395

𝜓c,bc =
𝑑ic
𝑑ec

(15)

Equation 15 is the square of the circularity definition by Riley [43].396

Solidity. As a measure of concavity, a solidity factor 𝑆x can be calculated in397

both 2D and 3D. It compares the actual particle volume or projection area398

to its convex hulls. If there are no concavities, the solidity will be 1 and the399

particle or projection will be its own convex hull.400

𝑆x,3D =
𝑉p

𝑉c
(16)

𝑆x,2D =
𝐴p

𝐴c
(17)

Convexity. Another measure for deviation from a convex object is the con-401

vexity, for which the symbol 𝐶x is used. It compares the surface of particle402

or projection directly to the convex hull.403

𝐶x,3D =
𝑆c
𝑆p

(18)

𝐶x,2D =
𝑃c
𝑃p

(19)

3. Results and Discussion404

3.1. Aligned Projection405

The aligned projection dataset is in many ways the simplest one and406

is used for verification of the analysis methods then used for the datasets407

of stable and dynamic projections. Because there is exactly one aligned408

projection for every particle, there are as many projections as particles in409
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the complete dataset of all solids, 6157. Because of the amount of particles,410

any effects observed are considered statistically relevant.411

The total number of particle characteristics used for correlation is 49, 25412

comprising 3D, 24 comprising 2D measures and descriptors. Table 2 lists413

all particle characteristics, which have been grouped into certain categories414

like volume-related, circularity, etc.415

These characteristics can now be used to calculate a correlation matrix416

as shown in Fig. 9a. Simply put, the Pearson correlation coefficient of each417

parameter is evaluated against every other parameter, resulting in a 49×49418

grid containing the values of the coefficients. From the numbers on the419

grid, the specific characteristic can be determined with Table 2.420

Values greater than zero will signify a positive (linear) correlation,421

whereas, if rarely, negative values will signify negative (linear) correla-422

tions. Extremely high correlations result from some expected pairs, like423

the equivalent diameters and their respective measure, or circularity (44)424

and form factor (45) – one is the square of the other.425

For the geometric measures and equivalent diameters a clear depen-426

dency is visible by four dark blue rectangles that are formed. The brighter427

regions of less correlation are all in places of shape factors. A obvious428

exception from the rule is specific surface area (9), that decreases with429

increasing volume and therefore results in a band of negative correlation430

throughout the correlation matrix (Fig. 9b).431

One correlation that is not necessarily expected is between Wadell’s432

alternative circularity definition 𝜓c,Wa (46, Eq. 14) and the bounding circles433

circularity 𝜓c,bc (47, Eq. 15). As predicted by the correlation plot, there is a434

near perfect linear relationship, but between 𝜓2
c,Wa and 𝜓c,bc, as shown in435

Fig. 10.436

Because the main focus of this study is the comparison of 2D with 3D437

particle characteristics, most of the correlation matrix is not strictly relevant.438

For this reason, only the upper right quadrant is shown for the other439

correlation matrices, as has been done for the larger matrix in Fig. 9c for440

the set of compact particles: quartz, limestone, dolomite, and aluminium441

oxide. Marked in red are characteristics pairs of very high correlation.442

Thresholds for a “high” correlation are set subjectively, as shape factors443

overall show much less correlation than geometric measures and their444

derived equivalent diameters. In Fig. 9c, some expected characteristics445

show high correlation like convex surface area (6) and (convex) projection446

area (1, 2), or their equivalent diameters: 𝑥S (7) and 𝑥S,c (8) with 𝑥A (3)447
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Table 2: Particle characteristics used in the correlation matrices, Figs. 9, ...

no. category name symbol dimensions equation

3D characteristics

1
I

particle volume 𝑉p L3 –
2 convex volume 𝑉c L3 –
3 volume-equivalent diameter 𝑥V L1 2
4 convex volume-eq. diameter 𝑥V,c L1 –

5
II

particle surface area 𝑆p L2 –
6 convex surface area 𝑆c L2 –
7 surface-equivalent diameter 𝑥S L1 3
8 convex surface-eq. diameter 𝑥S,c L1 –
9 volume-specific surface area 𝑆V L−1 –

10 III aligned length 𝑙 L1 –
11 oriented length 𝑙oriented L1 –

12 IV aligned width 𝑤 L1 –
13 oriented width 𝑤oriented L1 –

14 V aligned thickness 𝑡 L1 –
15 oriented thickness 𝑡oriented L1 –

16 VI min. enclosing sphere diameter 𝑑es L1 –
17 max. inscribed sphere diameter 𝑑is L1 –

18 VII elongation 𝑤/𝑙 – –
19 flatness 𝑡/𝑤 – –

20
VIII

Wadell’s sphericity 𝜓Wa – 8
21 Krumbein’s sphericity 𝜓Kr – 11
22 bounding spheres sphericity 𝜓Wa – 9
23 Hofmann’s sphericity 𝜓Ho – 10

24 IX 3D solidity 𝑆x,3D – 16
25 3D convexity 𝐶x,3D – 18

2D characteristics

26
I

projection area 𝐴p L2 –
27 convex projection area 𝐴c L2 –
28 area-equivalent diameter 𝑥A L1 4
29 convex area-eq. diameter 𝑥A,c L1 –

30
II

projection perimeter 𝑃p L1 –
31 convex projection perimeter 𝑃c L1 –
32 perimeter-equivalent diameter 𝑥P L1 5
33 convex perimeter-eq. diameter 𝑥P,c L1 –

34
III

bounding box length 𝑙bb L1 –
35 maximum Feret diameter 𝑥Fe,max L1 –
36 orthogonal Feret to 𝑥Fe,min 𝑥Fe,max90 L1 –

37
IV

bounding box width 𝑤bb L1 –
38 minimum Feret diameter 𝑥Fe,min L1 –
39 orthogonal Feret to 𝑥Fe,max 𝑥Fe,min90 L1 –

40 V min. enclosing circle diameter 𝑑ec L1 –
41 max. inscribed circle diameter 𝑑ic L1 –

42 VI aspect ratio AR – –
43 orthogonal aspect ratio AR90 – –

44
VII

circularity 𝜓c – 12
45 form factor 𝜓Kr – 13
46 Wadell’s circularity 𝜓Wa – 14
47 bounding circles circularity 𝜓Ho – 15

48 VIII 2D solidity 𝑆x,2D – 17
49 2D convexity 𝐶x,2D – 19

21



(a) Correlation matrix showing standard correlation coefficient be-
tween all computed particle characteristics for all particles; 3D char-
acteristics before, 2D after the dashed red line

(b) Specific surface area 𝑆V as a func-
tion of projection area 𝐴p

(c) Standard (Pearson) correlation coefficient
matrix for compact particles; correlations in red
for 𝑟𝑥𝑦 > 0.98, green for 𝑟𝑥𝑦 > 0.8, purple for
𝑟𝑥𝑦 < −0.8

(d) Spearman rank correlation coefficient ma-
trix for compact particles; correlations in red
for 𝑟s > 0.98, green for 𝑟s > 0.8, purple for
𝑟s < −0.8

(e) Spearman rank correlation coefficient ma-
trix for mica particles; values in red only marked
for emphasis

(f) Spearman rank correlation coefficient matrix
for soda-lime glass particles; values in red only
marked for emphasis

Figure 9: Correlation matrices for particle characteristics determined from aligned pro-
jections, Figs. 9c through 9f only show the first quadrant (upper left) of the complete
correlation matrix as shown in Fig.9a, with dashed red lines separate geometric proper-
ties and equivalent diameters from shape factors (cf. Table 2)
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Figure 10: Correlation of Wadell’s alternative definition for circularity (Eq. 14) and bound-
ing circles circularity (Eq. 15)

and 𝑥A,c (4). Some correlations can be predicted from the nature of the448

simulation methods: particle length 𝑙 (10) and bounding box length 𝑙bb (9);449

particle width 𝑤 (12) and bounding box width 𝑤bb (12); finally, enclosing450

diameters 𝑑es (16) and 𝑑ec (15).451

Because of the definition of particle dimensions via the bounding boxes,452

elongation 𝑤/𝑙 will also perfectly correlate with aspect ratio AR, though453

the correlation with AR90 naturally is better. Fig. 11 shows the correlation454

of several Feret diameters with their respective 3D particle dimensions.455

The perpendicular definition of minimum Feret 𝑥Fe,min90 scatters around456

the “true” particle width, whereas the true minimum Feret 𝑥Fe,min system-457

atically underestimates it.458

(a) Minimum Feret vs. width (b) Orthogonal minimum Feret
vs. width

(c) Maximum Feret vs. length

Figure 11: Comparison of Feret diameters to 3D measures for all solids

Interestingly, elongation (but not thickness) also correlates well with459

Wadell’s alternative circularity definition 𝜓c,Wa and the bounding circles460

23



circularity 𝜓bc. Elongation therefore seems to be a much better indicator461

deviation from the cubic shape than flatness. It therefore makes sense that462

Krumbein takes elongation as a square in his sphericity definition, Eq. 11.463

Because some of the characteristics are not correlated linearly, how-464

ever, it makes sense to not stick to the Pearson correlation coefficient 𝑟𝑥𝑦 .465

Instead Fig. 9d shows the correlation matrix with the Spearman rank corre-466

lation coefficient 𝑟s. This coefficient doesn’t describe a linear relationship,467

but rather how likely it is that a monotonic function exists between two468

variables. In comparison of Figs. 9c and 9d, specific surface area 𝑆V (9)469

now shows a very good (Spearman) correlation with projection area 𝐴p (1470

to 4). Of course, specific surface area is directly linked to projection area,471

however, definitely not in a linear way, as Fig. 9b shows. Because of this ad-472

vantage of finding all possible relationships instead of just the linear ones,473

the Spearman rank correlation coefficient is chosen for all other correlation474

matrices.475

The mica particles stand apart from the more compact particles in sev-476

eral ways (Fig. 9e). Because of their flat appearance, width (10, 11) and477

length (12, 13) can still be approximated exceptionally well. As for the478

shape factors, most of the correlations are less pronounced than for the479

compact particles, with one exception deriving directly from the previous480

statement: a perfect correlation of elongation (18) and aspect ratio (17, 18).481

The spherical soda-lime glass provides some much higher correlations482

for the shape factors. The 3D shape factor trifecta of elongation (18),483

Krumbein’s (21), and Hofmann’s sphericity (23) correlate highly with the484

2D shape factors aspect ratio (17, 18), Wadell’s alternative circularity (21)485

and bounding circles circularity (22). This stresses again that the latter486

two circularity values correlate highly with aspect ratio, which probably487

diminishes their usefulness in static image analysis.488

3.2. Stable Positioning489

As described in section 2.2.1, at least the two most probable resting490

positions were used to produce projections. However, it is instructive to491

plot the distribution stable positions with a probability 𝑝 > 0.1 per solids492

type, as shown in Fig. 12a. Again, the soda-lime glass and mica particles493

clearly deviate from the compact particles (quartz, limestone, dolomite,494

and aluminium oxide). The compact particles on average have three to495

four stable positions. There are some outliers at six and even seven stable496

positions. One limestone particle is shown in its seven stable positions in497
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Fig. 12b. In contrast, the soda-lime glass spheres have no stable positions498

𝑝 > 0.1 for 80 % of particles. The flaky mica particles expectedly orient499

themselves on one of their flat sides, and so obtain on average two stable500

positions.501

(a) Distribution of stable positions of all solids;
dashed vertical lines indicate mean number of
positions

(b) Stable positions of a single limestone particle

Figure 12: Stable positions of investigated solid particles for a position probability of
𝑝 > 0.1

For the simulation of static image analysis via stable positioning, the502

correlation matrix in Fig. 13a exhibits an expected drop in very high cor-503

relations. The 3D geometric measures of highest correlation are convex504

surface (6) and its equivalent diameter 𝑥S (8); specific surface area 𝑆V (9)505

scales well with projection area (1) and its equivalent diameter 𝑥A (3);506

particle length 𝑙 (10, 11) correlates highly with 𝑥Fe,max and 𝑥Fe,max90.507

A few slightly more unexpected, but very high correlation values exist.508

Particle length 𝑙 (10, 11) also pretty much equals the minimum enclosing509

circle diameter 𝑑ec (15). Of course, the diameter in a stable position must510

be at least that of particle length, as this 3D dimension should always511

be visible in static image analysis. Only in rare cases, however, will the512

radius much exceed length particle length. Another high correlation is513

found between the minimum enclosing sphere diameter 𝑑es (16) and the514

convex perimeter 𝑃c (6) and its equivalent diameter 𝑥P (8), maximum Feret515

diameters (10, 11) and the minimum enclosing circle diameter 𝑑ec (15).516
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As for shape factors, elongation 𝑤/𝑙 (18) still correlates well with aspect517

ratios AR (17) and AR90 (18).518

(a) Correlation coefficient matrix stable posi-
tions; correlations in red for 𝑟s > 0.98, green
for 𝑟s > 0.8, purple for 𝑟s < −0.9

(b) Correlation matrix for random orientations;
correlations in red for 𝑟s > 0.97, green for 𝑟s >
0.7, purple for 𝑟s < −0.9

Figure 13: Correlation matrices of Spearman rank correlation coefficients for particle
characteristics for compact particles; dashed red lines separate geometric properties and
equivalent diameters from shape factors (cf. Table 2)

Of course, correlations between 2D and 3D particle characteristics for519

static image analysis, as was discussed in this and the previous section,520

could have been found from careful thought experiments. Wadell based521

his alternative sphericity definition (Eq. 14) on a projection of a particle at522

rest exactly because length and width should always be measurable in this523

situation, and most shape factors should scale will with the derived aspect524

ratio/elongation, as long as the particles are not deviating too much from525

the cubic shape.526

3.3. Random Orientation527

When comparing the correlation matrices of the stable position analysis528

(Fig. 13a) and that for dynamic simulation (Fig. 13b), it is first noticed that529

the amount of correlation is again decreasing. Note how correlations in red530

now have a value of 𝑟s ≥ 0.97 instead of 𝑟s ≥ 0.98 for the stable positions531

analysis.532

Mostly, the properties of the 3D convex hull, 𝑉c (2), 𝑥V,c (4), 𝑆c (6),533

𝑥S,c (8), and 𝑆V (9) scale well with projection area–related characteristics534

𝐴c (1), 𝑥A (2), 𝐴c (3), and 𝑥A,c (4). Additionally, the 3D convex hull’s535

surface area (6, 8) correlates well with the 2D convex hull’s perimeter (6,536

8). However, remember that the Spearman rank correlation coefficient537
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is used: correlations here need not be linear. The last correlation with538

𝑟s ≥ 0.97 is between specific surface area (9) and the maximum inscribed539

circle diameter, which is a possibly interesting starting point for further540

investigation.541

In case of the derived shape factors, the only good correlation exists be-542

tween 3D (24) and 2D solidity (23), 𝑆x,3D and 𝑆x,2D, respectively. Otherwise,543

shape factors do not really scale well anymore.544

Especially the relationship of projection area and particle surface area545

is well known as Cauchy’s theorem [47, 48]. Cauchy’s theorem states that546

the surface area of a convex body 𝑆p,c is four times the projection area547

averaged over several projections 𝐴p,c.548

𝑆p,c = 4𝐴p,c (20)

This theorem can be tested directly on the simulated data, not so much549

to prove the theorem, but to test the validity of the dataset. Fig. 14 shows the550

relations of surface area and projection area, both for the actual particles551

and their convex hulls. Note that single points are plotted, not actual552

averaged values, so Cauchy’s theorem may only hold on the average, which553

is why linear regression lines are included. For the compact particle convex554

hulls (Fig. 14b), the value of 3.92 is particularly close to the theoretical555

value. For both soda-lime glass and mica the values decrease. For the556

mica particles, the lower regression value is expected, as it is very likely557

for a flaky particle to produce silhouettes of comparably lower area. For558

the soda-lime glass spheres, the lower result may be due to the same559

inaccuracies of the mesh surface that lead to the maximum sphericity560

values of 𝜓Wa = 0.92.561

For the relation of particle surface and projection area, i.e., the non-562

convex shapes, surface area overestimated for both the compact particles563

and the spherical soda-lime glass. This trend is no doubt because the564

rugged surface, but may not be unique: for high surface roughnesses,565

projections may underestimate actual surface area [36]. In contrast, for566

mica particles, surface area is still grossly underestimated because the567

shape effect persists.568

3.4. Circularity vs. Sphericity569

It was deemed a worthwhile exercise to see how well circularity 𝜓c570

and sphericity 𝜓Wa correlate for the dynamic image simulation, because571
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(a) Particle surface area vs. projec-
tion area

(b) Convex surface area vs. convex
projection area

Figure 14: Correlations of surface area and projection area

circularity is commonly understood as the 2D equivalent of sphericity.572

A random accident led to investigation of the relationship of circularity573

and sphericity for the mica particles first. Fig. 15 shows the resulting574

correlations. The first insight is in regards to extremely small correlation575

values of the shape factors in the correlation matrices: at first sight, there is576

only a point cloud with no tendency whatsoever. At second sight, because577

of the nature of the two shape factors, both should be zero for infinitely578

stretched objects and one for spheres. Because of this unique relationship,579

a linear regression needs no offset, i.e., should start from zero. If a linear580

regression then returns a slope of one, the two shape factors are perfectly581

correlated. Any spread in either direction is then purely stochastic.582

(a) (Wadell’s) sphericity and its square root
vs. circularity

(b) Sphericity and its square root vs. form
factor

Figure 15: Correlation of sphericity with circularity for mica particles

From Fig. 15a it can be seen that the correlation between circularity583
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𝜓c and sphericity 𝜓Wa is rather non-ideal, whereas the square root of584

sphericity
√
𝜓Wa leads to a near-perfect linear regression slope of 0.99. If585

this correlation is squared, we get near-perfect slope of 0.95 for sphericity586

𝜓Wa over the square of circularity, which is the form factor, 𝜓2
c = FF.587

However, the correlation of sphericity and form factor does not hold588

nearly as well for the compact particles. Fig. 16b shows the reslting cor-589

relation. Not only is the resulting regression slope at 1.10, but the points590

also do not scatter as randomly around the regression line as was the case591

with the mica particles.592

To find if there is an underlying variable with which the data could be593

corrected, the data was plotted as shown in Fig. 16a. We will call Fig. 16a594

the parameter plot, as it shows how parameters scale within a correlation.595

The plots all show the same relationship, but individual points are plotted596

with a color map that scales according to a third parameter. To make597

any relationship, if existing, clear, the color map always scales between598

the smallest and the largest value of the chosen parameter. In the case of599

circularity and form factor we can see a smooth color band from left to600

right, which makes sense, given that the plot’s 𝑥-axis is the form factor.601

To correct the point cloud to scatter more evenly around the equality line,602

there needs to be a parameter that changes monotonously from the upper603

left to the lower right of the graph, i.e., orthogonally to the equality line.604

Solidity, for example, is a poor candidate because it decreases in direction605

of the 𝑦-axis.606

In contrast, 2D convexity 𝐶x,2D fulfills the described relationship for the607

given data, with the smallest values found in the upper left corner, and608

values decreasing toward the equality line. Fig. 16b displays the same plot609

with a color bar for the convexity values. The parameter is thus a good610

candidate to correct the linear relationship of form factor and sphericity: if611

the form factor is divided by the 2D convexity, points in the upper left of612

the plot will move to the right, while points close to the equality line will613

stay there, as their convexity values are already close to one.614

In fact, if the form factor is divided by the square of 2D convexity 𝐶2
x,2D,615

there is, at least visually, no correlation of the data with the parameter at616

all anymore, as shown in Fig. 16c. However, the correlation to sphericity617

has worsened, with a regression slope of only 0.82.618

The procedure is thus repeated with a new parameter plot that contains619

the 𝑥− and 𝑦-axes of the new correlation. The next candidate shape factor,620

29



(a) Parameter plot for Wadell’s sphericity vs. form factor

(b) Influence of 2D convexity (c) Correlation with 2D convexity

(d) Influence of bounding circles circularity (e) Correlation with bounding circles circular-
ity

Figure 16: Pathway to a correlation of 2D shape factors and Wadell’s sphericity; only
compact particles (no soda-lime glass and mica) are shown; final result in Fig. 17
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that fulfills the requirements described above is the bounding circles circu-621

larity 𝜓c,bc, as shown in Fig. 16d. The shape factor can be used to produce622

an excellent correlation by “stretching” the data back to the equality line,623

Fig. 16e. The regression slope is now almost perfect at 1.02. Furthermore,624

the resulting correlation exhibits expected behavior for a correlation of cir-625

cularity and sphericity: at high values approaching one, there is little error626

in the prediction, while the error widens as the values decrease, because627

there is a higher fluctuation in the projection images that can be produced628

for more irregular particles.629

The correlation thus found is:630

𝜓Wa = FF
√
𝜓c,bc /𝐶2

x,2D (21)

Several other equations were tested concerning their relevance for the631

given solids, i.e., for their predictive power with regards to Wadell’s632

sphericity. The simplest correlation is the one found for mica:633

𝜓Wa = FF (22)

Calculating the bounding circles for a given projection was a problem634

that was solved relatively late in this study. Because the bounding cir-635

cles circularity 𝜓c,bc was therefore not available, an earlier correlation that636

showed the best results was identified as follows:637

𝜓Wa = FF
√

AR90 /𝐶2
x,2D (23)

Essentially, 𝜓c,bc is replaced with the orthogonal aspect ratio AR90.638

Given the strong correlation between the two shape factors in the static639

image simulations, this substitution is justified. However, because the640

correlation is less pronounced for dynamic image analysis, it would also641

be expected for Eqs. 21 and 23 to yield different results.642

A combination of 𝜓c,bc and AR90 was also tested:643

𝜓Wa = FF𝜓c,bc / (𝐶x,2D AR90) (24)

Finally, two more equations were tested so see how much the increase644

in number of parameters would effectively improve the correlation.645

𝜓Wa = 𝜓c,bc (25)
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646

𝜓Wa = 𝜓c,bc / 3
√

AR90 (26)
For all six candidate equations mentioned above, average sphericity647

predictions were calculated. The results are summarized in Table 3. Eq. 21648

is superior compared to all others. Depending on the solid, some equation649

may be more accurate in their predictions. For example, Eq. 26 will give650

closer sphericity values for quartz and limestone, and – as expected – Eq. 22651

will provide a better estimate for mica. Overall, however, Eq. 21 is the most652

useful generally.653

Table 3: Average sphericities determined with the correlation candidates, equations 21
through 26

equation
material 3D 21 22 23 24 25 26

quartz 𝜓Wa 0.71 0.68 0.63 0.74 0.62 0.64 0.70
𝑟2 – 0.985 0.943 0.984 0.973 0.982 0.990

limestone 𝜓Wa 0.72 0.66 0.58 0.7 0.6 0.62 0.69
𝑟2 – 0.982 0.928 0.979 0.970 0.978 0.990

mica 𝜓Wa 0.43 0.45 0.43 0.49 0.45 0.45 0.55
𝑟2 – 0.824 0.911 0.854 0.358 0.219 0.253

dolomite 𝜓Wa 0.68 0.68 0.58 0.74 0.59 0.64 0.70
𝑟2 – 0.986 0.958 0.985 0.979 0.982 0.991

soda-lime 𝜓Wa 0.89 0.93 0.76 0.94 0.83 0.91 0.93
𝑟2 – 0.995 0.945 0.996 0.980 0.992 0.996

Al2O3
𝜓Wa 0.61 0.61 0.54 0.67 0.55 0.58 0.65
𝑟2 – 0.976 0.939 0.973 0.968 0.972 0.984

Fig. 17 shows the resulting correlation of Eq. 21 for all solids. As pre-654

viously determined, there is significant error for soda-lime glass particles655

at very high sphericities due to the nature of the meshed surfaces, which656

results in the lowest slope of the cubic particles. For mica, the correlation657

is especially poor, though the average predicted sphericity is only about658

5 % off from the actual value.659

Note that the predictive value is reasonably good because of the large660

number of data points. If there had been only a handful of particles, the661

final correlation would have been nearly impossible to find. Furthermore,662

the predictive power may not hold for all types of solids, especially be-663

cause of the use of convexity. If surface roughness significantly increases,664
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Figure 17: Best correlation of 2D shape factors and Wadell’s sphericity

surface area effects could be underestimated by 2D convexity. Because the665

resolution of STL mesh, voxel image, and projection silhouette are directly666

linked and should be identical, the correlation is expected to give sphericity667

values at the same resolution for the surface area of the particle.668

4. Conclusions669

A collection of particle surface meshes, resulting from X-ray tomo-670

graphic measurements, has been used to simulate both static and dynamic671

image analysis. The results have been evaluated to find the highest cor-672

relations between 2D and 3D geometric measures and shape factors. The673

dataset and methods described prove to be physically accurate, although674

highly spherical soda-lime glass particles reach a final sphericity lower675

than one because of the nature of the description of particle surfaces as676

triangular meshes.677

A correlation between Wadell’s sphericity in 3D and the form factor in678

2D has been found that is expected to predict sphericity values well for679

a wide range of particles, provided that enough particles are measured.680

Confirmation experiments with a broader set of particles are planned in681

the future.682

The dataset, as provided in the supplementary data, offers the possi-683

bility to discover numerous correlations and insights regarding geometric684

measures and shape factors, as well as their relationships across two and685
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three dimensions. We encourage researchers to use the dataset for their686

research questions and to shed light into questions that had long been687

obscured by computational complexity.688

Supplementary Data689

Supplementary files are available in the Open Access Repository and690

Archive for Research Data of Saxon Universities (OPARA):691

https://doi.org/10.25532/OPARA-479692

Supplementary files enable users to reproduce imaging datasets as used693

in this study and demonstrate the methods for acquisition of all particle694

characteristics for an example particle. Particle STL files and the resulting695

dataset tables are included. Note that you need a working Python setup696

and that all code is made available as Jupyter notebooks.697
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