
PRIORITIZING URBAN AREAS FOR THE DEPLOYMENT OF1

HYPER-LOCAL FLOOD SENSORS USING STAKEHOLDER2

ELICITATION AND RISK ANALYSIS3

Riccardo Negri1, Luis Ceferino2, and Gemma Cremen3
4

1PhD Candidate in Urban Systems, Civil and Urban Engineering Department, New York5

University. Email: r.negri@nyu.edu6

2Civil and Environmental Engineering, University of California, Berkeley7

3Civil, Environmental, and Geomatic Engineering Department, University College London8

ABSTRACT9

New urban monitoring networks with low-cost sensors can measure hyper-local floods in real-10

time in hundreds of locations. These novel networks promise enhanced flood risk management,11

especially within cities where floods can be extremely local. However, current sensor deployment12

strategies rely on limited metrics (e.g., proximity to densely populated areas) and do not adequately13

account for the various potential monitoring uses and stakeholders (e.g., emergency responders,14

critical infrastructure managers, and researchers). Thus, cities have no methodological framework15

to compare the holistic benefits of deploying new hyper-local sensors in different areas. To address16

this gap, we develop a framework to prioritize urban areas for sensor deployment based on potential17

uses for enhanced flood risk management and the exposure of infrastructure and community to high18

flood hazards at micro-urban scales. This framework includes (1) obtaining stakeholder feedback19

on the potential uses of sensors and relevant metrics for decision-making on their deployment,20

(2) quantifying these metrics with publicly available data to integrate them with flood hazard21

information through probabilistic risk analysis, and (3) combining the metrics to identify areas to22

be prioritized for sensor deployment. We tested the framework with a case study in New York City,23
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a densely populated urban area with highly heterogeneous communities and infrastructure exposed24

to high flood hazards. Through elicitation with 45 local stakeholders, we identified 32 potential25

uses and 58 metrics to prioritize areas for sensor deployment covering flood risk management,26

the welfare of residents, and the protection of critical infrastructure (e.g., transportation, drainage,27

and energy). Overall, the proposed framework and case study offer new insights into how modern28

monitoring networks can help to enhance flood disaster risk management in cities.29

INTRODUCTION30

Rapid urbanization and the changing climate have exacerbated flooding for many cities (Dav-31

enport et al. 2021). For example, in 2021 alone, New York City experienced two unprecedented32

flooding events that paralyzed the city, inundating numerous subway stations and killing 13 people33

(Plumer 2021; Newman 2021): on September 1st, Hurricane Ida delivered 3.15 inches of rain34

within an hour, surpassing the prior record of 1.94 inches set by Tropical Storm Henri only ten days35

before.36

Flood monitoring is crucial for flood risk mapping, flood model validation, and flood damage37

assessment activities in cities (School 2018; Sarchani et al. 2020; Chen et al. 2021). Traditional38

approaches for recording flood hazards include stream gauges and field inspections for watermarks39

(Sarchani et al. 2020). However, these methods lack the scalability and accuracy to monitor urban40

floods effectively. For example, stream gauges are designed for use along river lines rather than41

inland areas within cities (Krabbenhoft et al. 2022). Watermarks indicate maximum flood depths42

and can sometimes be taken within cities, but the locations where such (often inaccurate) marks43

are preserved are extremely limited (Gardner et al. 2023).44

Modern techniques for flood monitoring can significantly improve the coverage of urban flood45

measurements. For instance, remote sensing networks, which use satellite sensors, can provide46

measurements for entire cities with a resolution of less than 10 meters (Chawla et al. 2020). Due47

to their large coverage, these networks have been successfully used for monitoring hydrologic48

parameters in coastal cities and evaluating the impact of urbanization on flood risk (Bhatt and49

Srinivasa Rao 2018; Munawar et al. 2022). However, the high spatial resolution of these networks50
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is offset by a relatively low temporal resolution of approximately one day in the best cases (Chawla51

et al. 2020), which precludes them from capturing severe, short-duration floods that often occur52

in cities (Alipour et al. 2020). In addition, the accuracy of remote sensing in dense cities can53

be affected by buildings that obstruct satellite measurements of the ground (Mason et al. 2012;54

Giustarini et al. 2013).55

An emerging flood monitoring technique offers opportunities to address the shortcomings of56

remote sensing in cities. These networks consist of multiple low-cost sensors installed throughout57

city streets and sidewalks to measure floods in real-time at large urban scales (Figure 1). Examples of58

such “urban flood monitoring networks” include FloodNet in New York City (NYC) and StormSense59

in Hampton Roads, Virginia (Loftis et al. 2018; Silverman et al. 2022; Mydlarz et al. 2024).60

FloodNet presently operates ∼ 85 sensors in NYC; this number will reach 500 by 2027 as part of a61

$7.2 million project funded by the city to increase climate resilience (Waraich 2023). These sensors62

measure water depth with ±5mm precision at one-minute intervals. During Hurricanes Henri and63

Ida in 2021, the sensors recorded remarkably rapid changes in water depths of almost three feet in64

less than an hour; see Figure 1 (FloodNet 2024). However, urban flood monitoring networks are65

limited in spatial coverage compared to remote sensing, as floods are only measured at locations66

where sensors are deployed. Thus, they require cities to develop a strategy for deploying (a limited67

set of) sensors that maximize network effectiveness in flood risk management.68

Methods to evaluate sensor placement for collecting data on natural hazards have either focused69

on a single criterion such as hazard intensity (Krause et al. 2008; Wu et al. 2012; Du et al.70

2014; Chang et al. 2019; Yu et al. 2022) or adopted multiple metrics that capture a broader71

representation of risk, like proximity to critical infrastructure and social vulnerability (Sun et al.72

2018; Sun et al. 2019; Tien et al. 2023). These methods have two main limitations: (1) they fail to73

account for multiple potential users and uses of a monitoring network (e.g., government agencies74

for monitoring critical infrastructure, researchers for improving knowledge of hyper-local hazards,75

the general public for receiving real-time hazard alerts, etc.); and (2) their analysis is not explicitly76

informed by formal risk quantification, which requires combining spatial information on hazard77
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Fig. 1. A depiction of a typical FloodNet sensor (left) alongside sample data (right) demonstrating
typical sensor performance during a flooding event. The lead author took the sensor picture from
NYC streets. The picture does not imply that NYC officers or the FloodNet project endorse this
study’s results.

with metrics related to exposure and vulnerability.78

We propose a framework for decision-making on low-cost sensor deployment in urban flood79

monitoring networks that addresses these two gaps. First, our framework identifies potential80

stakeholders of the monitoring network, to determine a comprehensive list of its various uses and81

establish a corresponding set of suitable metrics for evaluating potential sensor locations. Second,82

the framework integrates these metrics with flood hazard information in a probabilistic risk analysis83

to determine the likelihood and severity of flood impacts (e.g., expected annual number of flooded84

hospitals) across different urban areas. The result is a novel risk-informed, stakeholder-oriented85

spatial mapping of areas that should be prioritized for sensor deployment.86

FRAMEWORK TO PRIORITIZE URBAN AREAS FOR SENSOR DEPLOYMENT87

The proposed framework, outlined in Figure 2, comprises three stages. The first stage involves88

stakeholder elicitation to explore potential uses of the network and identify suitable metrics for89

evaluating sensor locations in terms of these uses. The second stage involves a flood risk analysis90

that combines the identified metrics with flood hazard models, enabling sensor deployment locations91

to be considered in the context of possible flood impacts. Stage three evaluates trade-offs between92

the metrics to investigate how the sensors can best be deployed to serve their multiple potential93
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Fig. 2. Overview of the three-stage framework to prioritize flood sensor deployment areas through
stakeholder elicitation, risk analysis, and metric combination and tradeoff analysis.

uses.94

Stage 1: Stakeholder Elicitation95

Stakeholder elicitation is an established method to systematically gather inputs and perspectives96

from relevant parties affected by a specific issue or project (Reed 2008). This stage of the framework97

has three main goals: (1) identify various flood risk management uses for the data generated by98

the monitoring network, (2) define a set of corresponding metrics that can be used to evaluate99

sensor locations according to these uses, and (3) include specific metrics that focus on particularly100

vulnerable communities with lower capacity to cope and recover from flooding disasters, e.g.,101

because of lower income (Dow and Cutter 2006; Flanagan et al. 2011). The stakeholder elicitation102

stage occurs in three phases:103

Stakeholder Identification104

We followed the principles of stakeholder analysis to define a two-step process for determining105

relevant stakeholders (Gilmour and Beilin 2007; Pouloudi and Whitley 1997). The first step involves106

brainstorming a preliminary list of uses to identify an initial set of stakeholders. These stakeholders107
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are then consulted to determine further potential uses and associated stakeholders.108

We identified four key stakeholder categories from the literature on disaster risk management109

and hazard monitoring (Mojtahedi and Oo 2017; Rabinovici et al. 2022; Mojtahedi and Oo 2017;110

Fontainha et al. 2017; Cremen and Galasso 2021; Cremen et al. 2022; Webster et al. 2022):111

government agencies, research institutions, the private sector, and resident representatives. The112

last category refers to individuals who could speak or act on behalf of their community. While113

non-exhaustive, these stakeholder categories are key in risk management processes for natural114

hazards (Scolobig et al. 2014). These categories, which can be further refined into sub-categories115

or specific entities, can be used to determine the preliminary list of stakeholders.116

Elicitation of Uses and Metrics117

Next, stakeholder feedback is collected through the following three overarching questions:118

1. “How and when would you use flood sensor data to help you in your duties before, during,119

or after floods?”120

2. “What metrics could help prioritize the location of flood sensors according to your needs?”121

3. “What social vulnerability metrics and related factors should also be considered when decid-122

ing on flood sensor placements?”123

The stakeholder elicitation process must follow established guidelines (Chambers 2002; De-124

partment for International Development 2002; International Association for Public Participation125

2004; Reed 2008; Knol et al. 2010; Wates 2014; Hemming et al. 2018; Rabinovici et al. 2022).126

For example, the workshops should be conducted in person where possible, to promote an effective127

exchange of ideas and foster discussion among participants (Rabinovici et al. 2022). The number128

of participants should be limited to 40-50 to allow enough time for everyone to share their views.129

Participants can further be divided into smaller working groups (e.g., ∼ five people (Chambers130

2002)) to promote richer discussions and interactions (Wates 2014). Workshops must be guided131

by moderators who clearly explain the workshop’s goals and format and record the outputs of132

discussions using a visible medium (e.g., a whiteboard).133
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Following Rabinovici et al. (2022), stakeholders should spend 5 to 10 minutes independently134

formulating their responses to each question, which are then shared with the wider (working) group135

to develop a set of collective insights. These insights are used to define interim sets of Use-Case136

Metrics, (addressing question two) and Social Vulnerability Metrics (addressing question three).137

An example of a Use-Case Metric could be the volume of vehicular traffic on roads and highways,138

corresponding to the use of sensors in helping a local transportation department monitor traffic139

during flooding. An example of a Social Vulnerability Metric could be the income to indicate140

neighborhoods with low resources and likely disproportionately impacted by floods (Lee et al.141

2022; Sanders et al. 2023).142

The stakeholder analysis literature suggests that convening resident representatives and govern-143

ment agencies together in a single workshop could lead to more reserved and less open discussions,144

due to competing expectations and demands (Gilmour and Beilin 2007; Yu and Leung 2018;145

Blázquez et al. 2021). For example, government agencies might fear upsetting resident representa-146

tives, potentially leading to political repercussions. It is therefore recommended that the elicitation147

workshops are conducted in two rounds: (1) an initial round consisting of one workshop for resident148

representatives and another for the remaining stakeholder categories, and (2) a second combined149

workshop that is used to finalise the set of metrics, reflecting diverse perspectives. In the second150

combined workshop, stakeholder categories should be equally represented regarding participants151

to ensure a balanced outcome (Knol et al. 2010).152

Selection of the Final Set of Prioritization Metrics153

The interim sets of Use-Case Metrics and Social Vulnerability Metrics are refined by requiring154

each participant to select the three most important metrics from each set. These choices are155

indicated on visible media, e.g., using voting dots on a whiteboard. The 𝑛 metrics chosen the156

most from each set are used for further analysis. We define the vector 𝑣𝑣𝑣 ∈ R𝑚 to contain these 𝑚157

metrics. Thus, 𝑚 = 2 · 𝑛 for 𝑛 Use-Case Metrics and 𝑛 Social Vulnerability Metrics. By selecting158

a larger 𝑚, the sensor location decision-making process accounts for a wider range of network uses159

and a broader representation of social vulnerability. However, very large 𝑚 values could cause160

7 Negri, May 15, 2024



problems in a subsequent post-processing activity, as explained in a following section. Finally,161

each stakeholder assigns an importance coefficient (𝛼 𝑗 ) to each of the 𝑚 metrics in both sets, in162

line with their preferences on sensor deployment. The methodology for defining these coefficients163

is detailed in stage three.164

Stage 2: Risk Analysis165

This stage combines the metrics output from the previous stage with flood hazard models that166

account for different flood types and scenarios, using a probabilistic disaster risk analysis approach167

(Arora and Ceferino 2023b; Arora and Ceferino 2023a; Avraam et al. 2023; Arora and Ceferino168

2024). The results are spatialized sets of sensor deployment prioritization measurements that169

account for flood intensity (i.e., risk values). The stage includes four steps:170

Definition of Geographic Units171

The region of interest A is subdivided into smaller geographic units P = {𝐴𝑖 |𝑖 = 1, . . . , 𝑡},172

where 𝑡 is the number of geographic units that compose the city. A = ∪𝑡
𝑖=1𝐴𝑖 and 𝐴𝑖∩𝐴 𝑗 = ∅,∀𝑖 ≠ 𝑗 ,173

i.e., 𝐴𝑖 are collectively exhaustive and do not overlap. Each 𝐴𝑖 represents one spatial point in the174

risk analysis process and is therefore associated with unique measurements of sensor deployment175

prioritization (risk values). The number of sensors deployed in each geographic unit depends on176

the total number of available sensors 𝑁 compared to 𝑡. If 𝑁 < 𝑡, a single sensor could be deployed177

in each 𝑁 𝐴𝑖 with the highest priority (measured using the 𝐼 (𝐴𝑖) index introduced later). If 𝑁 > 𝑡,178

more sensors could be deployed in higher priority units than those with less importance.179

The size of 𝐴𝑖 is constrained by two factors. The first is the availability and granularity of180

data for each considered metric. Cities may have key urban information recorded at various scales,181

ranging from city blocks to larger administrative boundaries (City of New York 2023; City of182

San Francisco 2023). The second is the level of spatial correlation in flood intensity between183

flood-prone areas; if this is too high between units, there may be redundant locations where sensors184

would record the same information. We can decrease redundancies through methods that maximize185

hazard information as long as sufficient relevant information is available (Krause et al. 2008; Wu186

et al. 2012; Du et al. 2014; Chang et al. 2019; Yu et al. 2022). Without this information, decisions187
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on the size of 𝐴𝑖 in terms of minimizing redundancies can only be judged mainly qualitatively from188

available flood data.189

Definition of Flood Hazards190

The flood hazard data can represent multiple flood types affecting a city, e.g., storm surge,191

pluvial, riverine, and tidal flooding. For each considered flood type 𝑤, we can have different192

spatialized intensity maps (e.g., with flood depths spatial extents) associated with a corresponding193

return period 𝑇 ∈ R+, i.e., the average time interval between occurrences of a flood associated194

with given intensities or larger. Each intensity map for a specific flood type can constitute a flood195

scenario.196

To represent a flood scenario, we define a function 𝑔(𝑇) that maps a return period 𝑇 to197

a flooded geographic area F . For each flood type 𝑤, the function 𝑔𝑤 is formally defined as198

𝑔𝑤 : R+ → F , where F represents the set of all flooded areas composed of polygons enclosing199

affected geographical extents. Figure 3 illustrates the interaction between 𝐴𝑖 and 𝑔𝑤 (𝑇) for 𝑇 = 𝑇1200

and 𝑇 = 𝑇1 > 𝑇2 for a generic flood type 𝑤. Note that the area covered 𝑔(𝑇) is monotonically201

increasing, as flood-prone areas identified by F can only remain constant or expand for growing 𝑇 .202

Fig. 3. Example partition of a city into geographic units, denoted as (𝐴𝑖), and illustration of the
function 𝑔𝑤 (𝑇) that represents the spatial extent of flooding for varying return periods and a generic
flood type 𝑤.

For each geographic unit 𝐴𝑖 ∈ P and each considered flood type 𝑤, we then define a Bernoulli203
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random variable 𝐵𝑤 (𝐴𝑖) representing whether a flood occurs or not any given year for the considered204

flood type 𝑤. 𝐵𝑤 (𝐴𝑖) can take a value of 1 with probability 𝑝(𝐴𝑖 ∩ 𝑔𝑤 (𝑇) ≠ ∅), i.e., the probability205

that the geographic unit intersects with the flood scenario with return period𝑇 , or 0 with probability206

1 − 𝑝(𝐴𝑖 ∩ 𝑔𝑤 (𝑇) ≠ ∅). Under Poisson assumptions,207

𝑝(𝐴𝑖 ∩ 𝑔𝑤 (𝑇) ≠ ∅) = 1 − 𝑒−1/𝑇∗
𝑤 (𝐴𝑖) , (1)208

where 𝑇∗
𝑤 (𝐴𝑖) = min{𝑇 | 𝐴𝑖 ∩ 𝑔𝑤 (𝑇) ≠ ∅}. In other words, 𝑇∗

𝑤 (𝐴𝑖) is the minimum return period209

for which 𝐴𝑖 experiences flooding for flood type 𝑤. 𝑇∗
𝑤 (𝐴𝑖) is determined by investigating the set of210

flood scenario data of flood type 𝑤 available for the city of interest; these data are now accessible211

for many geographic regions and multiple return periods (Wing et al. 2023).212

While 𝑇 ∈ R+ is continuous, often flood hazard data may be only available for a few return213

periods. In that case, we can still use the same formulation presented in this paper. For example, if214

only maps for two return periods are available, like in Figure 3, the function 𝑔𝑤 (𝑇) can be defined215

as follows:216

𝑔𝑤 (𝑇) =



∅ for 0 ≤ 𝑇 < 𝑇1,

F (𝑇1) for 𝑇1 ≤ 𝑇 < 𝑇2,

F (𝑇2) for 𝑇 ≥ 𝑇2.

(2)217

For 𝐴3, 𝐴4 and 𝐴5, the minimum return period causing flooding is 𝑇1 (i.e., 𝑇∗
𝑤 (𝐴3) = 𝑇∗

𝑤 (𝐴4) =218

𝑇∗
𝑤 (𝐴5) = 𝑇1). 𝐴6 and 𝐴7 start becoming flooded for 𝑇2 (i.e., 𝑇∗

𝑤 (𝐴6) = 𝑇∗
𝑤 (𝐴7) = 𝑇2). 𝐴1 and 𝐴2219

do not experience flooding at 𝑇2 (i.e., 𝑇∗
𝑤 (𝐴1) = 𝑇∗

𝑤 (𝐴2) = +∞ in the absence of additional flood220

scenarios with 𝑇 > 𝑇2).221

Characterization of Metrics222

Given 𝑣𝑣𝑣 ∈ R𝑚 (output from the stakeholder elicitation stage), we define a corresponding223

vector 𝑣𝑣𝑣(𝐴𝑖) that represents values of the 𝑚 metrics for each 𝐴𝑖. Note that 𝑣 𝑗 (𝐴𝑖) values for Social224

Vulnerability Metrics are scaled by the number of residents living in 𝐴𝑖 to also account for exposure.225

10 Negri, May 15, 2024



Quantifying Risk226

This step computes an expected annual value 𝑉𝑉𝑉 (𝐴𝑖) corresponding to 𝑣𝑣𝑣(𝐴𝑖). Considering a227

specific flood type 𝑤, the expected annual value𝑉𝑉𝑉𝑤 (𝐴𝑖) is calculated as follows:228

𝑉𝑉𝑉𝑤 (𝐴𝑖) = E[𝑣𝑣𝑣(𝐴𝑖) · 𝐵𝑤 (𝐴𝑖)] = 𝑣𝑣𝑣(𝐴𝑖) ·
(
1 − 𝑒−1/𝑇∗

𝑤 (𝐴𝑖)
)

(3)229

We consider multiple flood types independent and that damage from multiple floods is cumu-230

lative. Thus, the expected value of the sum of the effects of each flood type is the sum of the231

individual expected values:232

𝑉𝑉𝑉 (𝐴𝑖) = E
[∑︁

𝑤

(𝑣𝑣𝑣(𝐴𝑖) · 𝐵𝑤 (𝐴𝑖))
]
= 𝑣𝑣𝑣(𝐴𝑖) ·

∑︁
𝑤

(
1 − 𝑒−1/𝑇∗

𝑤 (𝐴𝑖)
)

(4)233

For example, consider a hypothetical metric 𝑣1 (e.g., “Number of residential buildings”).234

Assume that the geographic unit 𝐴𝑖 contains 100 such buildings (i.e., 𝑣1(𝐴𝑖) = 100), and the235

minimum return periods causing flooding in 𝐴𝑖 are 𝑇∗ = 100 years for flood type 1 (e.g., storm236

surge), and 𝑇∗ = 10 years for flood type 2 (e.g., riverine). The expected annual number of at-risk237

residential buildings in 𝐴𝑖, 𝑉1(𝐴𝑖), is then computed as:238

𝑉1(𝐴𝑖) = 100 ·
[(

1 − 𝑒−1/100
)
+
(
1 − 𝑒−1/10

)]
= 10.5

Stage 3: Combination of Metrics and Tradeoffs Between Deployment Areas239

Metrics are considered simultaneously by combining them into a unique index 𝐼 (𝐴𝑖) that is240

calculated in two steps. The first involves defining the 𝛼 𝑗 importance coefficients at the end of the241

stakeholder elicitation process. These coefficients are then used to scale normalised versions of242

each metric and the results are linearly combined to produce 𝐼 (𝐴𝑖).243

Quantifying the Relative Importance of Different Metrics244

The importance coefficients are determined using the Analytical Hierarchy Process (AHP)245

(Saaty 1987). This process is chosen for its ability to systematically decompose complex problems246
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into manageable sub-problems and its consistency-check mechanism that ensures the reliability of247

decision-maker judgments. Importance coefficients for Use-Case Metrics and Social Vulnerability248

Metrics are defined separately because each set has different objectives. Use-case metrics center249

on the practical purposes of sensor data for different stakeholders (e.g., monitoring infrastruc-250

ture, enhancing flood understanding, whereas Social Vulnerability Metrics focus on vulnerable251

populations.252

AHP consists of pairwise comparisons of metric ℎ against 𝑘 , assigning a score from one to nine253

to indicate their relative importance. A score of one means both metrics are equally important.254

A score of two for metric ℎ suggests it is slightly more important than 𝑘 , while a score of nine255

indicates a significant importance difference. Scores between these values represent varying levels256

of relative importance. The AHP scores are assigned to a matrix, where cell ℎ, 𝑘 indicates the257

relative importance of metric ℎ compared to 𝑘 , and cell 𝑘, ℎ stores the reciprocal value. According258

to the established AHP methodology, this matrix’s principal eigenvector components provide the259

𝛼 𝑗 importance coefficients assigned to each metric (Saaty 1987). Note that AHP decreases in260

reliability when the number of considered metrics exceeds approximately 7 to 9 (Saaty 1987),261

which constrains the value of 𝑚.262

Each participant (stakeholder) performs AHP individually, using printed tables or software.263

Individual AHP matrices are assessed using the Consistency Ratio (CR), an index that evaluates264

the coherence of the pairwise comparisons. Only matrices with a CR of less than 0.10 are retained265

according to the recommendations outlined in (Saaty 1987). 𝛼 𝑗 for each metric is then quantified266

as the geometric mean of the corresponding principal eigenvector component associated with each267

valid matrix.268

We denote as 𝛼𝛼𝛼 ∈ R𝑚 the vector containing the importance coefficients associated with each269

metric in 𝑣𝑣𝑣(𝐴𝑖). The first 𝑛 entries of𝛼𝛼𝛼 represent importance coefficients for the Use-Case Metrics,270

and the remaining 𝑛 entries denote the importance coefficients for the Social Vulnerability Metrics.271
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Combining Metrics into a Unique Index272

The metrics are first normalized to a comparable scale because they are typically expressed in273

various units, e.g., annual average daily traffic on roads, and number of subway stations. Normal-274

ization methods that can be employed include Percentile normalization (transforming metric values275

to percentiles), Min-max scaling (rescaling data to a 0–1 range), and Standardization (modifying276

data to achieve a mean of 0 and a standard deviation of 1) (Saisana et al. 2005). We then calculate277

𝑉𝑎 (𝐴𝑖) and 𝑉𝑏 (𝐴𝑖) as278

𝑉𝑎 (𝐴𝑖) =
𝑛∑︁
𝑗=1

𝑉 𝑗 (𝐴𝑖) · 𝛼 𝑗 (5)279

280

𝑉𝑏 (𝐴𝑖) =
𝑚∑︁

𝑗=𝑛+1
𝑉 𝑗 (𝐴𝑖) · 𝛼 𝑗 (6)281

where 𝑎 corresponds to the Use-Case Metrics, 𝑏 corresponds to the Social Vulnerability Metrics282

and 𝑉 𝑗 (𝐴𝑖) denotes normalized values. Then:283

𝐼 (𝐴𝑖) = 𝛾 · 𝑉𝑎 + (1 − 𝛾) · 𝑉𝑏 (7)284

where 𝛾 ∈ [0, 1] represents the relative importance of Use-Case Metrics over Social Vulnerability285

Metrics (such that 𝛾 = 0.5 denotes equal importance). 𝛾 could also be determined through286

stakeholder elicitation.287

𝐴𝑖 with the highest 𝐼 (𝐴𝑖) values should be prioritized in terms of sensor deployment. The288

precise placement of sensors within each 𝐴𝑖 can be based on the individual metrics contributing289

more to 𝐼 (𝐴𝑖), e.g., close to critical infrastructure if this metric contributes substantially. Ideally,290

high 𝐼 (𝐴𝑖) values should be sense-checked against any available ground-truth data (e.g., field291

survey, satellite imagery) to ensure they adequately reflect actual flood risk conditions.292

CASE STUDY IN NEW YORK CITY293

We chose NYC as a proof-of-concept case study of the proposed framework for four main294

reasons. First, NYC provides abundant publicly accessible data for implementing the proposed295

13 Negri, May 15, 2024



framework. Second, the city faces significant flood risks due to its densely populated nature,296

vulnerable infrastructure, and heterogeneous social groups. Third, NYC has several initiatives for297

reducing flood impacts, including the FloodNet urban flood monitoring network. Our case study298

focuses on deploying these sensors in the city, but we want to note that the actual sensor deployment299

strategy of FloodNet differs from what is presented in this paper. Fourth, many authors of this paper300

are or were based in NYC and could, therefore, leverage local connections to recruit stakeholders301

for this study.302

Stage 1: Stakeholder Elicitation303

Stakeholder Identification and Elicitation Process Set Up304

The stakeholder elicitation process consisted of a single workshop involving the following305

stakeholder categories: government agencies, research institutions, and the private sector. We306

classified government agencies into two primary categories: those engaged in emergency response307

(e.g., the Fire Department) and those overseeing various public services and infrastructure. In terms308

of the latter, we distinguished between agencies responsible for infrastructure directly related to flood309

risk mitigation (e.g., the Department of Environmental Protection) and those managing other types310

of infrastructure (public services) that could potentially be impacted by natural hazards (e.g., the311

Departments of Transportation, Parks, Housing, Sanitation, Education). Research institutions were312

divided into two sub-categories: (1) academic research institutions consisting of universities; and313

(2) non-academic research institutions that include governmental research institutions specializing314

in flood studies (e.g., the National Oceanic and Atmospheric Administration), community-based315

initiatives on flood data collection (e.g., the Community Flood Watch Project (com 2023)), and316

private entities focused on flood risk assessment and modeling (e.g., the First Street Foundation (fir317

2023)). We included private sector stakeholders through catastrophe (re)insurance companies and318

civil engineering consultancies engaged in flood mitigation.319

The refined stakeholder classifications were used to recruit stakeholders for the workshop.320

Potential participants were targeted from the authors’ network and were contacted three months321

before the event. We extended workshop invitations to 74 stakeholders that represented each322
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TABLE 1. Information on participants involved in the stakeholder elicitation process .

Category Number Subcategory Number

Government agencies 16 (37%) Emergency response 25%
Non-emergency response 75%

Research institutions 23 (50%) Academic 90%
Non-academic 10%

Private sector 6 (13%) Insurance 67%
Civil Engineering consultants 33%

stakeholder category in the following proportions: 43% (research institutions), 41% (government323

agencies), and 16% (private sector). Given the proof-of-concept nature of the case study, our324

priority was to maximize stakeholder participation rather than to achieve a balanced representation325

of stakeholder categories. 45 stakeholders ultimately participated in the workshop; their distribution326

across stakeholder categories is detailed in Table 1.327

The workshop was held at the New York University in a conference room with 8-chair tables,328

whiteboards, and a large screen. Groups, each with six to seven stakeholders randomly mixed329

together in terms of stakeholder category, were arranged at eight tables. Adhesive voting dots were330

provided for the voting activity required to select the final prioritization metrics. Paper tables were331

used to facilitate the pairwise comparisons of the AHP process. Note that stakeholders did not332

discuss how metrics could be quantified during the workshop (e.g., in terms of absolute numbers or333

percentages) or consider data availability. These issues were addressed in stage two (risk analysis).334

Answers to Question #1: How and when would you use the flood sensor data to help you in your335

duties before, during, or after floods?336

Thirty-two potential uses of sensor data were discussed. These uses can be broadly categorized337

as follows: (1) emergency response and recovery planning; (2) infrastructure and public service338

management; (3) flood risk awareness; and (4) improving the characterization of flood hazard and339

risk. (See Supplementary Information for a complete list of the 32 uses, organized by category).340

For example, regarding the first category, it was identified that sensor data could be used during the341

emergency phase to direct rescue and relief operations to the most affected areas, ensuring timely342
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and effective aid. Sensor data could also be used in the post-event recovery period as a proxy for343

assessing damage and informing strategic resource allocation for cleanup, repairs, and community344

support.345

For the second category, it was identified that sensor data could be used to evaluate the346

effectiveness of green infrastructure projects by monitoring the rate at which they absorb or redirect347

rainfall or assess the performance of stormwater systems by measuring flow and capacity during348

various weather conditions, for example. The data could also pinpoint flood-prone areas as part349

of infrastructure planning activities, guiding flood defense investment decisions. Furthermore,350

sensor data could be useful for managing infrastructure unrelated to flood mitigation. The data351

could help inform decision-making (e.g., prompt preemptive shutdowns or flood barriers) for352

essential facilities, such as wastewater and energy infrastructure, public services (e.g., garbage353

collection, snow-plowing, education), and transportation (e.g., bus services, metro stations) affected354

by flooding.355

Concerning the third category, dissemination of sensor data through various channels (e.g.,356

media, in-person education workshops, reports, etc.) could play an important role in conveying357

the extent of previous local floods to residents, increasing their awareness of flood risk. Residents358

could use sensor data as evidence of flooding to support applications for post-storm financial359

assistance, receive financial aid for building upgrades related to flood-risk mitigation, and advocate360

for receiving public funding for flood-risk protection and mitigation infrastructure.361

As for the fourth category, sensor data could be used to empirically refine the parameters362

of hydrologic and hydraulic models (e.g., the catchment runoff coefficient, soil permeability and363

infiltration rates, drainage system capacity), and quantify spatial and temporal correlations in364

flood intensities. Information on past floods could also help property buyers to more rigorously365

account for flood risk when assessing real estate values (Rajapaksa et al. 2016). Private insurers366

and government agencies involved in flood risk assessment and insurance provisioning (e.g., the367

Federal Emergency Management Agency in the US) could use sensor data to identify insurance368

gaps related to flood protection (e.g., determine neighborhoods with flood exposure but no flood369
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insurance, or where flood risk is underestimated). Sensor data can also be used by insurers as a370

trigger for parametric insurance policies (Lin and Kwon 2020), which provide payouts based on the371

occurrence of predefined conditions related to an event, such as the exceedance of a certain flood372

depth.373

Answers to Question #2: ‘What metrics could help prioritize the location of flood sensors according374

to your needs?”375

Workshop participants identified 23 Use-Case Metrics in Question 2 (See Supplementary376

Information for a full list). Some metrics relate to more than one of the use cases determined in377

response to Question 1. For instance, “Number of basement dwellings” could correspond to the378

use of sensor data in either helping emergency responders direct rescue operations toward areas379

with a higher prevalence of such dwellings or raising flood awareness for residents living in these380

dwellings. Several metrics focus on using sensor data for infrastructure management, e.g., “Number381

of flood mitigation infrastructure projects” and “Number of critical infrastructure facilities”. Metrics382

related to raising flood awareness include “Number of buildings without flood insurance”. Metrics383

associated with enhancing the characterization of flood hazard include “Number of citizen-reported384

flood incidents” and“Number of applications for post-flood assistance”. These metrics could help385

identify flood-prone areas in the absence of flood models. They could also be used to benchmark386

and, therefore, improve the accuracy of flood models, where available (Negri et al. 2023).387

Answers to Question #3: “What social vulnerability metrics and factors should be considered when388

deciding on flood sensor placements?”389

Workshop participants identified 35 Social Vulnerability Metrics in addressing Question 3390

(see Supplementary Information for a full list of these metrics). Three of the identified metrics391

are well-established indices. The most well-known one is the Social Vulnerability Index (SVI),392

which assesses the resilience of communities under external stresses, such as disasters or other393

emergencies. Several versions of SVI exist in the literature, such as the Centers for Disease394

Control and Prevention / Agency for Toxic Substances and Disease Registry’s (CDC/ATSDR) SVI395

(Flanagan et al. 2011), and the SVI developed by (Dow and Cutter 2006). The other two indices396
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TABLE 2. The eight Use-Case Metrics that received the highest number of votes

METRIC
NUMBER

METRIC DESCRIPTION

𝑣1 Number of critical infrastructure facilities (e.g., energy, communications, wastewater
facilities)

𝑣2 Number of buildings not compliant with updated building code regulations
𝑣3 Vehicular and foot traffic along (private and public) transportation routes
𝑣4 Level of uncertainty in flood model predictions (e.g., mismatch between flood reports

and modeled flooding)
𝑣5 Number of bus and subway stations
𝑣6 Number of flood mitigation infrastructure projects (e.g., green infrastructure)
𝑣7 Number of polluted sites (e.g., brownfield land)
𝑣8 Historical number of flood insurance claims

identified are the Environmental Protection Agency’s Environmental Justice Index (EJI) ((EPA)397

2023) and the NYC Displacement Risk Index (NYCDCP 2023). EJI assesses the environmental398

burden and vulnerability of communities, focusing on exposure to pollutants and health risks. The399

NYC Displacement Risk Index evaluates the risk of residents being involuntarily displaced due to400

rising housing costs, eviction, or redevelopment.401

The complete set of identified Social Vulnerability Metrics was subsequently organised into402

four categories: (1) Socio-economic and Demographic factors, (2) Access to Public Services and403

Infrastructure, (3) Community Engagement, and (4) Risks from Compounding Hazards., which404

align with those identified in previous studies on social vulnerability and natural hazards (Cutter405

et al. 2010; Finch et al. 2010; Dow and Cutter 2006; Garbutt et al. 2015; Daniel et al. 2022; Englund406

et al. 2023).407

Selection of the Final Set of Prioritization Metrics408

Workshop participants voted to determine the eight Use-Case Metrics and eight Social Vulner-409

ability Metrics to be used for prioritization; see Tables 2 and 3 (i.e., 𝑚 = 16).410
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TABLE 3. The eight Social Vulnerability Metrics that received the highest number of votes

METRIC
NUMBER

METRIC DESCRIPTION

𝑣9 Social Vulnerability Index
𝑣10 Number of essential public services (e.g., schools, markets, evacuation centers) per

capita
𝑣11 Level of compound risk (e.g., from flooding and heat)
𝑣12 Level of social isolation/civil capacity (e.g., number of senior or community centers

per capita)
𝑣13 EPA Environmental Justice Index
𝑣14 Usage of the 311 (Wikipedia contributors 2023) reporting system by residents
𝑣15 Percentage of non-documented households
𝑣16 Median housing costs relative to median household income

Stage 2: Risk Analysis411

Definition of Geographic Units412

We examined the city at the census tract level for three main reasons. First, census tracts are413

defined to be relatively uniform with respect to population characteristics, economic status, and414

living conditions (United States Bureau of the Census 1994). Second, relevant data are available at415

this level of granularity.416

Definition of Flood Hazards417

NYC is exposed to three flood types: storm surge, pluvial flooding, and tidal flooding (Rosen-418

zweig et al. 2013). Separate maps are available for each. The storm surge maps considered in419

this study are those developed by the New York City Panel on Climate Change (NPCC), which420

combine sea level rise projections with FEMA’s 2013 Preliminary Work Maps for 100-year and421

500-year return periods (Patrick et al. 2019). The pluvial maps considered are the NYC Stormwater422

Flood Maps (NYC Mayor’s Office of Resiliency 2021), which depict rainfall-induced flood extents423

under current and future climate conditions for a moderate (10-year return period) and an extreme424

(100-year) rain event. The tidal flood maps considered are from NPCC (Patrick et al. 2019), which425

depict current high tide levels. Figure 4 presents two examined flood maps. Tidal flooding is426
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Fig. 4. Storm surge flood map (left) and pluvial flood map (right) for New York City, both
corresponding to a return period of 𝑇 = 100 years. The storm surge map shows areas flooded by
sea water intrusion during a storm surge, typically along coastlines and river mouths. The pluvial
flood map displays flooding from heavy rainfall accumulating on the land surface, which creates a
dispersed pattern across the urban landscape.

assigned a probability of 1 for any given year, given the certainty of high tides occurring multiple427

times yearly.428

Characterization of Metrics429

The characterization process required some of the 𝑚 = 16 metrics to be slightly refined or430

disregarded based on data availability and potential overlaps. Tables 4 and 5 describe the refined431

versions of metrics. The Supplementary Information provides the data sources, types, and the432

quantification method associated with characterized metrics.433

Metrics 𝑣4 and 𝑣14 required more elaborate refinement given their original broad definitions.434

These metrics were quantified based on the number of tax lots, which are individual parcels of land435

defined for property tax purposes (a Census tract contains, on average, 350 tax lots), and information436

on the number of 311 reports. The 311 reports and the tax lot data were then aggregated at the437

census tract level. More specific details on their characterization are provided in the next section.438
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TABLE 4. Characterized Use-Case Metrics

ORIGINAL MET-
RIC

REFINED MET-
RIC

EXPLANATION

𝑣1 – Number of
critical infrastruc-
ture facilities (e.g.,
energy, communi-
cations, wastewater
facilities)

Number of electricity
substations

Electricity substations are examined due to their critical
role in maintaining essential services and economic sta-
bility. Substations are particularly vulnerable to flooding,
as observed during past events (New York City Govern-
ment 2023), leading to widespread power outages affecting
safety, health, and business activities. Sensor data can aid
in the management of these facilities during emergencies,
such as enabling preemptive shutdowns to mitigate dam-
age.

𝑣2 – Number of
buildings not com-
pliant with updated
building code regu-
lations

Number of residen-
tial units in pre-1961
buildings

The NYC 1961 Zoning Resolution is selected as the build-
ing code of interest, due to its regulatory significance
(NYP ). Sensor data can help identify the buildings most
impacted by flooding, facilitating targeted allocation of
restoration resources.

𝑣3 – Vehicular and
foot traffic along
(private and pub-
lic) transportation
routes

Annual Average
Daily Traffic
(AADT) of vehi-
cles along roads and
highways

AADT is used due to the high volumes of vehicular move-
ment in NYC. Sensor data can aid in managing the road
network during flood events, for example, by optimizing
rerouting strategies to prevent congestion.

𝑣4 – Level of un-
certainty in flood
model predictions

Discrepancy between
flood maps and flood
reports: Areas where
flood reports exceed
flood map predictions

Discrepancy between flood maps and reports is used
to measure model uncertainty, highlighting areas where
model predictions used to produce the flood maps do not
match flood occurrences as measured by resident reports.
The characterization of this metric is explained separately.

𝑣5 – Number of bus
and subway stations

Annual Average Rid-
ership (AAR) for sub-
way stations

AAR for subway stations is used, given the significant
damage experienced in subway stations during past flood-
ing events like hurricanes Sandy and Ida. This metric
focuses on stations where service disruptions would im-
pact the largest number of passengers. Sensor data can
help manage the subway network during flooding, for ex-
ample, by facilitating the timely closure of flooded stations
and rerouting of passengers.

𝑣6 – Number of
flood mitigation in-
frastructure projects
(e.g., green infras-
tructure)

Spatial extent of pub-
lic green infrastruc-
ture projects

Green infrastructure projects are a key flood-mitigation
initiative in NYC (Catalano de Sousa et al. 2016; Cul-
ligan 2019; Geberemariam 2017). Sensor data can as-
sist in monitoring the effectiveness of green infrastructure
projects, enabling performance evaluation for future plan-
ning.

𝑣7 – Number of
polluted sites (e.g.,
brownfield lands)

Number of New York
State (NYS) clas-
sified environmental
remediation sites

NYS classifies all polluted sites in a geo-located database
named Environmental Remediation Sites. Flooding can
disperse pollutants, and sensor data can trigger targeted
remediation efforts.

𝑣8 – Historical num-
ber of flood insur-
ance claims

Proxy not included in
the case study be-
cause of lack of data

N/A
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TABLE 5. Characterized Social Vulnerability Metrics

ORIGINAL MET-
RIC

REFINED MET-
RIC

EXPLANATION

𝑣9 – Social Vulnera-
bility Index

Social Vulnerability
Index

No refinements required.

𝑣10 – Number of
essential public ser-
vices (e.g., schools,
markets, evacuation
centers) per capita

Floor area of public
schools per capita

Schools were specifically selected for examination, given
that they often serve as emergency shelters (Long 2017),
implying that areas with ample school space are better
prepared for disasters.

𝑣11 – Level of com-
pound risk (e.g.,
from both flooding
and heat)

No refined version of
the metric is created
due to data unavail-
ability

N/A

𝑣12 – Level of
social isolation/civil
capacity (e.g., num-
ber of senior or com-
munity centers per
capita)

Number of human
service centers per
capita

Human service centers include community centers, em-
ployment centers, and senior centers. The presence of
such services is deemed a reasonable proxy for civil ca-
pacity.

𝑣13 – Environmental
Justice Index

Environmental Jus-
tice Index

No refinements required.

𝑣14 – Usage of the
311 reporting sys-
tem by residents

Discrepancy between
flood reports and
flood maps: Areas
where flood map
predictions exceed
flood reports

Discrepancy between flood map predictions, and actual
flood reports are used to measure the underreporting of
flood events, highlighting areas where fewer reports are
filed despite high risk predicted by flood maps. The char-
acterisation of this metric is explained separately.

𝑣15 – Percentage
of non-documented
households

No refined metric ver-
sion is created due to
data unavailability.

N/A

𝑣16 – Median hous-
ing costs relative
to median house-
hold income

No refined version
of the metric is cre-
ated because it is al-
ready highly corre-
lated with 𝑣9.

N/A
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Quantifying Risk439

Given that data used for characterizing each metric are available at a finer resolution than the440

granularity of the selected 𝐴𝑖 (i.e., census tracts), only spatial elements that intersect with inundation441

on each flood map were used to quantify 𝑉𝑉𝑉 (𝐴𝑖) (and count towards flood exposure) in this case442

study. For instance, take 𝐴𝑖 as Census tract #1003300 in Downtown Manhattan. 𝐴𝑖 contains two443

subway stations referred to as Station A and Station B (Figure 5). Station A and Station B record444

AAR of 5,415,350 passengers and 1,331,778 passengers, respectively. Both stations intersect with445

the 100-year storm surge map (Figures 5a and 5b). Station A intersects the 10-year pluvial flood446

map (see Figure 5c), whereas Station B only intersects the 100-year pluvial flood map (see Figure447

5d). In the absence of tidal flooding, this means that 𝑉5(𝐴𝑖) is computed as448

𝑉5(𝐴𝑖) = AAR(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴) ·
(
1 − 𝑒−1/10 + 1 − 𝑒−1/100

)
+

+ AAR(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐵) ·
(
2 × (1 − 𝑒−1/100)

)
= 595, 725

(8)449

𝑣4 and 𝑣14 were instead quantified as discrepancies between the expected annual number of tax450

lots exposed to flooding (𝑦 calculated analogously to equation 8) and the annual average number451

of flood-related 311 reports (𝑥 calculated using all available data from 2010 to the present) per 𝐴𝑖.452

A linear regression was performed for each pair of 𝑥 and 𝑦 to compute the slope coefficient 𝑚. The453

annual predicted number of flooded tax lots (𝑦̂) is then given by454

𝑦̂ = 𝑥 · 𝑚 (9)455

𝑉4(𝐴𝑖) is then computed as456

𝑉4(𝐴𝑖) =


𝑦̂−𝑦
𝑦̂+1 , if 𝑦 ≤ 𝑦̂

0, if 𝑦 > 𝑦̂

(10)457

𝑉4(𝐴𝑖) can be considered an indicator of flood hazard underestimation. The denominator in458

Equation 10 avoids that areas with many tax lots within flood-prone areas dominate the results. The459

unit constant in the denominator differentiates between tracts with a positive number of reports but460
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(a) Storm surge, 𝑇 = 100 (b) Storm surge, 𝑇 = 500

(c) Pluvial flooding, 𝑇 = 10 (d) Pluvial flooding, 𝑇 = 100

Fig. 5. Map of the NYC subway stations in Census tract #1003300 intersected with flood maps
with different return periods.

no tax lots in flood-prone areas. By adding the unit constant, tracts with more reports are assigned461

higher 𝑉4. 𝑉14(𝐴𝑖) was calculated the same way as 𝑉4(𝐴𝑖) except that 𝑥 and 𝑦 were inverted, such462

that 𝑦̂ − 𝑦 reflects the discrepancy between the number of 311 reports forecasted by the linear463

regression model and the actual number of recorded reports. Larger 𝑉14(𝐴𝑖) may signal potential464

underutilization of the reporting system within the considered community.465

Stage 3: Combination of Metrics and Tradeoffs Between Deployment Areas466

The weights 𝛼 𝑗 obtained during the AHP process were rescaled to sum to one because of the467

dropped metrics. The final values of 𝛼 𝑗 are provided in the Supplementary Information.468
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TABLE 6. The three census tracts in each borough with the highest values of 𝐼 (𝐴𝑖) and the
corresponding metrics that rank within the top quartile.

Borough Ref. on Figure 6 Overall ranking of 𝐼 value Top Quartile Metrics

Manhattan A 41 𝑣2, 𝑣6, 𝑣9

B 6 𝑣2, 𝑣3, 𝑣5, 𝑣9, 𝑣10

C 44 𝑣3, 𝑣4, 𝑣9

Bronx D 67 𝑣2, 𝑣3, 𝑣9

E 20 𝑣9, 𝑣12

F 90 𝑣2, 𝑣10, 𝑣12

Queens G 4 𝑣2, 𝑣3, 𝑣4, 𝑣10, 𝑣12

H 1 𝑣2, 𝑣3, 𝑣9, 𝑣13

I 3 𝑣1, 𝑣2, 𝑣12, 𝑣13, 𝑣14

Brooklyn J 13 𝑣2, 𝑣3, 𝑣13

K 12 𝑣2, 𝑣3, 𝑣6, 𝑣14

L 5 𝑣2, 𝑣7, 𝑣10, 𝑣12

Staten Island M 28 𝑣2, 𝑣3, 𝑣6, 𝑣12, 𝑣13, 𝑣14

N 2 𝑣2, 𝑣3, 𝑣6, 𝑣13

O 8 𝑣2, 𝑣3, 𝑣13, 𝑣14

Combining Metrics into a Unique Index469

To compute𝑉𝑎 (𝐴𝑖) and𝑉𝑏 (𝐴𝑖) (Equations 5 and 6), each metric was normalized using percentile470

normalization. 𝐼 (𝐴𝑖) was then calculated for 𝛾 = 0.50 (Figure 6). We assigned to 𝛾 the value of471

0.50 because the relative importance of Use-Case Metrics and Social Vulnerability Metrics was472

not investigated during the stakeholder elicitation process.473

We analysed individual metrics for the three census tracts in each NYC borough with the highest474

𝐼 (𝐴𝑖) (denoted using letters A to O in Figure 6), in terms of their quartile values. Table 6 provides475

the metrics that rank in the top quartile for each 𝐴𝑖.476

Each metric features in at least one row of Table 6, demonstrating the effectiveness of 𝐼 in477

collectively capturing the metrics. Multiple metrics rank in the top quartile for each 𝐴𝑖 in Table 6,478

indicating compounding sources of risk. For example, Washington Heights in northern Manhattan,479

labeled B in Figure 6, which faces relatively frequent inundation from pluvial flooding and storm480

surge, is an important vehicular transport junction (annual AADT at risk of 3,000 vehicles), a481
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Fig. 6. Values of the prioritization index 𝐼 across NYC census tracts 𝐴𝑖, for 𝛾 = 0.50. The three
tracts from each borough with the highest 𝐼 (𝐴𝑖) values are highlighted and labeled with letters A to
O. The overlaid image highlights the Census tract labeled as A, which encompasses Riis Houses,
a residential complex of 1191 units dating back to 1949, situated within the 100-year storm surge
flood plain. This tract, known for its high social vulnerability (91st percentile), also includes the
renovated East Side Park, a key green infrastructure project aimed at enhancing flood resiliency.

substantial subway hub (annual AAR at risk of 345,000 passengers), and has a high CDC social482

vulnerability index (exceeding the 90th percentile). Sensors could be deployed in this census tract483

to enable quick decision making on subway closures and the rerouting of vehicular traffic during484

flood events. In addition, socially vulnerable residents of this tract could leverage the sensor data485

to advocate for enhanced resilience measures by the city.486
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Another example is Springfield Gardens in southeastern Queens, labeled I in Figure 6, frequently487

cited by the media for its susceptibility to flooding (Costella 2010; Bisram 2022). This area hosts488

the 146th Avenue electricity substation and 191 pre-1961 residential buildings in flood-prone zones.489

It ranks above the 98th percentile on the Environmental Justice Index for PM 2.5, air toxic cancer490

risk, and the presence of Underground Storage Tanks. Furthermore, it has only 0.03 human service491

centers per 1,000 residents – markedly below the city average of 0.18. The disparity between the492

high number of tax lots in flood-prone areas (191) and the relatively few flood-related 311 reports493

(29 over 13 years) highlights this community’s possible underuse of the 311 reporting system or that494

the worst floods are yet to happen. Deploying flood sensors could enhance real-time monitoring495

at critical infrastructure like the electricity substation and provide accurate flood data for older496

residential buildings. Using sensor data could also address the high social vulnerability of the497

community by informing targeted resilience measures.498

The Use-Case Metric 𝑣7, representing the number of New York State classified environmental499

remediation sites, is referenced only once in Table 6. The specific location, designated as L in Figure500

6, is situated in the Williamsburg neighborhood of Brooklyn. This area includes two environmental501

remediation sites contaminated with substances like toluene, ethylbenzene, xylene, and acetone.502

These chemicals are typical pollutants that can impact soil and groundwater quality and pose risks503

to human health and the environment. In the event of flooding, these substances could disperse,504

highlighting the need for sensor monitoring to aid in planning remediation activities.505

The same census tract also has a low floor area of public schools per capita (metric 𝑣10),506

approximately 0.75 m2 per person, which is below the 20th percentile for the city. Tracts with507

greater public school space per person are less likely to experience educational disruptions, as508

larger facilities can better absorb impacts and serve as emergency shelters during natural disasters.509

Conversely, tracts with lower school space can experience additional social vulnerability.510

Lastly, we note that two Use-Case Metrics consistently appear across nearly all highlighted511

Census tracts in Table 6: 𝑣2 (Number of residential units in pre-1961 buildings) and 𝑣3 (Annual512

Average Daily Vehicular Traffic). This outcome is expected, as buildings and roads are ubiquitous513
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in an urban context.514

SUMMARY AND CONCLUSIONS515

This study proposes a framework to guide the deployment of hyper-local, real-time flood sen-516

sor networks in urban areas, adopting a unique risk-informed, end-user-oriented approach. The517

framework is composed of three stages. The first stage involves stakeholder elicitation, where518

various strategically selected stakeholders (e.g., city agencies, researchers, engineering consul-519

tants, insurers, and residents) provide feedback on how they might use the sensor data and which520

corresponding metrics should be leveraged to determine where to deploy the sensors. The metrics521

gathered from stakeholders fall into two categories: Use-Case Metrics and Social Vulnerability522

Metrics. The former includes metrics directly linked to specific sensor data applications, such523

as monitoring vehicular traffic to safeguard transportation infrastructure during floods. The latter524

pertains to attributes that heighten community vulnerability to natural hazards (e.g., income levels).525

The second stage integrates these metrics in a flood risk quantification process, using probabilistic526

risk analysis to combine data on each metric with flood hazard information. Stage three involves527

the Analytical Hierarchical Process to determine stakeholder preferences for the individual metrics,528

which are used to combine the metrics into a single index that identifies areas to be prioritized in529

terms of sensor deployment.530

A case study demonstration of the framework was conducted for New York City (NYC), focusing531

on a new street-level, real-time flood monitoring network. We engaged with key NYC stakeholders532

across three main categories: government agencies (including emergency responders and public533

infrastructure managers), research institutions, and the private sector (engineering consultants and534

insurers). Stakeholders identified 32 possible uses for flood sensor data that we classified into535

four main categories: emergency response and recovery planning, infrastructure management, risk536

awareness increase, and flood hazard characterization. An important insight from this feedback537

is that real-time sensor data has the potential to inform flood risk management decision-making538

across multiple timescales; it can be used during the emergency phase (e.g., to send early warnings539

to residents), in the aftermath of an event (e.g., to direct relief operations to the most affected areas),540
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and in the longer term (e.g., for infrastructure planning activities).541

The stakeholders then defined 22 Use-Case Metrics, each linked to one or more previously542

identified uses. Infrastructure management and flood hazard characterization emerged as primary543

themes among these metrics, reflecting the strong representation of city officials and researchers in544

our elicitation process. We also observed that the Use-Case Metrics reflected the three core elements545

of a risk-analysis framework: hazard, exposure, and vulnerability. For instance, the "Historical546

number of flood-related emergency response incidents" metric pertains to hazard whereas "Number547

of basement dwellings" primarily corresponds to vulnerability. Other Use-Case Metrics encompass548

many other risk-analysis elements, e.g., “Historical number of flood insurance claims.”. The549

stakeholders further identified 35 Social Vulnerability Metrics. These metrics predominantly550

addressed socioeconomic and demographic factors similar (or equivalent) to established indexes551

such as the Social Vulnerability Index.552

Our proposed index revealed that areas that could be prioritized for sensor deployment in NYC553

are located in both inland and coastal regions. Furthermore, metrics that exhibit consistently large554

values across census tracts with the highest priority include “Number of residential units in pre-555

1961 buildings” and “Annual Average Daily Traffic for vehicular traffic along roads and highways”.556

This finding is expected, as buildings and roads constitute the majority of the urban environment.557

Our case study was not designed to provide a definitive list of NYC areas to be prioritized in558

terms of flood sensor deployment. Instead, it serves two important alternative purposes: first, it559

provides a practical demonstration of the proposed framework, and second, it identifies an initial set560

of stakeholders, use cases, and metrics that can improve current flood sensor deployment strategies.561

Future applications can strengthen our framework’s application case study by including resident562

representatives and more a balanced distribution of participants across other stakeholder categories.563

Despite this limitation, our case study underlines the potential value that this framework could bring564

to the increasingly prevalent challenge of flood risk management decision-making.565
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