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ABSTRACT 

Background  

College readiness is declining, increasing the number of students entering college with low math 

proficiency. These students are historically unable to make progress towards learning 

engineering skills until they’ve completed remedial math coursework and have low retention and 

graduation rates. 

Purpose  

This work describes a pilot study for a trigonometry based first-year engineering course designed 

to improve students’ performance in trigonometry while targeting the improvement of 

metacognition skills with the goal of increasing student success and retention. 

Design/Method  

Twenty-one (21) students were enrolled in the course, which implements a lecture series on 

metacognition skills and lectures designed to apply trigonometry to real-world engineering 

problems. One-semester and cumulative GPA and trigonometry and chemistry course grades 

were compared between the intervention and control groups. The intervention group took the 

Metacognitive Awareness Inventory (MAI) before and after the intervention along with three 

exams with embedded metacognitive monitoring questions throughout the course. All statistical 

analysis was completed in R using appropriate Bayesian statistical methods. 

Results  

Students in the intervention received an A in their trigonometry courses at a higher rate than the 

control group. No significant change was seen in one-semester or cumulative GPA or chemistry 

performance. Improvements in metacognition skills were dependent on content difficulty and 

student preparation for the exams given. 
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Conclusion 

The importance of developing coursework for non-calculus ready students will continue to 

increase. While not all results are statistically significant, additional work is warranted with a 

higher sample size to further examine the non-significant benefits seen in this study.  
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INTRODUCTION 

College readiness is on the decline across the United States, with only 22% of students taking the 

ACT considered college ready in 2022. ACT and SAT average scores have both decreased in 

recent years, with average ACT scores dropping from 20.8 to 19.8 and SAT scores dropping 

from 1068 to 1050 between 2018 and 2022 (ACT Inc., 2022; College Board, 2018, 2022). With 

this decline in college readiness, more students are entering college with a math proficiency 

below the level of Calculus 1. Because most core engineering coursework relies on a math 

proficiency of Calculus 1 or higher, students are often left behind until they can progress far 

enough in the math curriculum to begin engineering courses. This has the potential to turn away 

students who are interested in engineering, forcing them to choose other degree programs where 

they can immediately begin core courses. In addition, retention and graduation rates of students 

who begin an engineering with low math proficiency are significantly lower than their calculus-

ready peers (Jones et al., 2021; Pirkey et al., 2024). With engineering enrollment on the decline 

since as early as 2016 and a demographic cliff arriving in 2025 that is likely to exacerbate the 

enrollment problem, it is imperative that engineering programs find ways to improve enrollment 

and retention in their programs (American Society for Engineering Education, 2021; Schuette, 

2023). 

One approach to improving the outcomes of students is through the development of transferable 

learning skills such as metacognition skills. Metacognition is defined as the knowledge and 

regulation of one’s own thought processes and encompasses metacognitive knowledge and 

experiences, goals, strategies, and the collaborations among these areas (Brown, 1977; 

Cunningham et al., 2015; Flavell, 1979). The successful application and regulation of these areas 
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assists in metacognitive monitoring and is necessary to promote successful strategic learning 

(Dinsmore & Parkinson, 2013).  

Metacognitive monitoring is defined as a student’s real-time analysis and awareness of their 

performance while completing a task and has been linked to academic success in problem-

solving, learning, and performance (Nietfeld et al., 2006; Stanton et al., 2021). A small, but 

growing body of literature shows courses have been developed across engineering disciplines 

and indicates that metacognitive monitoring may be important in engineering problem solving 

(Case et al., 2001; Cunningham et al., 2015; S. Goldberg et al., 2016; S. R. Goldberg et al., 2015; 

L. Santiago et al., 2024). Creating coursework to fill the gap in engineering education for low 

math proficiency students while targeting transferable metacognition skills could prove 

beneficial in improving student success. 

The goal of this study was to develop and implement an intervention course for students enrolled 

in an engineering program with a Trigonometry level math proficiency. The course runs in 

parallel with students’ Trigonometry course and reinforces the skills taught by the math course. 

These skills are then applied directly to engineering examples to connect the concepts to real-

world applications. In addition to the trigonometry course work, a three-lecture series on 

metacognition and self-regulated learning was implemented with the goal of making students 

aware and improving the use of these skills. It is expected that the course will improve students’ 

metacognition and self-regulated learning skills along with their math course performance. 

LITERATURE REVIEW 

Non-Calculus Ready First Year Engineering Students. Engineering programs have 

historically had very low retention rates, with only 50 – 60% of students who begin university as 

an engineering major graduating with an engineering degree within six years (American Society 
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for Engineering Education, 2017; Geisinger & Raman, 2013). These graduation rates drop 

considerably, to between 20% and 45%, when considering students who do not start their 

engineering curriculum at a Calculus 1 or higher math proficiency (Jones et al., 2021; Van 

Dyken et al., 2015; Van Dyken & Benson, 2019).  

Middleton et al. reported that if an engineering student’s first math course was pre-calculus or 

lower, they were less than half as likely to persist past their second year in engineering when 

compared with their peers who took Calculus 1 or higher, with nearly three quarters of students 

leaving their engineering program within 5 years  (Middleton et al., 2014). Our institution reports 

only 50% retention of non-calculus ready students in engineering after two years without 

intervention (Pirkey et al., 2024; Pirkey & Santiago, 2021). While some institutions have created 

coursework geared towards improving the retention of non-calculus ready engineering students, 

many are unprepared to work with this population (Monte & Hein, 2003; Standridge et al., 

2003). As the proportion of non-calculus ready students continues to increase due to the decrease 

in college readiness and math proficiency across the country, it will become imperative that 

institutions implement new courses or changes to their curriculums to serve this population 

(ACT Inc., 2022; College Board, 2022) 

Self-Regulated Learning and Metacognition. Self-regulated learning is defined as “an active, 

constructive process whereby learners set goals for their learning and then attempt to monitor, 

regulate, and control their cognition, motivation, and behavior, guided and constrained by their 

goals and the contextual features in the environment” (Pintrich, 2005). Many models of self-

regulation, such as the one described by Zimmerman, include four phases: goal setting, 

monitoring, control, and reaction and reflection (Pintrich, 2005; Zimmerman, 2000). These four 

phases can then be applied to four areas for regulation: cognition, motivation, behavior, and 
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context and align with various skills and strategies that can aid in the development of self-

regulation. The monitoring of cognition and subsequent regulation of one’s own thought 

processes is known as metacognition and is one of the three elements along with motivation and 

behavior that define self-regulated learning (Zimmerman, 2008).  

Metacognition, and more specifically metacognitive monitoring, occurs through metacognitive 

knowledge, metacognitive experiences, goals or tasks, and actions or strategies. Metacognitive 

knowledge refers to the subset of knowledge a person has about the world, other people’s diverse 

tasks, goals, actions, and experiences, and how they fit into the world. An example of this is a 

student’s held belief that they are not as good at math or science as their classmates. 

Metacognitive experiences are the cognitive and affective experiences one has during intellectual 

activities such as the feeling of not understanding a lecture that was given. Finally, goals and 

tasks refer to the objectives of learning while the actions or strategies refer to the behaviors used 

to achieve those goals. These four phenomena work both independently and collaboratively, and 

learners must effectively regulate the relationships between them to promote strategic learning 

(Flavell, 1979).  

This study focuses on metacognitive knowledge, which is linked to improved academic 

performance by improving students’ abilities to identify appropriate learning strategies, transfer 

knowledge acquired in one setting or situation to another, and identify their own academic 

strengths and weaknesses and adapt accordingly (Pintrich, 2002).In addition, metacognition 

plays an important part in problem solving, a key skillset within engineering (Cunningham et al., 

2015; Jonassen, 2010; Pintrich, 2002). Unfortunately, while a small body of work exists 

exploring the role of metacognition in engineering education, much of the research has been 

done in controlled experimental settings as opposed to inside the classroom and focuses on more 
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generally applicable skills such as reading and oral communication (Case et al., 2001; 

Cunningham et al., 2015; Flavell, 1979; Gafoor. K & Kurukkan, 2016; S. Goldberg et al., 2016; 

S. R. Goldberg et al., 2015; Jonassen, 2010; L. Santiago et al., 2024).  

THEORETICAL FRAMEWORK 

Flavell’s classic paper on metacognition breaks down metacognitive knowledge into three 

primary categories: strategy (strategic knowledge), task (knowledge of cognitive tasks), and 

person (self-knowledge) (Flavell, 1979). These three factors are common features in many 

different metacognition frameworks and interact with and affect one another to shape the 

outcome of learning (Cunningham et al., 2015; Pintrich, 2002).  

Strategic knowledge encompasses all of the tools and general strategies needed for students to 

learn. These strategies are typically general so that they can be applied to a wide variety of 

problems (Cunningham et al., 2015; Flavell, 1979). In addition to having knowledge of the 

various strategies that may be effective in solving a problem, learners also require knowledge of 

various cognitive strategies that may be useful in planning, monitoring, and regulating their 

learning (Pintrich, 2002). Knowledge of these strategies is intertwined with a learner’s 

knowledge of cognitive tasks. 

Knowledge of cognitive tasks first includes the ability to discern the level of difficulty of a task. 

This difficulty may be a result of the amount and quality of available information, the complexity 

of problems, or the cognitive load required to complete a task, such as the difference between 

remembering the main idea of a story and remembering the story word for word (Cunningham et 

al., 2015; Flavell, 1979; Pintrich, 2002). In addition to understanding the difficulty of the 

problem, knowledge of cognitive tasks also includes a knowledge of which learning and 

cognitive strategies are most appropriate for different learning tasks. This can be impacted not 
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only by the task itself, but also by the situational variables affecting the task such as the social, 

cultural, and environmental concerns (Pintrich, 2002). 

Finally, self-knowledge encompasses the beliefs and understandings one has about their own 

learning. First, learners’ held beliefs of the importance of a task as well as their belief in their 

ability to solve a problem impact their motivation to do so. Self-knowledge can also be directly 

related to strategic knowledge; a learner may recognize that their strengths or weaknesses lie in 

certain tasks or styles of learning and be able to adjust to play to their strengths. One may also 

recognize their tendency to over rely on certain strategies that may not be the most effective for a 

certain problem. A key element of self-knowledge is the ability to recognize the depth and 

breadth or their own knowledge, or when one does or does not understand or know something 

(Pintrich, 2002). This element is key to a learner’s ability to accurately self-assess and correct 

their cognitive processes. 

This study focuses on students’ calibration, which is a subsection of self-knowledge defined as 

the difference between students’ confidence in their own abilities and their actual performance 

on academic tasks. Throughout the learning process, students are required to make two key 

judgements. First, during the studying process, students must adequately gauge whether or not 

they have learned the material they are studying. Second, as students answer questions, they 

must be able to ascertain whether or not they have successfully answered the questions during 

the exam. These two self-reflections are known as a judgement of learning and a confidence 

judgement, and the accuracy of both is critical to the guidance and success of students’ self-

regulated learning practices (Dinsmore & Parkinson, 2013; Labuhn et al., 2010). 

METHODOLOGY 
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Participants. Twenty-one (21) first-year engineering students enrolled in their second semester 

participated in the study. All students were enrolled in Trigonometry at the time of the study and 

were a part of a first-year engineering program at a Land Grant Institution in the Mid-Atlantic 

Region in Spring 2023. 

Participant demographics and high school academic performance data are summarized in Table 

1. A matched control group of 38 students enrolled in trigonometry, but not enrolled in the 

intervention course was created using gender, high school GPA, and Math SAT scores as 

covariates. The control and experimental groups were not statistically different (Figure S1, 

Proportion of male students average difference = 1.66%, 95% HDI = [-15.7% - 16.4%], 59.6% 

probability of a difference > 0, hGPA average difference = -0.03 GPA points, 95% Highest 

Density Interval (95%HDI) = [-0.19 -0.14 GPA points], 62.2% probability of a difference < 0 ; 

Math SAT average difference = 1.21 points, 95%HDI = [-16.3-18.6], 44.6% probability of a 

difference < 0, Math ACT average difference = 0.653 points, 95%HDI = [-2.43 - 3.74 points], 

32.2% probability of a difference < 0). 

First Year Engineering Program. Upon acceptance to the engineering school, students who are 

not bringing in college credit or AP Exam credit for math courses must take a placement test to 

determine which level of math they should be placed into. To move from the first-year program 

into their chosen department at the time of the study, students must maintain a cumulative GPA 

(cGPA) of at least 2.25 and complete a set of six core courses ((Fundamentals of Chemistry 1, 

Calculus 1, Introduction to Composition and Rhetoric, First Year Seminar, Engineering Problem 

Solving 1, and Engineering Problem Solving 2) with a grade of C or better. Students who place 

into College Algebra when they begin college must complete the course along with 

Trigonometry before they are able to advance to Calculus 1 and Engineering Problem Solving 1 



11 
 

cannot be completed until students advance to either the full semester version of Calculus 1 or 

the second half of the two-semester version of the course. To earn an engineering degree, 

students in Computer Science must complete 3 semesters of college calculus while those in any 

other engineering discipline must complete four semesters.  

Course Description. This course was designed as a supplemental course to improve student’s 

trigonometry skills. The overall structure of the course is based on a similar study conducted in 

education students by Cogliano et. al. (Cogliano et al., 2021). An approximate course schedule 

detailing the topics covered is provided in Table 2. The order of topics was chosen based on the 

order of topics taught by the math department at the time of the study and the timing was such 

that each topic was typically covered one week after the students initially were introduced to the 

concepts in their trigonometry class. Each basic trigonometry topic was covered through a 

“Skills” lecture and an “Applications” lecture. In Skills Lectures, the basic concepts of the topic 

are reinforced through lecture and basic examples of the skills. These lectures typically mirrored 

what was taught in the trigonometry class in order to give students a second exposure to the 

basics of the concepts before applying them to more complex problems. Applications Lectures 

were taught exclusively through real-world example problems. This often included complex 

word problems pulled from different engineering disciplines, hands on demonstrations, or lab 

activities with accompanying calculations. The goal of the Applications Lectures was to provide 

more challenging problems than were typically provided in the trigonometry classroom while 

also providing real-world applications of different trigonometric skills to reinforce the 

importance of their mastery for success in engineering. 

In addition to the mathematics component of the course, a three-lecture series with 

accompanying in class activities and homework was delivered early in the semester (weeks 3-5) 
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to introduce students to key concepts related to retrieval practice, self-regulation, and 

metacognition. Throughout the semester, students were asked to refer to these skills by 

answering short reflections on their performance on homework, quizzes, and exams. 

Metrics Used. Demographic and high school performance data including gender, high school 

GPA, and Math SAT and ACT scores was collected at the start of the study. Institutional data 

including students’ cumulative GPA, one semester GPA, and trigonometry and chemistry grades 

were collected at the end of the semester when the study concluded (Spring 2023). All data was 

collected for both the control and experimental groups. 

The Metacognitive Awareness Inventory (MAI) was given to the experimental group during the 

first and last weeks of the semester to measure pre and post metacognitive awareness The MAI is 

a self-report instrument used to measure metacognitive awareness under the broad categories of 

knowledge of cognition and regulation of cognition (Schraw & Dennison, 1994). The assessment 

asks students to rank 52 statements on a scale from 0 to 100 based on how well they believe the 

statement applies to them.  

In addition to the MAI, students in the experimental group were given three exams over the 

course of the semester with built in questions to gauge their calibration as it related to their 

ability to solve problems. Prior to solving each question, students were asked “How confident are 

you in your ability to accurately complete problems like this one?” and requested to provide a 

rating between 0 and 100. At the end of each question, students were asked “How confident are 

you in the solution you’ve provided to this problem?” and again asked to provide a rating 

between 0 and 100. The Midterm Exam was used as a Metacognition Pre-Test to gauge student’s 

performance bias shortly after being introduced to the metacognition concepts. The 

Metacognition Post-Test used questions that were nearly identical to those presented on the Pre-
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Test where the numbers and math procedure stayed the same, but the story presented in the word 

problem was different. The Final Exam also had performance bias questions, but the content was 

related to course material from midterm onwards and contained different questions from the 

Metacognition Pre- and Post- Tests. Each time students were asked to rate their confidence, this 

rating was compared to their actual performance on the question being rated by subtracting their 

actual performance from their confidence to obtain a rating of bias, which was negative if 

students were underconfident and positive if students were overconfident. The absolute value of 

the bias calculation was considered the students’ absolute accuracy. Absolute accuracy is 

compared between the pre and post tests and the mean difference between the pre and post 

accuracy scores is presented. 

Statistical Analysis. All statistical analysis was performed in R v4.3.1. The matched random 

control group was created using the MatchIt package (v4.5.5) and accounted for gender, high 

school GPA, and Math SAT scores as covariates (Ho et al., 2011). The BEST package (v0.5.4) 

was used to estimate the mean value of the parameter measured within the experimental group or 

the size of the effect the intervention course had on student performance parameters such as 

mean cumulative GPA compared to the control group (Kruschke, 2013). The package uses 

minimally informative priors including normal priors with large standard deviations for the 

mean, broad uniform priors for standard deviation, and a shifted-exponential prior for the 

normality parameter and equal variance is assumed between treatment groups (Kruschke, 2013; 

Meredith & Kruschke, 2021).  Data is reported as a 95% Highest Density Interval (HDI) along 

with a mean of the credible values for the difference between groups (average difference) and a 

probability that the parameter is less than 0.  
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Comparison of proportions between groups was done via methods described by Andrew Heiss 

using the brms package (v2.19.0) in R (Heiss, 2023). Data is reported as the mean credible value 

of the difference between proportions as well as 95% HDI and the probability that the difference 

in proportions is less than 0. In all tests, a probability of 5% or less (or 95% or more in the case 

of bias values less than 0) was considered statistically significant. All R code and deidentified 

data is available at https://github.com/arcoolbaugh/ENGR_Metacognition. 

Study Approval. This study was approved by the West Virginia University Institutional Review 

Board (WVU-IRB, Protocol # 2212697700).  

RESULTS 

Difference in Metacognition Skills from the Intervention. Of 21 participants in the 

intervention, 17 had MAI scores for both the pre and post-tests. Scores were totaled out of 5200 

(100 points per question). The average pre-MAI score was 3686, while the average post-MAI 

score was 3739 (Figure 1, average difference = 51.3 points, 95% HDI = [-217 – 316 points], 

34.5% probability of a difference < 0). This difference was not statistically significant. It was 

noted that 9 of 17 students’ scores decreased between the pre and post-MAI, indicating a 

decrease in metacognitive awareness. 

To compare changes in performance calibration, students’ absolute accuracy in their confidence 

rating compared to their actual performance on scales of 0 – 100 were compared between the 

Metacognition Pre-Test (Midterm Exam) and the Metacognition Post-Test. The Pre- and Post-

Test examined identical content and each contained one easier content question and one more 

difficult content question. The average change in absolute accuracy between the pre and post-test 

on the easy content question was -3.87 points before completing the question and -2.72 points 

after completing the question, indicating minimal change in calibration (Figure 2, left column, 

https://github.com/arcoolbaugh/ENGR_Metacognition
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average pre-question difference = -3.87 points, 95% HDI = [-14.3 – 6.12 points], 78.0% 

probability of a difference < 0; average post-question difference = -2.72points, 95% HDI = [-

9.86 – 4.56 points] 78% probability of a difference < 0). 

In contrast, the average change in absolute accuracy between the pre and post-test on the difficult 

content question was 19 points before completing the question and 13.9 points after completing 

the question, indicating a significant decrease in calibration between the pre and post-test (Figure 

2, right column, average pre-question difference = 19.6 points, 95% HDI = [10.5 – 28.6 points], 

0.0% probability of a difference < 0; average post-question difference = 14.2 points, 95% HDI = 

[5.8 – 22.3 points] 0.1% probability of a difference < 0). The significant difference in calibration 

between the easy and difficult content questions indicates that content difficulty plays a role in 

students’ ability to accurately gauge their own performance. 

It was noted that students did not study to prepare for the Metacognition Post-Test in the same 

way they prepared for the Pre-Test. This was because the pre-test was also the Midterm Exam 

and was a heavily weighted assignment in the course while the Post-Test was treated as low 

weight completion grade. To assess whether students’ feeling of preparedness impacted their 

calibration, the same comparison of calibration was done between the Metacognition Pre-Test 

(Midterm Exam) and the Final Exam for the course. These exams covered different content but 

were structured similarly with an easier content question and a more difficult content question. In 

addition, students were more likely to put in similar effort in preparation for the two exams 

because they were both heavily weighted grades in the course. 

The average change in absolute accuracy between the pre-test and the final exam on the easy 

content question was -7.92 points before completing the question and -7.3 points after 

completing the question, indicating a significant improvement in calibration when student 
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preparedness is taken into account (Figure 3, left column, average pre-question difference = -

7.92 points, 95% HDI = [-15.3 – -0.60 points], 98.3% probability of a difference < 0; average 

post-question difference = -7.30 points, 95% HDI = [-12.8 – 1.77 points] 99.4% probability of a 

difference < 0). 

The average change in absolute accuracy between the pre-test and the final exam on the difficult 

content question was 0.58 points before completing the question and 2.39 points after completing 

the question, indicating no significant change in calibration (Figure 3, right column, average pre-

question difference = 0.583 points, 95% HDI = [-10.6 – 11.6 points], 45.7% probability of a 

difference < 0; average post-question difference = 2.39 points, 95% HDI = [-8.51 – 13.2 points] 

32.7% probability of a difference < 0). While students still struggle significantly with 

performance calibration on more difficult content, much of the effect is mitigated when student 

preparedness is taken into account, leading to a lack of change in calibration rather than a 

significant decrease in calibration as was seen when comparing the pre-test, which students 

prepared for, and the post-test, which most students did not prepare for. 

Difference in Academic Performance. Throughout the course of the study, all students in the 

control and experimental groups were enrolled in Trigonometry. Figure 4A shows the 

percentages of each group that received a certain grade in their Trigonometry course. In the 

control group, 33/38 students (86.8%) passed their math course with an A, B, or C while 20/21 

(95.2%) of the experimental group passed (Figure S2A, average difference = 6.26%, 95% HDI = 

[-12.3% - 22.5%], 21.5% probability of a difference < 0). With a 21.5% probability that the 

difference is less than 0, this difference is likely not significant. There was, however, a 

statistically significant difference in the number of students who were able to obtain an A in their 

trigonometry course in each group. Only 5/38 (13.2%) of the control group received an A in 
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trigonometry while 8/21 (38.1%) of the experimental group received an A (Figure S2C, average 

difference = 23.6%, 95% HDI = [0.11% - 48.1%], 2.45% probability of a difference < 0). 

Students with below calculus-level math proficiency in the studied engineering program often 

show additional struggles in their chemistry courses. As a result, we wanted to investigate 

whether or not the intervention had an effect on students’ chemistry grades (Figure 4B). In the 

control group, 23 of the 31 students enrolled in a chemistry course (74.2%) passed with an A, B, 

or C while 17 of 20 (85.0%) of the experimental group passed (Figure S2B, average difference = 

8.95%, 95% HDI = [-14.6% - 31.9%], 22.1% probability of a difference < 0). When reviewing 

the number of students to obtain an A in chemistry, 4/31 students in the control group (12.9%) 

and 4/20 in the experimental group (20%) were able to obtain an A (Figure S2D, average 

difference = 7.15%, 95% HDI = [-14.3% - 30.5%], 26.2% probability of a difference < 0). These 

results were not considered significant. 

Difference in GPA Between Groups. Figure 5 shows the average cumulative GPA (cGPA) and 

one-semester GPA for students in the control and experimental groups. The average cGPA in the 

control group at the completion of the study was 3.11 ±0.60 while the experimental group had an 

average cGPA of 3.18 ±0.54 (Figure 5, left column, average difference = 0.06 GPA points, 95% 

HDI = [-0.26 – 0.39 GPA points], 35.4% probability of a difference < 0). The average one-

semester GPA in the control group at the completion of the study was 2.91 ±0.71 while the 

experimental group had an average cGPA of 3.04 ±0.69 (Figure 5, right column, average 

difference = 0.12 GPA points, 95% HDI = [-0.28 – 0.52 GPA points], 27.0% probability of a 

difference < 0). While more impact was seen on the one-semester GPA when compared to 

cGPA, these results are not likely to be significant. 

DISCUSSION 
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The importance of self-regulated learning and strong metacognitive knowledge for learning has 

been shown repeatedly across multiple domains of education research and continued work in this 

field is warranted to improve students’ performance in engineering problem solving (Case et al., 

2001; Cunningham et al., 2015; Flavell, 1979; Gafoor. K & Kurukkan, 2016; S. Goldberg et al., 

2016; Jonassen, 2010; Nietfeld et al., 2006; Pintrich, 2002, 2005; L. Santiago et al., 2024; 

Stanton et al., 2021; Zimmerman, 2000, 2008; Zimmerman & Kitsantas, 1997). Based on this 

study, non-calculus ready students’ knowledge of the difficulty of a task, self-knowledge of their 

abilities to solve problems, and thus their ability to accurately predict their performance and 

modify their cognitive practices, is poor, particularly on difficult content questions. While many 

of the effects of the intervention were not statistically significant, influencing student’s beliefs of 

the importance of the tasks by making the metacognition assignments “higher stakes” would 

likely have an influence on their preparation for the metacognition exams and their willingness 

and perceived ability to accurately complete the assignments. Based on the results showing the 

impact of preparation on metacognitive monitoring during exams, this would likely have a 

significant impact on the results. In addition, because this was a pilot study with relatively low 

participation, it is worth pursuing the continuation of this work in order to increase the number of 

students in the intervention group, which may push some of the smaller but positive results in 

this study towards statistical significance. 

Finally, while this course is currently being evaluated as a stand-alone intervention, the 

possibility exists to combine it with a previously discussed college-algebra based intervention 

focused on promoting critical thinking and engineering problem solving skills to create a two-

semester series that could provide additional benefit to students (L. Y. Santiago et al., 2016, 

2017). Our prior work shows that while a one-semester intervention is helpful in improving math 
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progression and engineering persistence in early semesters, the benefits diminish over time as 

students begin struggling in higher level mathematics coursework (Pirkey et al., 2024). Providing 

and encouraging students to participate in a multi-semester set of coursework to support them 

through their initial mathematics courses while developing these transferable learning skills may 

work to improve the long-term effectiveness of both interventions. 
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FIGURE LEGENDS: 

Table 1: Summary of participant demographics (Control = 125, Experimental = 21). *High 

School GPA, Math SAT, and Math ACT scores are represented as the average ± standard 

deviation. 

Table 2: A list of topics covered each week in the intervention course. 

Figure 1: (A) Summary of total scores on the MAI survey before and after the intervention 

course. (B) Results from BEST statistical testing comparing the difference of means between the 

pre and post MAI survey scores. 

Figure 2: BEST statistical testing comparing the difference of means of confidence bias between 

the metacognition pre- and post-tests. Results are stratified between pre and post question 

confidence bias (A-B vs C-D) and easy and difficult content questions (A and C vs B and D). 

Figure 3: BEST statistical testing comparing the difference of means of confidence bias between 

the metacognition pre-test and the course final exam. Results are stratified between pre and post 

question confidence bias (A-B vs C-D) and easy and difficult content questions (A and C vs B 

and D). 

Figure 4: Comparison of grade distributions between the control and experimental cohorts in 

their (A) trigonometry and (B) chemistry courses. 
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Figure 5: (A-B) Summary of (A) cumulative and (B) 1 semester GPA for the control and 

experimental cohorts. (C-D) Results from BEST statistical testing comparing the difference of 

means between the cohorts’ (C) cumulative and (D) 1 semester GPA.  
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APPENDIX A: POSTERIOR DISTRIBUTIONS FROM BAYESIAN ANALYSIS 

Figure S1: (A) Posterior distributions of the proportion of male students in the experimental and 

control groups and the posterior distribution of the percentage point difference in proportions 

between the two groups. (B) – (D) Results from BEST statistical testing comparing the 

difference of means between the experimental and control groups for (B) High School GPA, (C) 

Math SAT score and (D) Math ACT score. 

Figure S2: Posterior distributions of the proportion of students to (A) pass trigonometry (B) pass 

chemistry (C) receive an A in trigonometry or (D) receive an A in chemistry in the experimental 

and control groups and the posterior distribution of the percentage point difference in proportions 

between the two groups. 



Parameter
Male 35 92% 20 95%
Female 3 8% 1 5%
Total 38 21 100%
HS cGPA*
Math SAT*
Math ACT* 21 ± 3 22 ± 2

Characteristics of Participants
Control Experimental

3.84 ± 0.33 3.82 ± 0.27
560 ± 29 561 ± 29



Week Class Topic
1 Introduc�on and Pre-Assessments

2

Angles
Linear and Angular Speed

Rota�on

3
Right Triangle Skills and Applica�ons

Retrieval Prac�ce

4
Trig Func�ons and the Unit Circle

Self Regula�on

5
Applica�ons of Trig Func�ons

Metacogni�on

6
Graphing Trig Func�ons
Graphing Applica�ons

7
Inverse Trig Func�ons

Review of Topics Covered to Date

8
Mul�step Trig Problems

Midterm Exam

9
Fundamental Iden��es

Applica�ons of Trigonometric Models

10
Solving Trig Equa�ons

Projec�le Mo�on Applica�ons
11 Hands on Applica�on - Trusses Lab

12
Sum and Difference Formulas Skills and 

Applica�ons

13
Mul�ple Angle and Product-to-Sum Formulas 

Skills and Applica�ons

14
Law of Sines & Cosines

Non-Right Triangle Applica�ons
15 Post-Assessments and Final Exam Review



A. B.



Easy Content Question Di�cult Content Question

Post Question
Con�dence Bias

Pre Question
Con�dence Bias

A. B.

C. D.



Easy Content Question Di�cult Content Question

Post Question
Con�dence Bias

Pre Question
Con�dence Bias



A.

B.



A. B.

C. D.



A. B.



A. B.

D.C.



A. B.

C. D.
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