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Abstract 

Although the nonlinear dynamics of hanging cantilevered pipe conveying fluid have been 

extensively scrutinized, a few investigations exist about the nonlinear behavior of standing one. 

Hence, the objective of this study is to examine the geometrically exact nonlinear static and 

dynamic responses of standing cantilevered pipe conveying fluid. The geometrically exact 

rotation-based model, along with the shooting method and Galerkin technique is applied to assess 

the nonlinear static behavior of system and its stability characteristics. Moreover, to compute the 

nonlinear dynamics of system, the geometrically exact quaternion-based model, together with the 

Galerkin technique is employed. It is revealed that the system may undergo buckling via a 

supercritical or subcritical pitchfork bifurcation depending on the gravity parameter, which may 

give rise to extremely large-amplitude responses. The system may also experience flutter 

instability via a supercritical Hopf bifurcation, which brings about self-excited periodic 

oscillations. The generic behavior of system for a specific range of the gravity parameter is 

investigated for four distinct scenarios depending on the gravity parameter and mass ratio, which 

only one of them is similar to that comes to pass for the hanging case.              
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1. Introduction 

Pipes conveying fluid as a kind of fluid-solid interaction system have drawn noteworthy 

research interest due to their applications in numerous engineering systems [1-6]. It is well-known 

that fluid-conveying pipes supported at both ends undergo buckling instability at a sufficiently 

high flow velocity [3, 7] and their nonlinear dynamic behavior has been widely analyzed [8-16]. 

According to the existing literature, the theoretical and experimental studies on the flutter 

instability of cantilevered pipes conveying fluid first appeared in the papers by Bourrières [17], 

Benjamin [18, 19], and Païdoussis and Gregory [20, 21]. Baja et al. [22, 23] developed a nonlinear 

mathematical model to study the bifurcation analysis of cantilevered pipe conveying fluid and 

some interesting features of system were reported in their studies. However, their nonlinear 
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mathematical model has some incomplete terms which are discussed in detail in Ref. [3]. Semler 

et al. [24] established a third-order approximation nonlinear mathematical model for planner 

motion of cantilevered pipe conveying fluid, and Wadham-Gagnon et al. [25] developed it for 

three-dimensional motion. In many studies related to the cantilevered pipe conveying fluid, the 

third-order approximation model or its modified versions (due to added elements, imperfect 

support, material properties, and so on) have been utilized to study the nonlinear dynamics of 

system [26-35]. Since the third-order approximation model was derived [24] based on the 

inextensibility assumption, Ghayesh et al. [36] developed a new approximation model, which the 

third-order approximation model can be recovered from it, to investigate the role of extensibility 

in the nonlinear dynamics of cantilevered pipe conveying fluid.    

Recently, the geometrically exact modeling and analysis of cantilevered pipe conveying fluid 

have drawn notable research interest due to the limitation of the third-order approximation model 

in the simulation of large-amplitude responses of system. The geometrically exact models for 

dynamic analysis have been developed based on four different approaches. In the first approach,  

a geometrically exact model based on the Cosserat rod model and applying balance laws for the 

linear and angular momentum using an intrinsic orthogonal framework [37]. In the second 

approach, a geometrically exact model based on the total moment of the fluid and pipe was 

proposed [38]. The fully nonlinear differential governing equations of system were established 

according to the momentum balance of pipe and fluid in floating non-inertial frames. The third 

approach is related to developing a geometrically exact model in terms of the rotation angle based 

on Hamilton’s principle where the third-order approximation model can be recovered from this 

model [39-45]. The fourth approach is associated with the derivation of a geometrically exact 

model based on the quaternion formulation, along with Hamilton’s principle [46]. It was indicated 

that the rotational-based model developed in Ref. [39] can be recovered from the newly developed 

model. A major difference between this model and that developed in Ref. [39] is that its governing 

equations are expressed in terms of integro-partial differential algebraic equations while the 

governing equation of the model presented in Ref. [39] is an integro-partial differential equation. 

The comparison studies indicated that the quaternion-based model is capable of capturing the 

nonlinear dynamics of system with a remarkable reduction in computational cost compared to the 

rotation-based model.   

The nonlinear dynamics of standing cantilevered pipe conveying fluid have been investigated 

in a few studies. Li and Paidoussis [47] examined the nonlinear dynamics of standing cantilevered 

pipe conveying fluid via the third-order approximation model, together with the Galerkin 

technique with two modes. Prior to applying Galerkin’s technique, the non-linear inertia terms 

were replaced by equivalent ones through a perturbation procedure. The focus of this study was 

on the stability and double degeneracy, where the subcritical pitchfork bifurcation and Hopf 

bifurcation take place simultaneously, as well as on the chaotic motion of system. Wang and Ni 

[48] studied the stability and chaotic motions of standing cantilevered pipe conveying fluid with 

elastic support and motion-limiting constraints. In the mathematical model, the source of 
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nonlinearity was the support and constraints, and a linear model was adopted for the pipe 

conveying fluid. Similar to the previous reference, Galerkin’s technique with two modes was used 

to analyze the system. Bou-Rabee et al. [49] studied the stability characteristics of standing 

cantilevered pipe conveying fluid using a simple geometrically exact model. To construct the 

mathematical model, they supposed that the fluid-structure interaction induces a concentrated 

force and a point source of damping, respectively, tangent and normal to the free end. A long, thin 

conduit with a nozzle at its free end can be an appropriate representation for this model. Chen et 

al. [50] analyzed the nonlinear behavior of standing cantilevered pipe conveying fluid based on 

the geometrically exact rotation-based model for a specific case (see Appendix A).  

The review of the papers related to the nonlinear analysis of cantilevered pipes conveying fluid 

shows that the nonlinear dynamics of standing system have not been disclosed appropriately, 

unlike the hanging and horizontal systems. Therefore, the focus of this paper is on exploring the 

geometrically exact nonlinear static and dynamic behavior of standing cantilevered pipe conveying 

fluid. In Section 2, two different mathematical models utilized to acquire the geometrically exact 

nonlinear responses of system are explained in detail. As well, the solution strategies for 

determining the static, stability, and dynamic behavior of system are elucidated. In Section 3, the 

available results in the existing literature related to the geometrically exact nonlinear dynamics of 

standing cantilevered pipe conveying fluid are employed to verify the mathematical model and 

solution strategy used in this paper for dynamic analysis. A convergence study on the verified 

results is also presented in this section. In Section 4, a geometrically exact nonlinear analysis of 

the generic behavior of system is carried out. Firstly, the stability of undeformed configuration of 

system without flow velocity due to gravity, along with its stable positions is studied. 

Subsequently, the influence of flow velocity, together with the gravity parameter on new static 

responses and their stability are examined. The role of flow velocity, along with the gravity 

parameter and mass ratio in the dynamic instability and corresponding motion characteristics is 

also investigated. A generic behavior for four distinct scenarios is discussed in detail. Additionally, 

the impact of initial conditions on the final response of system is explored. Eventually, the 

summary of findings is presented in Section 5.  

2. On mathematical models and solution strategies 

A schematic representation of a standing cantilevered pipe conveying fluid is depicted in Figure 

1. The system under investigation includes a pipe of length 𝐿, cross-sectional area 𝐴, flexural 

rigidity 𝐸𝐼, mass per unit length 𝑚, conveying a fluid of mass per unit length 𝑀 with flow velocity 

𝑈̅. 
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Figure 1: Schematic representation of a standing cantilevered pipe conveying fluid  

To assess the geometrically exact static responses of system, the geometrically exact rotation-

based model (GERM) is used. The reason for choosing this model is that it can easily capture the 

static responses of system in conjunction with the shooting scheme. However, their stability is 

determined by Galerkin’s technique. The geometrically exact quaternion-based model (GEQM), 

along with the Galerkin technique is implemented for the dynamic analysis. The advantage of this 

model compared to the former model is its low computational cost. It should be pointed out that 

the mathematical models of hanging and standing cantilevered pipe conveying fluid are identical 

except for the gravity parameter. In the case of the hanging pipe, the gravity parameter is positive, 

but this parameter is negative for the standing pipe. Thus, the geometrically exact mathematical 

models of hanging cantilevered pipe conveying fluid developed in the previous studies can be 

utilized for the standing one. Static and stability analysis via GERM 

2.1. Static and stability analyses via GERM 

The dimensionless form of geometrically exact equation of motion and corresponding boundary 

conditions of cantilevered pipe conveying fluid in terms of rotation angle, 𝜃, were established as 

follows [39, 40, 50] 
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in which 𝑠 is dimensionless distance along the pipe from the clamped end, 𝜁 and 𝜂, respectively, 

are dimensionless axial and transverse displacements, 𝜏 is dimensionless time, 𝛼 is dimensionless 

damping coefficient, 𝑈 is dimensionless flow velocity, 𝛽 is mass parameter, and 𝛾 is gravity 

parameter. Moreover, the prime and dot symbols denote derivatives with respect to 𝑠 and 𝜏, 

respectively. The dimensionless axial and transverse displacements, respectively, can be obtained 

by [39]   
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The geometrically exact rotation-based static model can be achieved by dropping the time-

dependent terms in Eq. (1) [50].  
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in which 𝜃𝑠 stands for static rotation angle. Similar to Ref. [51], the shooting scheme is used to 

evaluate the geometrically exact responses of system based on the static equation given in Eq. (5). 

To determine their stability, the linearized dynamic model around the static responses is employed. 

Substituting 𝜃 + 𝜃𝑠 instead of 𝜃 in Eq. (1), incorporating Eq. (5), and neglecting nonlinear terms 

in the resulting equation, one can obtain the following linear dynamic equation [50].    
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In view of Galerkin’s technique, the rotation angle is approximated as follows 
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in which 𝑁, 𝜑𝑛 and 𝑝𝑛 stand for number of approximation functions, 𝑛th approximation function, 

and 𝑛th generalized coordinate, respectively. Similar to Ref. [50], 𝜑𝑛 = 𝑠𝑖𝑛((2𝑛 − 1)𝜋𝑠 2⁄ ). It 

should be mentioned that to calculate the stability characteristics of system around its undeformed 

configuration, it is enough to set 𝜃𝑠 = 0 in Eq. (6).   

2.2. Dynamic analysis via GEQM 

The geometrically exact mathematical model of cantilevered pipe conveying fluid in the 

quaternion system was derived in Ref. [46]. The quaternion elements 𝑒0 and 𝑒3 can be written in 

terms of the rotation angle as follows [46]: 𝑒0 = 𝑐𝑜𝑠(𝜃 2⁄ ) and 𝑒3 = 𝑠𝑖𝑛(𝜃 2⁄ ), along with the 

following constraint: Φ = 𝑒0
2 + 𝑒3

2 = 1. The resulting dimensionless form of this mathematical 

model is [46] 
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in which 𝜆 is dimensionless Lagrangian multiplier function. The dimensionless axial and 

transverse displacements in terms of the quaternion elements, respectively, can be written [46]   
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The mathematical model of system in terms of the rotation angle is an integro-partial differential 

equation (Eqs. (1)-(2)), but it is an integro-partial differential algebraic equation in terms of the 

quaternion elements (Eqs. (8)-(11)). In Ref. [46], it was proved that Eqs. (1)-(2) can be recovered 
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from Eqs. (8)-(11). Furthermore, it was discussed that the quaternion-based model significantly 

reduces the computational cost compared to the rotation-based model. 

In view of Galerkin’s technique, the quaternion elements and the dimensionless Lagrangian 

multiplier function are approximated as follows 
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where 𝑁𝑒0
, 𝑁𝑒3

, and 𝑁𝜆 are number of approximation functions for 𝑒0, 𝑒3, and 𝜆, respectively; 𝜙𝑛, 

𝜓𝑛, and 𝜒𝑛 are 𝑛th approximation function for 𝑒0, 𝑒3, and 𝜆, respectively; 𝑝𝑛, 𝑞𝑛, and 𝑟𝑛 are 𝑛th 

generalized coordinate of 𝑒0, 𝑒3, and 𝜆, respectively. Similar to Ref. [46], 𝑁𝑒0
= 𝑁𝑒3

= 𝑁𝜆 = 𝑁, 

𝜙𝑛 = 𝜓𝑛 = 𝑠𝑖𝑛((2𝑛 − 1)𝜋𝑠 2⁄ )  and 𝜒𝑛 =  𝑠𝑖𝑛(𝑛𝜋 (𝑠 + 0.5) 4⁄ ). 

Similar to Ref. [46], to solve the resulting ordinary differential algebraic equations, the ode15s 

solver in MATLAB software is utilized. To reduce the index of resulting equations from three to 

one, Eq. (10) is replaced with the following equation [46] 

2 2

0 3 0 0 3 3 0.e e e e e e+ + + =  (14) 

which is the second derivative of Eq. (10) with respect to 𝜏. 

3. Verification study 

In Ref. [46], the quaternion-based model was utilized to verify the geometrically exact nonlinear 

behavior of hanging cantilevered pipe conveying fluid. Therefore, in this section, this model is 

verified for the standing one. Chen et al. [50] investigated the nonlinear responses of a standing 

pipe conveying fluid when 𝛽 = 0.142, 𝛾 = −18.9, and 𝛼 = 0.005 via the geometrically exact 

rotation-based model with 𝑁 = 4. To verify the results reported by the aforementioned reference, 

the geometrically exact nonlinear responses of quaternion-based model with 𝑁 = 4 and 5 are 

calculated. Comparison studies are presented in Appendix A. The comparison studies in Figures 

A1-A3 show that the results of quaternion-based model with 𝑁 = 4 are in good agreement with 

those obtained by Chen et al. [50] via the rotation-based model. Additionally, the plots depicted in 

these figures indicate that the results with 𝑁 = 5 can better describe the geometrically exact 

nonlinear dynamics of system.          

4. Nonlinear geometrically exact analysis 

For a hanging pipe with 𝑈 = 0,  the undeformed configuration of system is stable. But for a 

corresponding standing one, the stability of undeformed configuration is dependent on the gravity 

parameter. The geometrically exact nonlinear static responses and their stability characteristics for 

standing pipes when −100 ≤ 𝛾 ≤ 0 are plotted in Figure 2. The plots show that the undeformed 

configuration of system is stable if the gravity parameter is large enough. However, the 

undeformed configuration of system becomes unstable and the system undergoes buckling 

instability at a critical gravity parameter 𝛾𝑐𝑟 = −7.83. In other words, the system buckles due to 
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its weight (self-buckling). The plots indicate that the system undergoes extremely large 

deformation when the gravity parameter is low enough. It should be stressed that the simple model 

proposed by Bou-Rabee et al. [49] is capable of capturing the geometrically exact static behavior 

of system. It is due to the fact that simplifying in their model does not affect the static instability 

of system. The results plotted in Figure 2a were presented in their work for −60 ≤ 𝛾 ≤ 0 based on 

a dynamic analysis. There is a good agreement between the present results and those reported in 

the aforementioned references.  

   

  

Figure 2: Evolution of the pipe shapes when 𝑈 = 0; a) tip rotation, b) tip transverse displacement, c) tip axial 

displacement, d) stable shapes, e) unstable shapes.    

The influence of flow velocity, 𝑈, on the static instability of system is depicted in Figure 3. The 

results illustrate that the system experiences supercritical pitchfork bifurcation (buckling) when 

−14 ≤ 𝛾 < −7.83. In other words, for this range of gravity parameter, the undeformed 

configuration of system becomes stable at a critical flow velocity, 𝑈𝑠𝑢𝑝𝑒𝑟. Besides, 𝑈𝑠𝑢𝑝𝑒𝑟 is 

increased when the gravity parameter is decreased. The results also indicate that the system 

undergoes a subcritical pitchfork bifurcation (buckling) when 𝛾 < −14. The lower subcritical 

velocity,𝑈𝑠𝑢𝑏
𝑙𝑜𝑤, has an initial ascending trend which follows by a descending one when the gravity 

parameter is reduced. Since 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤 becomes zero for 𝛾 = −55.9, the lower subcritical velocity does 

not exist for the system when 𝛾 < −55.9. Additionally, the higher subcritical velocity, 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

, has 

an ascending trend with respect to lessening the gravity parameter. It should be pointed out that 

the supercritical critical flow velocities in addition to the lower subcritical flow velocities can be 
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obtained by the stability analysis of linear model around the undeformed configuration i.e., Eq. (6) 

when 𝜃𝑠 = 0. The results of the present study are in good agreement with those reported by 

Paidoussis [3, 52] based on the linear analysis.  

 

Figure 3: Locus of the critical flow velocities for the supercritical and subcritical buckling.    

The geometrically exact post-buckling behavior of standing pipes conveying fluid are shown in 

Figures 4-6 for the tip rotation angle, axial and transverse displacements, respectively. Figures 4a, 

5a, and 6a are related to the non-trivial post-supercritical buckling responses of system. As seen 

from the results plotted in these figures, when the flow velocity, 𝑈, is increased, the system 

undergoes less deformation, and at a critical flow velocity, 𝑈𝑠𝑢𝑝𝑒𝑟, the undeformed configuration 

of system becomes its stable position. It should be pointed out that for supercritical buckling, the 

undeformed configuration (the trivial solution) is unstable when 𝑈 < 𝑈𝑠𝑢𝑝𝑒𝑟, but the stability 

behavior of system for 𝑈 > 𝑈𝑠𝑢𝑝𝑒𝑟 is dependent on the mass parameter, 𝛽, and the damping 

coefficient, 𝛼. The other plots in Figures 4-6 are associated with the non-trivial post-subcritical 

buckling responses of system. Similar to supercritical buckling, the system experiences less 

deformation when the flow velocity is increased, but the trend stops at a critical flow velocity, 

𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

, in which the system is under deformation. The results indicate that the difference in the 

deformation of system between 𝑈 = 0 and 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 diminishes when the gravity parameter, 𝛾, is 

lessened. It should be stressed that the undeformed configuration of system (the trivial solution) is 

unstable when 𝑈 ≤ 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤 and the stability of the trivial solution for 𝑈 > 𝑈𝑠𝑢𝑏

𝑙𝑜𝑤 relies on 𝛽 and 𝛼. It 

can be concluded when 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

≤𝑈 < 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤, the undeformed configuration of system may be stable 

and the system has three distinct stable positions.        
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Figure 4: Stable (solid line) and unstable (dash-dot line) non-trivial solutions for the tip rotation of pipe in the 

post-buckling region.  
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Figure 5: Stable (solid line) and unstable (dash-dot line) non-trivial solutions for the tip transverse displacement 

of pipe in the post-buckling region corresponding to Figure 4. 

  

  

Figure 6: Stable (solid line) and unstable (dash-dot line) non-trivial solutions for the tip axial displacement of 

pipe in the post-buckling region corresponding to Figure 4. 

Prior to starting dynamic analysis, it should be pointed out that in all the dynamic assessments, 

the damping coefficient, 𝛼, is set to 0.005 similar to Ref. [50]. Additionally, the whole dynamic 

responses are obtained with 𝑁 = 5 in the Galerkin technique. 
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In the case of the hanging cantilevered pipe conveying fluid, the undeformed configuration of 

system is stable and becomes unstable at a critical flow velocity by a flutter instability i.e., the 

system experiences a supercritical Hopf bifurcation. As seen in Figure 7, a similar scenario occurs 

for the standing cantilevered pipe conveying fluid when the gravity parameter is large enough i.e.,  

𝛾 < −7.83. In the case of the supercritical buckling i.e., −14 ≤ 𝛾 < −7.83, the system restabilizes 

at 𝑈𝑠𝑢𝑝𝑒𝑟 and at a critical flow velocity, 𝑈𝑓, which depends the mass ratio, 𝛽, the system losses its 

stability via a flutter instability i.e., the system undergoes a supercritical Hopf bifurcation. In other 

words, for −14 ≤ 𝛾 < −7.83, the undeformed configuration of system is stable when 

𝑈𝑠𝑢𝑝𝑒𝑟 < 𝑈 < 𝑈𝑓. In the case of subcritical buckling i.e., 𝛾 < −14, different scenarios may take 

place depending on the gravity parameter and the mass ratio. For example, when 𝛾 = −20, the 

undeformed configuration of system becomes stable at 𝑈𝑠𝑢𝑏
𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 and it remains stable until 𝑈𝑓. 

Since 𝑈𝑓 > 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

, the undeformed configuration of system is stable for 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤<𝑈 ≤ 𝑈𝑠𝑢𝑏

ℎ𝑖𝑔ℎ
 and the 

system has three different stable positions in the aforementioned range. For another example, when 

𝛾 = −30 and 𝛽 = 0.17 or 0.25, 𝑈𝑓 < 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 which means the system has three different stable 

positions for 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤<𝑈 < 𝑈𝑓 and the system undergoes post-supercritical buckling or post-flutter for 

𝑈𝑓  <𝑈 < 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

. For 𝛾 = −30 and 𝛽 = 0.37 or 0.45, the system experiences a similar scenario to 𝛾 =

−20.  

 

Figure 7: Locus of the critical flow velocities for the buckling and flutter instabilities. 

The generic behavior of system with 𝛽 = 0.17, 𝛾 = −5, −10, −20, and 0 ≤ 𝑈 ≤ 10 are 

displayed in Figures 8-10. As seen from the plots in these figures, the system undergoes three 

different scenarios depending on the gravity parameter, 𝛾. In the first scenario related to 𝛾 = −5, 

the undeformed configuration of system is stable and then becomes unstable by a flutter instability 

at a critical flow velocity 𝑈𝑓 = 5.2006. For the flow velocities greater than the critical one, the 

system experiences a supercritical Hopf bifurcation. In the second scenario corresponding to 𝛾 =

−10, the undeformed configuration of system is unstable and the system has two symmetric stable 

positions related to the supercritical buckling. At a critical flow velocity 𝑈𝑠𝑢𝑝𝑒𝑟 = 1.7969, two 
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stable positions vanish and the undeformed configuration of system becomes stable. Afterward, 

the undeformed configuration of system loses its stability at a critical flow velocity 𝑈𝑓 = 4.8732 in 

which the system undergoes flutter instability by a supercritical Hopf bifurcation. In the third 

scenario associated with 𝛾 = −20, the system has two symmetric stable positions due to subcritical 

buckling when  𝑈 < 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

= 3.2220. The undeformed configuration of system is unstable until 𝑈 ≤

𝑈𝑠𝑢𝑏
𝑙𝑜𝑤 = 3.0474 and then becomes stable; therefore, the system finds three stable positions, along 

with two symmetric unstable positions when 3.0474 < 𝑈 < 3.2220. Afterwards, both the 

symmetric stable and unstable positions disappear and the undeformed configuration becomes 

unstable again due to the occurrence of supercritical Hopf bifurcation at 𝑈𝑓 = 4.1952. It is worth 

noting that the plots in Figure 8 indicate the tip rotation angle of system rises when the flow 

velocity is increased for all three cases. 

  

 

Figure 8: The tip rotation of pipe when 𝛽 = 0.17; a) 𝛾 = −5, b) 𝛾 = −10, c) 𝛾 = −20.   



14 

 

  
 

 

Figure 9: The tip transverse displacement of pipe corresponding to Figure 8; a) 𝛾 = −5, b) 𝛾 = −10; c) 𝛾 =

−20.   
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Figure 10: The tip axial displacement of pipe corresponding to Figure 8; a) 𝛾 = −5, b) 𝛾 = −10; c) 𝛾 = −20. 

The two symmetric stable positions of system with 𝛾 = −10 and −20, respectively, pertinent to 

the supercritical and subcritical bucklings are shown in Figure 11. It can be observed when the 

flow velocity gradually rises, the system with 𝛾 = −10 settles down at its undeformed 

configuration for 𝑈 = 1.7969. In the case of 𝛾 = −20, a different scenario exists due to a gradual 

increase in the flow velocity. The system is under deformation until 𝑈 = 3.2220, but a small 

increase in this critical flow velocity results in a jump, and the system settles down at its 

undeformed configuration (see Figure 8c).        

  

Figure 11: Evolution of the stable buckled shapes of pipe corresponding to the non-trivial solutions when 𝛽 =

0.17; a) 𝛾 = −10 (supercritical buckling), b) 𝛾 = −20 (subcritical buckling). 

The evolution of pipe shapes in the post-flutter region for the third case investigated in Figures 

8-10 is exhibited in Figure 12. Additionally, the corresponding phase planes of system for the tip 

rotation angle, tip axial, and transverse displacements are displayed in Figure 13.    
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Figure 12: Shapes of the oscillating pipe in the post-flutter region when 𝛽 = 0.17, 𝛾 = −20; a) 𝑈 = 4.25, b) 

𝑈 = 4.5, c) 𝑈 = 5, d) 𝑈 = 5.5, e) 𝑈 = 7.5, f) 𝑈 = 10.     

  

 

Figure 13: Phase planes of the oscillating pipe in the post-flutter region corresponding to Figure 12. 



17 

 

In view of Figure 7, the scenarios plotted for the system with 𝛽 = 0.17 in Figures 8-10 can be 

similarly plotted for the systems with 𝛽 = 0.25, 37, and 0.45 with an exception for the critical flow 

velocity associated with the flutter instability. Therefore, for the aforementioned cases, only their 

post-flutter responses are studied in Figures 14-17. In order to better compare the results, the post-

flutter behavior of system with 𝛽 = 0.17 are also shown in these figures.      

  

  

Figure 14: The tip rotation of pipe in the post-flutter region; a) 𝛽 = 0.17, b) 𝛽 = 0.25, c) a) 𝛽 = 0.37, d) 𝛽 =

0.45. 
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Figure 15: The tip transverse displacement of pipe in the post-flutter region corresponding to Figure 14; a) 𝛽 =

0.17, b) 𝛽 = 0.25, c) a) 𝛽 = 0.37, d) 𝛽 = 0.45. 

  

  

Figure 16: The tip axial displacement of pipe in the post-flutter region corresponding to Figure 14; a) 𝛽 = 0.17, 

b) 𝛽 = 0.25, c) a) 𝛽 = 0.37, d) 𝛽 = 0.45. 

The general behavior of system with 𝛾 = −30 when 𝛽 = 0.17, 0.25, 0.37, and 0.45 are 

demonstrated in Figures 17-19 for the tip rotation angle, tip axial, and transverse displacements, 

respectively. For the system with 𝛾 = −30, the unstable and stable critical flow velocities, which 
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are related to the subcritical buckling, occur at 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤 = 3.0726 and 𝑈𝑠𝑢𝑏

ℎ𝑖𝑔ℎ
=4.0618, respectively. On 

the other hand, the critical flow velocities related to the flutter instability of 𝛽 = 0.17, 0.25, 0.37, 

and 0.45 are 𝑈𝑓 = 3.4732, 3.690, 4.0836, and 4.3853, respectively. Comparing 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 and 𝑈𝑓 shows 

that for 𝛽 = 0.17 and 0.25, 𝑈𝑓 is smaller than 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 which means that for 𝑈𝑠𝑢𝑏
𝑙𝑜𝑤 < 𝑈 < 𝑈𝑓, the 

system has three stable positions including two symmetric stable positions due to the subcritical 

buckling, along with its undeformed configuration, and for 𝑈𝑓 < 𝑈 < 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

, the system may 

undergo post-buckling or post-flutter (see Figures 17-19 a-b). Since 𝑈𝑓>𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 for 𝛽 = 0.37 and 

0.45, a similar scenario to that described for the system with 𝛽 = 0.17 and 𝛾 = −20 takes place for 

these cases. The described scenario for the system with 𝛾 = −30 when 𝛽 = 0.17 or 0.25 can occur 

for 𝛽 = 0.37 and 0.45 when the gravity parameter becomes small enough in which 𝑈𝑓 < 𝑈𝑠𝑢𝑏
ℎ𝑖𝑔ℎ

 (see 

Figure 7).  

  

  

Figure 17: The tip rotation of pipe when 𝛾 = −30; a) 𝛽 = 0.17, b) 𝛽 = 0.25, c) 𝛽 = 0.37, c) 𝛽 = 0.45.   
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Figure 18: The tip transverse displacement of pipe of pipe corresponding to Figure 17; a) 𝛽 = 0.17, b) 𝛽 = 0.25, 

c) 𝛽 = 0.37, c) 𝛽 = 0.45.   
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Figure 19: The tip axial displacement of pipe of pipe corresponding to Figure 17; a) 𝛽 = 0.17, b) 𝛽 = 0.25, c) 

𝛽 = 0.37, c) 𝛽 = 0.45.   

The general deformed shapes of system with 𝛾 = −30 and 𝛽 = 0.17 for 𝑈 = 3, 3.25, 4, and 4.25 

are exhibited in Figure 20. The plotted results indicate that the system has two symmetric stable 

positions when 𝑈 = 3, but it finds three stable positions when 𝑈 = 3.25. Additionally, the system 

may undergo post-buckling or post-flutter when 𝑈 = 4, but it only undergoes post-flutter when 

𝑈 = 4.25. The dynamic responses of system for 𝑈 = 3.25 and 4 under different initial conditions 

with positive values are plotted in Figure 21. The depicted results in Figure 21a related to Figure 

20b indicate that the system settles down at both the post-buckled position and undeformed 

configuration depending on the initial conditions. Besides, the results plotted in Figure 21b 

corresponding to Figure 20c illustrate that both the post-buckling or post-flutter scenarios can 

occur for the system depending on the initial conditions. However, both the plots in the figure 

show that the initial conditions do not affect the amplitude of post-buckled position and also the 

amplitude and frequency of post-flutter response. The responses of system with 𝛽 = 0.17 and 0.45 

when 𝑈 = 4.25 are also shown in Figure 22. In the case of 𝛽 = 0.17 corresponding to Figure 20c, 

the only response of system is post-flutter and in the case of 𝛽 = 0.45 (see Figure 17a) the only 

response of system is its undeformed configuration. The plots in Figure 22 demonstrate that the 

final steady-state response is independent of the initial conditions for both cases.          
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Figure 20: Shapes of the pipe when 𝛽 = 0.17, 𝛾 = −30; a) 𝑈 = 3, b) 𝑈 = 3.25, c) 𝑈 = 4, d) 𝑈 = 4.25.  

  

Figure 21: Time trace for the tip rotation of pipe under different initial conditions when 𝛽 = 0.17, 𝛾 = −30; a) 

𝑈 = 3.25, b) 𝑈 = 4. 
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Figure 22: Time trace for the tip rotation of pipe under different initial conditions when 𝛾 = −30, and 𝑈 = 4.25; 

a) 𝛽 = 0.17, b) 𝛽 = 0.45. 

5. Conclusion 

In the current study, the geometrically exact static responses and their stability characteristics 

for the standing cantilevered pipe conveying fluid are examined when the gravity parameter is in 

the range of −100 ≤ 𝛾 ≤ 0. The geometrically exact dynamic behavior, as well as the generic 

behavior of system, is also examined for −30 ≤ 𝛾, different values of the mass ratio 𝛽 =

0.17, 0.25, 37, and 0.45 when the flow velocity is in the range of 0 ≤ 𝑈 ≤ 10. Additionally, the 

geometrically exact quaternion-based model utilized for the dynamic analysis is verified by using 

the reported results in Ref. [50] which were obtained by the geometrically exact rotation-based 

model.    

The generic behavior of standing cantilevered pipe conveying fluid is strongly dependent on 

the gravity parameter, unlike the hanging one. It is due to the fact that a standing pipe with zero 

flow velocity may lose its stability and buckle due to its weight and it may undergo extremely 

large amplitude. Therefore, its undeformed configuration may not be stable, unlike the hanging 

one. The standing cantilevered pipe conveying fluid undergoes supercritical and subcritical 

bucklings when −14 ≤ 𝛾 < −7.83 and 𝛾 < −14, respectively. As well, the unstable critical flow 

velocity related to the subcritical buckling becomes zero at 𝛾 = −55.9 and this critical flow velocity 

disappears for 𝛾 > −55.9. In the case of supercritical buckling, the stable post-buckled branches 

become zero at a supercritical flow velocity when the flow velocity is increased, but these stable 

branches do not meet zero in the case of subcritical buckling. Moreover, in the subcritical buckling 

domain, the impact of increasing the flow velocity on the deformation of system diminishes when 

the gravity parameter is lessened.  

The system undergoes flutter instability by a supercritical Hopf bifurcation in which the mass 

ratio, together with the gravity parameter plays a significant role in the critical flow velocity in 

which the flutter occurs, as well as in the motion characteristics of self-excited periodic oscillations 

in the post-flutter region (see Figure 14). The stability of undeformed configuration prior to flutter 

is dependent on the gravity parameter. In the case of 𝛾 ≥ −7.83, the undeformed configuration is 
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stable before flutter. In the supercritical/subcritical buckling domain, it is unstable and becomes 

stable at the supercritical/unstable subcritical flow velocity and again loses its stability by flutter. 

In view of the described supercritical/subcritical buckling and supercritical Hopf bifurcation, four 

different scenarios come to pass when the flow velocity is increased. In the first scenario, the 

undeformed configuration of system is stable and becomes unstable via a flutter instability (see 

Figure 8a), similar to the hanging one. In the second scenario, the undeformed configuration of 

system is unstable, but it becomes stable via a supercritical buckling and remains stable previous 

to losing its stability via a flutter (see Figure 8b). In the third scenario, the system undergoes 

subcritical buckling and the undeformed configuration becomes stable at the lower subcritical flow 

velocity and then loses its stability via a flutter (Figures 8c and 17c-d). A main difference between 

this scenario with the previous one is the undeformed configuration and the symmetric stable 

positions due to the subcritical buckling are the stable positions of system when the flow velocity 

is between the lower and higher subcritical flow velocities. The fourth scenario is similar to the 

third one but with a major difference. In this scenario, the critical flow velocity in which the flutter 

instability takes place is between the lower and higher subcritical flow velocities (Figures 17a-b). 

In other words, the system undergoes post-buckling or post-flutter for some flow velocities. The 

dynamic analyses with a focus on the role of initial conditions indicate that different responses 

predicted for a specific case can be achieved when appropriate initial conditions are applied. 

              

Appendix A  
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Figure A1: Comparison studies for the tip axial displacements and shapes of pipe when 𝛽 = 0.142, 𝛾 = −18.9, 

and 𝛼 = 0.005  a) Chen et al. [50] via the geometrically exact rotation-based model with 𝑁 = 4, b, c, and d) present 

study using the geometrically exact quaternion-based model with 𝑁 = 4 & 5. 

  

 
 

Figure A2: Comparison studies for the tip rotations and tip transverse displacements of pipe corresponding to 

Figure A1a-b; a & c) Chen et al. [50], b & d) present study. 
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Figure A3: Comparison studies for the phase plane of pipe corresponding to Figure A1a & d; a) Chen et al. [50], 

b) present study. 
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