

www.iiec2015.org

Multi-Objective Reliability-Redundancy Allocation

for Non-Exponential Multi-State Repairable

Components

Ahmad Attar
a
, Sadigh Raissi

b
, Kaveh Khalili-Damghani

c

Industrial Engineering Faculty, Islamic Azad University, South Tehran Branch

 Tehran, Iran
a St_a_attar@azad.ac.ir, b Raissi@azad.ac.ir, c k_khalili@azad.ac.ir

Abstract— In recent years, little work has been done over

the joint reliability-redundancy allocation and in all of that,

exponential failure and repairs are assumed. In this paper

we focus on investigating the reliability-redundancy

allocation where the repair failure distributes are non-

exponential. When failure/repair times follow a distribution

other than exponential, analytical methods become too

complicated or even useless. In these cases simulation

methods like Mote Carlo and discrete event simulations are

typically preferred, but they usually take relatively long

time to estimate the availability of the system. This

weakness gets more important when we want to use them in

optimization algorithms. Here we offer a new discrete event

computer simulation package which can estimate

availability values in a reasonable time. Then we combine

the mentioned simulation method with genetic algorithm to

obtain optimal designs. These methods are illustrated with
their application using some numerical examples.

Keywords- Reliability Optimization; Non-Exponential;

Multi-State; Reparability; Simulation; Multi-Objective.

I. INTRODUCTION AND BACKGROUND

Reliability Optimization and designing reliable systems

with acceptable availability has always been a very

important task for managers and engineers and that is

because of the close relationship between

reliability/availability and other concepts like income,

quality and safety [1]. Many researchers have discussed

the reliability optimization problem with different
assumptions and each from certain point of view.

However, in general we can distinguish three different

approaches for this problem: (i) reliability allocation, (ii)

redundancy allocation, and (iii) joint reliability-

redundancy allocation.

The first type aims at determining the best reliability

specification for all components in the system without

making any changes in system structure [2-5]. While the

second approach tries to determine the optimal number of

redundant for each stage. This approach has been used by

a number of papers such as [6-7].

Component

R
ep

arab
ility

S
ta

te

Destribution

Fig. 1 Characterestics triangle

However, as explained in [8] , each of these approaches

can only result in partial optimizations. Thus, Misra and

Lobojevic first introduced the third approach by

combining the previews allocation models. So this type

of optimization utilizes the both options simultaneously,

i.e. adjusting components’ availability and determining

the number of components in subsystems.

For each of these allocation methodologies, components

have three major characteristics, namely component state,
reparability, and Failure/Repair distribution. We call this

the “characteristics triangle” (Fig 1). The number of

states available for the component forms the first side of

this triangle. Each component has at least two possible

states: perfect functioning and complete failure.

Engineering system can usually take some medial states

in addition to these basic states. Components with only

two possible states are commonly called binary state and

those with more than two states are called multi-state

components [1]. On the next side, we determine whether

the component is repairable or not. Failure and repair

mailto:St_a_attar@azad.ac.ir
mailto:Raissi@azad.ac.ir
mailto:k_khalili@azad.ac.ir

www.iiec2015.org

distributions are the other important attribute of a

component that is indicated on the last side of this

triangle. In reliability theory, Exponential, normal,

lognormal and weibull are the commonly used life and

repair distributions.

Among all the possible combinations of these

characteristics, authors have always focused on some

specific and simplified assumptions. For instance, in joint

reliability-redundancy allocation, Misra and

Lobojevic [8] discussed binary state and repairable

components. Since then, many papers were limited to
those characteristics and except for very few papers

like [10], all the studies in binary state components

neglected the repair option. Tian et.al. [11], for the first

time, considered multi-state components with this

approach and in [12] this problem was extended to

include repairable components. Recently, Hamedani and

Khorshidi [13] investigated the model formulated

in [12]using time value of money. The last two references

applied a practical approach for the joint reliability-

redundancy optimization. In this new approach, instead

of determining the failure and repair rates directly as

design variables, they used technical and organization
actions to promote the component failure and repairs

distribution [13]. The key idea behind this is that actions

like installing a condition monitoring system or applying

certain maintenance program can affect the state

transition rates (or distributions) of the multi-state

component. Therefore this methodology involves three

factors that can affect the system overall availability: (1)

different component versions for each subsystem, (2)

redundancy, (3) technical and organizational actions [12].

Back to the characteristics triangle, failure and repair

distributions in reliability-redundancy optimization have
always been considered to be exponential and other

distributions have been neglected in this field. The main

reason for this simplification is to use Marcov method to

calculate components’ state distribution and duo to this

fact that common analytical methods can become too

complicated or even inappropriate when dealing with

more realistic assumptions. On the contrary, Bowles [14]

pointed out the consequences of using such

simplifications. He compared the reliability of an

example system with weibull distribution in both original

and simplified exponential conditions (with the same

mean values) and concluded that such supposition can
lead to either over estimating or underestimating the

overall system reliability.

Monte Carlo (MC) and discrete event simulation (DES)

are two possible alternatives to handle more realistic

assumptions that support almost all distributions. Both of

these methods have been used reliability and availability

estimations on the presents of non-exponential

distributions. For example, Marsequerra et.al. [9]

proposed a MC simulation method for binary state non-

exponential components. More recently, Lins and

Droguett [5]offered a DES method for availability

estimation with repairable binary state systems.

The main challenge for using simulation methods is that

basically these are much more time consuming than the

traditional analytical methods. This becomes more

important when they are used in population based

optimization algorithms like genetic algorithm (GA).

Given that, in each iteration of these algorithms we have

to evaluate the availability for all chromosomes which

comes to several thousands of availability estimations.

In order to overcome this difficulty, both [9] and [5] have
proposed methods to decrease the simulation time. The

firstreferenceproposed“drop-by-drop”simulationwhich

is based on this fact that good chromosomes usually

appear in successive generations (Elitism). They estimate

the reliability of all chromosomes in every iteration with

a relatively low accuracy and record them. These

recorded values are updated in the next iteration if the

same chromosome was selected for the new population.

Consequently, the best chromosomes will gradually

obtain reliability estimates with the desired accuracy. For

this reason, they have analogized this process to filling a

glass of water. Nevertheless, this method always suffers
from unlikeness in the accuracy of the estimated

reliability values among different chromosomes of a

single population which causes imprecise comparisons

and selections.

On the other hand, Lins and Droguett [5] divided the

mission time into 30 steps and evaluated the system at the

end of each step to avoid continuous calculations and

reduce the simulation time. But limiting the evaluations

to this relatively low number of steps will significantly

affect the accuracy of the estimates. Moreover, regardless

to the mentioned issues, these two methods, like other
simulation methodologies offered for this, sill take at

least few seconds to estimate the reliability/availability of

an average system [15].

Here we focus on offering a multi-objective version the

reliability-redundancy model proposed in [12] and

extending it from the third side of the triangle to support

non-exponential and more realistic distributions for

multi-state repairable components.

We introduce a new DES for the series-parallel system in

a relatively new simulation software which decreases the

simulation time without suffering from the above

mentioned issues, so it offers continuous availability
check and homogeneous estimation accuracy at the same

time. Furthermore, we combine the proposed DES with

GA to get the optimum design.
The rest of the paper is organized as follows: in the

next section we explain the designed availability
estimation package and validate it using some analytical
examples. Section 3 contains the mathematical model.
The meta-heuristic algorithm is explained in section 4. An
illustrative example is provided and discussed in section
5. And finally, some concluding remarks are given in
section 6.

www.iiec2015.org

II. DISCRETE EVENT COMPUTER SIMULATION

For the first time in reliability optimization, we take
advantage of a relatively new simulation software named
“Enterprise Dynamics (ED)”. This software is offers
object oriented simulation modeling and excellent 2D and
3D environments that help modeling and understanding
complex real systems. Here, we design new atoms (ED
objects) for this software to add multi-state availability
estimation capability to it. The designed package includes
three atoms: Multi-state Server, Subsystem atom, and
Availability Monitor.

A. Multi-state Server

This atom models the multi-state components. There
are two major events that happen in multi-state
components: Failure event, Repair event. The failure
event is the event through which the component goes to a
lower performance rate. Improving the component
condition and restoring its performance rate is called
repair event. These failure and repair events occur within
random failure and repair times respectively and in each
state, they follow certain distributions. For state j, we

denote the failure and repair distributions by TTFj and
TTRj respectively. Fig. 2 illustrates the occurrence of
these events for an example multi-state component.

F
a

il
u

r
e
 E

v
e
n

t

F
a

il
u

r
e
 E

v
e
n

t

F
a

il
u

r
e
 E

v
e
n

t

F
a

il
u

r
e
 E

v
e
n

t

R
e
p

a
ir

 E
v

e
n

t

R
e
p

a
ir

 E
v

e
n

t

R
e
p

a
ir

E

v
e
n

t

R
e
p

a
ir

 E
v

e
n

t

TTF1 TTF2TTF1 TTF2TTR3TTR2 TTR2TTR3

State

Time

(Perfect Functioning) 1

2

(Complete Failure) 3

Fig. 2 Failure and repair events occurrence over time
in a multi-state component

We imitate this process in the Multi-state Server atom
by defining two events in the event handler of this object

Forget the Scheduled

Repair Event

j := j + 1

Fi :=a Random number Generated from

TTF Distribution of Component i in State j

Ri := a Random number Generated from

TTR Distribution of Component i in State j

j < NSi

Yes

Start

End

No

Forget the Scheduled

Failure Event

j := j - 1

 j > 1

Start

End

No

Schedule the Failure Event for Fi time units

from now

Schedule the Repair Event for Ri time units

from now

Fi :=a Random number Generated from

TTF Distribution of Component i in State j

Schedule the Failure Event for Fi time units

from now

Ri := a Random number Generated from

TTR Distribution of Component i in State j

Schedule the Repair Event for Ri time units

from now

Yes

Repair eventFailure Event

j :=Initial State

Fi :=a Random number Generated from

TTF Distribution of Component i in State j

Ri := a Random number Generated from

TTR Distribution of Component i in State j

j < NSi

Yes

Start

End

No

Schedule the Failure Event for F i time units

from now

Schedule the Repair Event for R i time units

from now

j > 1

No

Yes

Triggering process

Fig. 3 Failure and repair events and the triggering flowcharts in Multi-state Server

www.iiec2015.org

(Fig. 3). As seen in these flowcharts, both events
reschedule the failure and repair events for the future and
form an endless loop of failures and repairs, which is
exactly what happens in real components. All we have to
do is to trigger this loop. But this triggering process has to
be done based on the initial states assumed for the
components (Fig. 3). Note that we trigger the loop only
once and at the very first moment of the simulation. In
addition, we designed a 2D representation for this atom
and included some indicators to visually monitor
components’ conditions. One of the advantages of this
software and the designed atom is the resemblance of its
2D layout to usual reliability diagrams. For an example
series-parallel system, Fig. 4 compares the ordinary
diagram and the corresponding simulation model.

Version 1

3 States

Version 3

4 States

Version 3

4 States

Version 2

4 States

Version 4

3 States

Version 4

3 States

Version 4

3 States

Version 1

3 States

Sub-System 1

Sub-System 2

(a)

(b)

Fig. 4 an example series-parallel diagram and the related ED model

B. Subsystem atom

The main intentions of creating this atom is to link
parallel components, aggregate the total performance

rates/outputs of each subsystem, and determine its

condition (up or down) regarding to the desired demand.

In order to connect each Multi-state Server to the related

subsystem, we just need to connect its central channel to

an input channel on the subsystem.

C. Availability Monitor

This atom is where we calculate the availability of the

system. In many cases we are mainly concerned with

estimating the availability for systems that will run for a

long time [1]. Hence, many papers with analytical

approaches have considered this type of availability for

their optimization model [12-13]. Eq. 1 is a common

formula for the asymptotic or steady-state availability
which uses the instantaneous availability concept to

define the long run availability.

 (1)

However, steady-state availability has been neglected in

most of the simulation based reliability studies. As seen

in the formula, to achieve this type of availability using

typical simulation models, we have to perform

significantly long runs of simulation to get the

instantaneous availability in the steady-state and this has

always been impractical. For this reason, all simulation
based studies have focused on small t values.

In this paper, we use another type of availability to

overcome this limitation. There is an availability formula

that is used for real running systems, called “Achieved

Availability”[16]. In real systems there is no replication

to get the instantaneous availability, but we have the

down and up time that has actually happened. So the

availability can be given by [16]:

 (2)

Since the simulation model imitates the real system

behavior, we calculate and report in this atom.
Moreover, unlike the DES presented in [13], we take a

continuous evaluation of the system availability and as

seen Fig. 5 this atom shows the availability in real time.

Fig. 5 2D representation of the availability monitor atom in ED

For the real time evaluations, we use a signaling function

in Multi-state Servers, so when it changes states, it

triggers the evaluations and system state and total up and

down times are updated. This way, we offer the real time

availability with the maximum accuracy without the need

to spending CPU-time over unnecessary evaluations.
Furthermore, this type of availability also converges to

the steady-state availability value [16]:

 (3)

D. Model validation

Here we check the validity of the proposed simulation

package using a numerical example from Ref. [12]. The

www.iiec2015.org

configuration of this example system is given in Table 1.

The desired demand is 1000 and the reported availability

for this example is %95.39 which is derived by using

Marcov and Universal generating function (UGF)

methods in the reference paper.

Table 1 Validation example settings taken from [12]

SubSystem Version Redundancy Actions

1 1 5 {8}
 2 8 {8}
 3 1 {8}

2 1 4 {4}
 2 2 {4}
 3 2 {3,4}
 4 2 {4}

After setting the parameters in the related subsystem

atoms, creating the simulation model, we perform 30

sample runs of this model and reported the data in Table

2. The duration of each run is considered to be 10,000

time units to make sure that all samples are taken at the
steady-state conditions. Note that, each of these long

simulation runs has just taken one second using this new

simulation package that is much less than the time

reported by other simulation methods in the literature

[15].

Table 2 The estimated availabilities for the validation example

Estimate Availabilities
0.8952 0.8946 0.8954 0.8944 0.8883 0.8929
0.8911 0.8940 0.8981 0.8927 0.8932 0.8912
0.8947 0.8910 0.9002 0.9003 0.8911 0.8934
0.8886 0.8947 0.8844 0.8892 0.8920 0.8998
0.8932 0.8953 0.8985 0.8912 0.8890 0.8851

In order to compare these results with the percentage

reported by [12], we undertake a one sample t-test. This

statistical test checks whether the mean value of the

simulated availabilities is equal to the one reported by the

reference. In other words, the following hypotheses are

evaluated:

 and

0.9050.9000.8950.8900.8850.880

99

95

90

80

70

60

50

40

30

20

10

5

1

Simulated Availability

P
e

rc
e

n
t

Mean 0.8931

StDev 0.003991

N 30

AD 0.324

P-Value 0.510

Probability Plot of Simulated Availability
Normal - 95% CI

Fig. 6 Normality test for the simulateed data in Table 2

This test requires normal data, so we performed

normality test for the simulated data (Fig. 6).The

hypothesis test resulted in p-value of 0.599 (Fig. 7),

which indicates that there is no sufficient evidence to

reject and the simulation results are statistically

acceptable.

Fig. 7 t-test results for the validation example

III. MATHEMATICAL MODEL

Here we propose a multi-objective version of the model

presented in [12]:

 (4)

S.t.

 (5)

 (6)

 (7)

 (8)

 (9)

Where the design variable vector is denoted by X and is

defined in Eq. (10). and are the availability

and cost for the designed system. Cost and availability

limits are symbolized by and respectively.

) (10)

 (11)

Here
 is a Boolean variable and represents

performing action on version components of

subsystem . Similar to [12] and [13] here we take into

account component level actions for subsystem , and

 is the number of subsystem level actions.

Total cost of a parallel-series system is the summation of

subsystems’costs.

 (12)

 (13)

Subsystem cost includes the costs associated with

components (
) and costs of applying technical and

organizational actions (
). Where the component cost

consists of the related fixed cost of installing components

in the subsystem (
) and the installation/purchase cost

of each component. Action cost of subsystem is given

on Eq. (15). The first part of this equation represents the

fixed (
) and variable (

) costs of applying
component level actions and the rest is related to the

subsystem level actions.

 (14)

 (15)

We utilize the weighting technique used by [5] to

transform the above optimization model into a single

www.iiec2015.org

objective model. In this case the objective function is

presented by Eq. 16.

 (16)

 and are arbitrary values that can be determined by

the designer. Otherwise we can offer a set of Pareto
optimal solutions by checking different weight values.

IV. COMBINING ED WITH GENETIC ALGORITHM

In this paper we use genetic algorithm to solve the

optimization model. This method has been used by many

researchers and is the most applied meta-heuristic method

in the field of reliability optimization [12-13]. One of the

most important parts of utilizing this algorithm is to

define the solution representation. We define an N parted

chromosome for this problem, which contains all and

 and

 variables. One of the challenges that have
estranged researchers from using universal simulation

programs (like ED) in reliability optimization is

connecting the simulation software to the software in

which the optimization algorithm is coded. We take

advantage of the AxtiveX standard to transfer commands

and data between ED and Matlab (where we coded GA).

The following steps are taken for this connection:

(i) Establishing the ActiveX link and loading the

necessary files in ED,

(ii) Converting the chromosome into the acceptable

form for ED,

(iii) Setting the converted design in the related atoms,

(iv) Creating the simulation model and setting the

speed and simulation time,

(v) Starting the simulation run and waiting for its

completion,

(vi) Reading the availability from the simulation

software.

Except for the first step which is only done once at the
very initial iteration of the algorithm, Matlab is

programmed to perform these steps every time that we

have to estimate the availability of a new chromosome,

i.e. hundreds of times in each iteration.

V. ILLUSTRATIVE EXAMPLE

In this section, we investigate a non-exponential version
of the numerical example discussed in [12] and [13]. Like

the reference example, we assume a system with two

subsystems, three component versions for the first

subsystem and four versions for the components in the

second subsystem. Number of actions is considered to be

8 and 4 for subsystem 1 and 2 respectively.
 is assumed

50 and 60 for these subsystems.

 In subsystem 1, actions 1-5 are component level actions

and the rest is subsystem level action. Actions {1,2},

{3,4} and {6,7,8} in this subsystem are considered

mutually exclusive. Table 3 contains the performance

rates, failure and repair distributions in different states

and the unit cost of the components in this subsystem.

The effect of the actions on component versions 1-3 for

subsystem 1 are given in Tables 4 to 6.

Table 4 Action effects over version 1 components of subsystem 1

Action type

Component

level

1 0.5 5 1.1 1 1 1

2 2 7.5 1.25 1 1 1
3 4 15.5 1.25 1.1 1 1
4 0 20 1.4 1.25 1 1
5 10 2 1 1 1 0.7

Subsystem

level

1 32 0 1 1 0.7 0.8

2 40 0 1 1 0.7 0.7
3 53 0 1 1 0.35 0.5

Table 5 Action effects over version 2 components of subsystem 1

Action type

Component

level

1 0.5 5 1 1 1 1

2 2.5 7.5 1 1 1 1

3 4.5 15.5 1.25 1 1 1

4 0 20 1.4 1.1 1 1

5 10 2 1 1 1 0.6

Subsystem

level

1 32 0 1 1 1 0.8

2 40 0 1 1 0.8 0.6

3 53 0 1 1 0.5 0.4

Table 3 parameters of components of subsystem 1

TTF TTR

State 1 State 2 State 2 State 3

* Weibull (λ , k); λ : Scale parameter, k : Shape parameter

www.iiec2015.org

Table 6 Action effects over version 3 components of subsystem 1

Action type

Component

level

1 0.5 5 1 1 1 1

2 2 7.5 1 1 1 1

3 5 15.5 1 1 1 1

4 0 21 1 1.1 1 1

5 10 2.5 1 1 1 0.7

Subsystem

level

1 32 0 1 1 0.8 1

2 40 0 1 1 0.7 0.7

3 53 0 1 1 0.3 0.5

For subsystem 2, only one subsystem level action is

assumed (action 4) and here all of the actions are

independent. The number of states available for the
components in subsystem 1 and 2 is assumed 3 and 2

respectively (exactly like [12]).

Table 7 Components specifications for subsystem 2

 TTF TTR

For each version of components in this subsystem, Table

7 presents the performance rates, failure and repair

distributions and the unit cost and the effect of the actions

is given in the following tables:

Table 8 Action effects for version 1 components in subsystem 2

Action type

Component

level

1 2 4 1.1 1

2 0 16 1.7 1
3 9 12 1 0.45

Subsystem

level
1 10 0 1.1 0.4

Table 9 Action effects for version 2 components in subsystem 2

Action type

Component

level

1 2 5 1.1 1

2 0 16 1.6 1

3 9 14 1 0.5

Subsystem level 1 150 0 1 0.45

Table 10 Action effects for version 3 components in subsystem 2

Action type

Component

level

1 2 5 1 1

2 0 16 1.3 1

3 9 13 1 0.6

Subsystem
level

1 150 0 1 0.55

Table 11 Action effects for version 4 components in subsystem 2

Action type

Component

level

1 2 5 1 1

2 0 16 1.3 1

3 9 13 1 0.45

Subsystem

level
1 150 0 1 0.6

Like [12] and [13], for this example the population size is

to 100 and we consider 200 iterations in the genetic

algorithm. Besides, and values are supposed to be

100 and 0.25. and the demand is considered and

are considered to be 0.9 and 600 respectively. The

following table shows the optimum design for this

example.

Table 12 solution of the illustative example

SubSystem Version Redundancy Actions

1 1 1 {8}

 2 4 {8}

 3 1 {8}

2 1 0

 2 1 {3}

 3 3

 4 0

VI. CONCLUSION

In this paper, we investigated the multi-objective joint

reliability-redundancy allocation problem for multi-state

series-parallel systems with repairable components and

non-exponential distributions. We presented a new

discrete event simulation package for Enterprise

Dynamics simulation software that offered the

availability estimations in a reasonable CPU-time. Then
we combined this simulation method with genetic

algorithm to get the best design for the problem. ActiveX

programming standards were used for this purpose. We

investigated the methods presented in this paper using a

numerical example.

www.iiec2015.org

REFERENCES

[1] Xie, M., Dai, Y., & Poh, K. (2004). Computing System Reliability

Models and Analysis, Springer

[2] Ramirez-Marquez, J. E., & Coit, D. W. (2004). A heuristic for

solving the redundancy allocation problem for multi-state series-
parallel systems. Reliability Engineering & System Safety, 83(3),

341-349.

[3] Tian, Z., & Zuo, M. J. (2006). Redundancy allocation for multi-
state systems using physical programming and genetic algorithms.

Reliability Engineering & System Safety, 91(9), 1049-1056

[4] Li, C. Y., Chen, X., Yi, X. S., & Tao, J. Y. (2010). Heterogeneous
redundancy optimization for multi-state series–parallel systems

subject to common cause failures. Reliability Engineering &
System Safety, 95(3), 202-207.

[5] Lins, I. D., & Droguett, E. L. (2011). Redundancy allocation

problems considering systems with imperfect repairs using multi-
objective genetic algorithms and discrete event simulation.

Simulation Modelling Practice and Theory, 19(1), 362-381.

[6] Yalaoui, A., Chu, C., & Châtelet, E. (2005). Reliability allocation
problem in a series–parallel system. Reliability engineering &

system safety, 90(1), 55-61.

[7] Tian, P., Wang, J., Zhang, W., & Liu, J. (2009, May). A fault tree
analysis based software system reliability allocation using genetic

algorithm optimization. In Software Engineering, 2009. WCSE'09.
WRI World Congress on (Vol. 2, pp. 194-198). IEEE.

[8] Misra, K. B., & Ljubojevic, M. D. (1973). Optimal reliability
design of a system: a new look. Reliability, IEEE Transactions on,

22(5), 255-258.

[9] Marseguerra, M., Zio, E., Podofillini, L., & Coit, D. W. (2005).

Optimal design of reliable network systems in presence of
uncertainty. Reliability, IEEE Transactions on, 54(2), 243-253.

[10] Elegbede, C., & Adjallah, K. (2003). Availability allocation to

repairable systems with genetic algorithms: a multi-objective
formulation. Reliability Engineering & System Safety, 82(3), 319-

330.

[11] Tian, Z., Zuo, M. J., & Huang, H. (2008). Reliability-redundancy
allocation for multi-state series-parallel systems. Reliability, IEEE

Transactions on, 57(2), 303-310.

[12] Tian, Z., Levitin, G., & Zuo, M. J. (2009). A joint reliability–
redundancy optimization approach for multi-state series–parallel

systems. Reliability Engineering & System Safety, 94(10), 1568-
1576.

[13] Hamadani, A. Z., & Khorshidi, H. A. (2013). System reliability

optimization using time value of money. The International
Journal of Advanced Manufacturing Technology, 1-10.

[14] Barlow, R. E., & Wu, A. S. (1978). Coherent systems with multi-

state components. Mathematics of Operations Research, 3(4),
275-281.

[15] Zio, E., Podofillini, L., & Levitin, G. (2004). Estimation of the
importance measures of multi-state elements by Monte Carlo

simulation. Reliability Engineering & System Safety, 86(3), 191-
204.

[16] Handbook, M. H. E. D. (1998). MIL-HDBK-338B. US

Department of Defense, 1.

	I. Introduction and Background
	II. Discrete Event Computer Simulation
	A. Multi-state Server
	B. Subsystem atom
	C. Availability Monitor
	D. Model validation

	III. Mathematical model
	IV. Combining ED with Genetic Algorithm
	V. Illustrative example
	VI. Conclusion
	References

