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Abstract— In recent years, little work has been done over 

the joint reliability-redundancy allocation and in all of that, 

exponential failure and repairs are assumed. In this paper 

we focus on investigating the reliability-redundancy 

allocation where the repair failure distributes are non-

exponential. When failure/repair times follow a distribution 

other than exponential, analytical methods become too 

complicated or even useless. In these cases simulation 

methods like Mote Carlo and discrete event simulations are 

typically preferred, but they usually take relatively long 

time to estimate the availability of the system. This 

weakness gets more important when we want to use them in 

optimization algorithms. Here we offer a new discrete event 

computer simulation package which can estimate 

availability values in a reasonable time. Then we combine 

the mentioned simulation method with genetic algorithm to 

obtain optimal designs. These methods are illustrated with 
their application using some numerical examples. 

Keywords- Reliability Optimization; Non-Exponential; 

Multi-State; Reparability; Simulation; Multi-Objective. 

I. INTRODUCTION AND BACKGROUND 

Reliability Optimization and designing reliable systems 

with acceptable availability has always been a very 

important task for managers and engineers and that is 

because of the close relationship between 

reliability/availability and other concepts like income, 

quality and safety ‎[1]. Many researchers have discussed 

the reliability optimization problem with different 
assumptions and each from certain point of view. 

However, in general we can distinguish three different 

approaches for this problem: (i) reliability allocation, (ii) 

redundancy allocation, and (iii) joint reliability-

redundancy allocation.  

The first type aims at determining the best reliability 

specification for all components in the system without 

making any changes in system structure [2-5]. While the 

second approach tries to determine the optimal number of 

redundant for each stage. This approach has been used by 

a number of papers such as [6-7].  
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Fig. 1 Characterestics triangle 

However, as explained in ‎[8] , each of these approaches 

can only result in partial optimizations. Thus, Misra and 

Lobojevic first introduced the third approach by 

combining the previews allocation models. So this type 

of optimization utilizes the both options simultaneously, 

i.e.‎ adjusting‎ components’‎ availability and determining 

the number of components in subsystems.  

For each of these allocation methodologies, components 

have three major characteristics, namely component state, 
reparability, and Failure/Repair distribution. We call this 

the‎ “characteristics‎ triangle”‎ (Fig 1). The number of 

states available for the component forms the first side of 

this triangle. Each component has at least two possible 

states: perfect functioning and complete failure. 

Engineering system can usually take some medial states 

in addition to these basic states. Components with only 

two possible states are commonly called binary state and 

those with more than two states are called multi-state 

components ‎[1]. On the next side, we determine whether 

the component is repairable or not. Failure and repair 
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distributions are the other important attribute of a 

component that is indicated on the last side of this 

triangle. In reliability theory, Exponential, normal, 

lognormal and weibull are the commonly used life and 

repair distributions. 

Among all the possible combinations of these 

characteristics, authors have always focused on some 

specific and simplified assumptions. For instance, in joint 

reliability-redundancy allocation, Misra and 

Lobojevic ‎[8] discussed binary state and repairable 

components. Since then, many papers were limited to 
those characteristics and except for very few papers 

like ‎[10], all the studies in binary state components 

neglected the repair option. Tian et.al. ‎[11], for the first 

time, considered multi-state components with this 

approach and in ‎[12] this problem was extended to 

include repairable components. Recently, Hamedani and 

Khorshidi [13] investigated the model formulated 

in ‎[12]using time value of money. The last two references 

applied a practical approach for the joint reliability-

redundancy optimization. In this new approach, instead 

of determining the failure and repair rates directly as 

design variables, they used technical and organization 
actions to promote the component failure and repairs 

distribution [13]. The key idea behind this is that actions 

like installing a condition monitoring system or applying 

certain maintenance program can affect the state 

transition rates (or distributions) of the multi-state 

component. Therefore this methodology involves three 

factors that can affect the system overall availability: (1) 

different component versions for each subsystem, (2) 

redundancy, (3) technical and organizational actions [12]. 

Back to the characteristics triangle, failure and repair 

distributions in reliability-redundancy optimization have 
always been considered to be exponential and other 

distributions have been neglected in this field. The main 

reason for this simplification is to use Marcov method to 

calculate‎ components’‎ state‎ distribution‎ and‎ duo‎ to‎ this‎

fact that common analytical methods can become too 

complicated or even inappropriate when dealing with 

more realistic assumptions. On the contrary, Bowles [14] 

pointed out the consequences of using such 

simplifications. He compared the reliability of an 

example system with weibull distribution in both original 

and simplified exponential conditions (with the same 

mean values) and concluded that such supposition can 
lead to either over estimating or underestimating the 

overall system reliability.  

Monte Carlo (MC) and discrete event simulation (DES) 

are two possible alternatives to handle more realistic 

assumptions that support almost all distributions. Both of 

these methods have been used reliability and availability 

estimations on the presents of non-exponential 

distributions. For example, Marsequerra et.al. ‎[9] 

proposed a MC simulation method for binary state non-

exponential components. More recently, Lins and 

Droguett ‎[5]offered a DES method for availability 

estimation with repairable binary state systems. 

The main challenge for using simulation methods is that 

basically these are much more time consuming than the 

traditional analytical methods. This becomes more 

important when they are used in population based 

optimization algorithms like genetic algorithm (GA). 

Given that, in each iteration of these algorithms we have 

to evaluate the availability for all chromosomes which 

comes to several thousands of availability estimations.  

In order to overcome this difficulty, both [9] and [5] have 
proposed methods to decrease the simulation time. The 

first‎reference‎proposed‎“drop-by-drop”‎simulation‎which‎

is based on this fact that good chromosomes usually 

appear in successive generations (Elitism). They estimate 

the reliability of all chromosomes in every iteration with 

a relatively low accuracy and record them. These 

recorded values are updated in the next iteration if the 

same chromosome was selected for the new population. 

Consequently, the best chromosomes will gradually 

obtain reliability estimates with the desired accuracy. For 

this reason, they have analogized this process to filling a 

glass of water. Nevertheless, this method always suffers 
from unlikeness in the accuracy of the estimated 

reliability values among different chromosomes of a 

single population which causes imprecise comparisons 

and selections.  

On the other hand, Lins and Droguett [5] divided the 

mission time into 30 steps and evaluated the system at the 

end of each step to avoid continuous calculations and 

reduce the simulation time. But limiting the evaluations 

to this relatively low number of steps will significantly 

affect the accuracy of the estimates. Moreover, regardless 

to the mentioned issues, these two methods, like other 
simulation methodologies offered for this, sill take at 

least few seconds to estimate the reliability/availability of 

an average system [15].  

Here we focus on offering a multi-objective version the 

reliability-redundancy model proposed in [12] and 

extending it from the third side of the triangle to support 

non-exponential and more realistic distributions for 

multi-state repairable components. 

We introduce a new DES for the series-parallel system in 

a relatively new simulation software which decreases the 

simulation time without suffering from the above 

mentioned issues, so it offers continuous availability 
check and homogeneous estimation accuracy at the same 

time. Furthermore, we combine the proposed DES with 

GA to get the optimum design. 
The rest of the paper is organized as follows:  in the 

next section we explain the designed availability 
estimation package and validate it using some analytical 
examples. Section 3 contains the mathematical model. 
The meta-heuristic algorithm is explained in section 4. An 
illustrative example is provided and discussed in section 
5. And finally, some concluding remarks are given in 
section 6. 
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II. DISCRETE EVENT COMPUTER SIMULATION 

For the first time in reliability optimization, we take 
advantage of a relatively new simulation software named 
“Enterprise‎ Dynamics‎ (ED)”.‎ This‎ software‎ is‎ offers‎
object oriented simulation modeling and excellent 2D and 
3D environments that help modeling and understanding 
complex real systems. Here, we design new atoms (ED 
objects) for this software to add multi-state availability 
estimation capability to it. The designed package includes 
three atoms: Multi-state Server, Subsystem atom, and 
Availability Monitor. 

A. Multi-state Server 

This atom models the multi-state components. There 
are two major events that happen in multi-state 
components: Failure event, Repair event. The failure 
event is the event through which the component goes to a 
lower performance rate. Improving the component 
condition and restoring its performance rate is called 
repair event. These failure and repair events occur within 
random failure and repair times respectively and in each 
state, they follow certain distributions. For state j, we 

denote the failure and repair distributions by TTFj and 
TTRj respectively. Fig. 2 illustrates the occurrence of 
these events for an example multi-state component.  
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Fig. 2  Failure and repair events occurrence over time 
in a multi-state component 

We imitate this process in the Multi-state Server atom 
by defining two events in the event handler of this object 

Forget the Scheduled 

Repair Event

j := j + 1

Fi :=a Random number  Generated from 

TTF Distribution of Component i in State j

Ri := a Random number  Generated from 

TTR Distribution of Component i in State j

j < NSi

Yes

Start

End

No

Forget the Scheduled 

Failure Event

j := j - 1

 j  > 1

Start

End
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Schedule the Failure Event for Fi time units 

from now

Schedule the Repair Event for Ri time units 

from now

Fi :=a Random number  Generated from 

TTF Distribution of Component i in State j

Schedule the Failure Event for Fi time units 

from now

Ri := a Random number  Generated from 

TTR Distribution of Component i in State j

Schedule the Repair Event for Ri time units 

from now

Yes

Repair eventFailure Event 

j :=Initial State

Fi :=a Random number  Generated from 

TTF Distribution of Component i in State j

Ri := a Random number  Generated from 

TTR Distribution of Component i in State j

j < NSi
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Start

End

No

Schedule the Failure Event for F i time units 

from now

Schedule the Repair Event for R i time units 

from now

j  > 1

No

Yes

Triggering process 

Fig. 3 Failure and repair events and the triggering flowcharts in Multi-state Server 
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(Fig. 3). As seen in these flowcharts, both events 
reschedule the failure and repair events for the future and 
form an endless loop of failures and repairs, which is 
exactly what happens in real components. All we have to 
do is to trigger this loop. But this triggering process has to 
be done based on the initial states assumed for the 
components (Fig. 3). Note that we trigger the loop only 
once and at the very first moment of the simulation. In 
addition, we designed a 2D representation for this atom 
and included some indicators to visually monitor 
components’‎ conditions. One of the advantages of this 
software and the designed atom is the resemblance of its 
2D layout to usual reliability diagrams. For an example 
series-parallel system, Fig. 4 compares the ordinary 
diagram and the corresponding simulation model.  
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(a) 

 

 
(b) 

Fig. 4 an example series-parallel diagram and the related ED model 

B. Subsystem atom 

The main intentions of creating this atom is to link 
parallel components, aggregate the total performance 

rates/outputs of each subsystem, and determine its 

condition (up or down) regarding to the desired demand. 

In order to connect each Multi-state Server to the related 

subsystem, we just need to connect its central channel to 

an input channel on the subsystem. 

C. Availability Monitor 

This atom is where we calculate the availability of the 

system. In many cases we are mainly concerned with 

estimating the availability for systems that will run for a 

long time ‎[1]. Hence, many papers with analytical 

approaches have considered this type of availability for 

their optimization model [12-13]. Eq. 1 is a common 

formula for the asymptotic or steady-state availability 
which uses the instantaneous availability concept to 

define the long run availability. 

                (1) 

However, steady-state availability has been neglected in 

most of the simulation based reliability studies. As seen 

in the formula, to achieve this type of availability using 

typical simulation models, we have to perform 

significantly long runs of simulation to get the 

instantaneous availability in the steady-state and this has 

always been impractical. For this reason, all simulation 
based studies have focused on small t values. 

In this paper, we use another type of availability to 

overcome this limitation. There is an availability formula 

that‎ is‎ used‎ for‎ real‎ running‎ systems,‎ called‎ “Achieved‎

Availability”‎[16]. In real systems there is no replication 

to get the instantaneous availability, but we have the 

down and up time that has actually happened. So the 

availability can be given by ‎[16]: 

   
       

          
  (2) 

Since the simulation model imitates the real system 

behavior, we calculate and report     in this atom. 
Moreover, unlike the DES presented in [13], we take a 

continuous evaluation of the system availability and as 

seen Fig. 5  this atom shows the availability in real time. 

 
Fig. 5 2D representation of the availability monitor atom in ED 

For the real time evaluations, we use a signaling function 

in Multi-state Servers, so when it changes states, it 

triggers the evaluations and system state and total up and 

down times are updated. This way, we offer the real time 

availability with the maximum accuracy without the need 

to spending CPU-time over unnecessary evaluations. 
Furthermore, this type of availability also converges to 

the steady-state availability value [16]: 

   
       

                   
  (3) 

D. Model validation 

Here we check the validity of the proposed simulation 

package using a numerical example from Ref.  [12]. The 
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configuration of this example system is given in Table 1. 

The desired demand is 1000 and the reported availability 

for this example is %95.39 which is derived by using 

Marcov and Universal generating function (UGF) 

methods in the reference paper. 

 
Table 1 Validation example settings taken from [12] 

# SubSystem Version Redundancy Actions 

    

1 1 5 {8} 
 2 8 {8} 
 3 1 {8} 
    

2 1 4 {4} 
 2 2 {4} 
 3 2 {3,4} 
 4 2 {4} 
    

 

After setting the parameters in the related subsystem 

atoms, creating the simulation model, we perform 30 

sample runs of this model and reported the data in Table 

2. The duration of each run is considered to be 10,000 

time units to make sure that all samples are taken at the 
steady-state conditions. Note that, each of these long 

simulation runs has just taken one second using this new 

simulation package that is much less than the time 

reported by other simulation methods in the literature 

[15].  
 

Table 2  The estimated availabilities for the validation example 

Estimate Availabilities 
0.8952 0.8946 0.8954 0.8944 0.8883 0.8929 
0.8911 0.8940 0.8981 0.8927 0.8932 0.8912 
0.8947 0.8910 0.9002 0.9003 0.8911 0.8934 
0.8886 0.8947 0.8844 0.8892 0.8920 0.8998 
0.8932 0.8953 0.8985 0.8912 0.8890 0.8851 

 

In order to compare these results with the percentage 

reported by [12], we undertake a one sample t-test. This 

statistical test checks whether the mean value of the 

simulated availabilities is equal to the one reported by the 

reference. In other words, the following hypotheses are 

evaluated: 

               and                 
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Fig. 6  Normality test for the simulateed data in Table 2 

This test requires normal data, so we performed 

normality test for the simulated data (Fig. 6).The 

hypothesis test resulted in p-value of 0.599 (Fig. 7), 

which indicates that there is no sufficient evidence to 

reject     and the simulation results are statistically 

acceptable. 

 
Fig. 7 t-test results for the validation example 

III. MATHEMATICAL MODEL 

Here we propose a multi-objective version of the model 

presented in [12]: 

                    (4) 

S.t. 

         (5) 

           (6) 

                                     (7) 

    
                           (8) 

   
                      (9) 

Where the design variable vector is denoted by X and is 

defined in Eq. (10).      and      are the availability 

and cost for the designed system. Cost and availability 

limits are symbolized by     and    respectively. 

             
       

             
   

           
       

             
     

          
       

             
 )  (10) 

             
      

         

    (11) 

Here     
  is a Boolean variable and represents 

performing action   on version   components of 

subsystem  . Similar to [12] and [13] here we take into 

account    component level actions for subsystem   , and 

   
 is the number of subsystem level actions. 

Total cost of a parallel-series system is the summation of 

subsystems’‎costs.‎ 

         
     (12) 

       
      

   (13) 

Subsystem cost includes the costs associated with 

components (    
 ) and costs of applying technical and 

organizational actions (    
 ). Where the component cost 

consists of the related fixed cost of installing components 

in the subsystem (  
 ) and the installation/purchase cost 

of each component. Action cost of subsystem   is given 

on Eq. (15). The first part of this equation represents the 

fixed (     
 ) and variable (    

 ) costs of applying 
component level actions and the rest is related to the 

subsystem level actions.   

    
    

        
   

     (14) 

    
        

       
         

  
  
     

      
     

 
      
      

  (15) 

We utilize the weighting technique used by ‎[5] to 

transform the above optimization model into a single 



 

www.iiec2015.org 

objective model. In this case the objective function is 

presented by Eq. 16. 

                          (16) 

   and     are arbitrary values that can be determined by 

the designer. Otherwise we can offer a set of Pareto 
optimal solutions by checking different weight values. 

IV. COMBINING ED WITH GENETIC ALGORITHM 

In this paper we use genetic algorithm to solve the 

optimization model. This method has been used by many 

researchers and is the most applied meta-heuristic method 

in the field of reliability optimization [12-13]. One of the 

most important parts of utilizing this algorithm is to 

define the solution representation. We define an N parted 

chromosome for this problem, which contains all      and 

    
  and    

  variables. One of the challenges that have 
estranged researchers from using universal simulation 

programs (like ED) in reliability optimization is 

connecting the simulation software to the software in 

which the optimization algorithm is coded. We take 

advantage of the AxtiveX standard to transfer commands 

and data between ED and Matlab (where we coded GA). 

The following steps are taken for this connection: 

(i) Establishing the ActiveX link and loading the 

necessary files in ED, 

(ii) Converting the chromosome into the acceptable 

form for ED, 

(iii) Setting the converted design in the related atoms, 

(iv) Creating the simulation model and setting the 

speed and simulation time, 

(v) Starting the simulation run and waiting for its 

completion, 

(vi)  Reading the availability from the simulation 

software. 

Except for the first step which is only done once at the 
very initial iteration of the algorithm, Matlab is 

programmed to perform these steps every time that we 

have to estimate the availability of a new chromosome, 

i.e. hundreds of times in each iteration. 

V. ILLUSTRATIVE EXAMPLE 

In this section, we investigate a non-exponential version 
of the numerical example discussed in [12] and [13]. Like 

the reference example, we assume a system with two 

subsystems, three component versions for the first 

subsystem and four versions for the components in the 

second subsystem. Number of actions is considered to be 

8 and 4 for subsystem 1 and 2 respectively.   
  is assumed 

50 and 60 for these subsystems. 

 In subsystem 1, actions 1-5 are component level actions 

and the rest is subsystem level action. Actions {1,2}, 

{3,4} and {6,7,8} in this subsystem are considered 

mutually exclusive. Table 3 contains the performance 

rates, failure and repair distributions in different states 

and the unit cost of the components in this subsystem.  

The effect of the actions on component versions 1-3 for 

subsystem 1 are given in Tables 4 to 6.  

 
Table 4 Action effects over version 1 components of subsystem 1 

Action type        
       

                         

        

Component 

level 

1 0.5 5 1.1 1 1 1 

2 2 7.5 1.25 1 1 1 
3 4 15.5 1.25 1.1 1 1 
4 0 20 1.4 1.25 1 1 
5 10 2 1 1 1 0.7 

        

Subsystem 

level 

1 32 0 1 1 0.7 0.8 

2 40 0 1 1 0.7 0.7 
3 53 0 1 1 0.35 0.5 

        

 
Table 5 Action effects over version 2 components of subsystem 1 

Action type        
       

                         
        

Component 

level 

1 0.5 5 1 1 1 1 

2 2.5 7.5 1 1 1 1 

3 4.5 15.5 1.25 1 1 1 

4 0 20 1.4 1.1 1 1 

5 10 2 1 1 1 0.6 
        

Subsystem 

level 

1 32 0 1 1 1 0.8 

2 40 0 1 1 0.8 0.6 

3 53 0 1 1 0.5 0.4 
        

Table 3 parameters of components of subsystem 1 

     
  

        
     

  
TTF  TTR 

State 1 State 2  State 2 State 3 

                                                                              

                                                                              

                                                                             

* Weibull (λ , k); λ : Scale parameter, k : Shape parameter 
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Table 6 Action effects over version 3 components of subsystem 1 

Action type        
       

                         

        

Component 

level 

1 0.5 5 1 1 1 1 

2 2 7.5 1 1 1 1 

3 5 15.5 1 1 1 1 

4 0 21 1 1.1 1 1 

5 10 2.5 1 1 1 0.7 
        

Subsystem 

level 

1 32 0 1 1 0.8 1 

2 40 0 1 1 0.7 0.7 

3 53 0 1 1 0.3 0.5 
        

 

For subsystem 2, only one subsystem level action is 

assumed (action 4) and here all of the actions are 

independent. The number of states available for the 
components in subsystem 1 and 2 is assumed 3 and 2 

respectively (exactly like [12]). 

 
 

Table 7 Components specifications for subsystem 2 

     
  

        
  TTF TTR 

                                        

                                           

                                           

                                           

 

For each version of components in this subsystem, Table 

7 presents the performance rates, failure and repair 

distributions and the unit cost and the effect of the actions 

is given in the following tables: 

 
Table 8 Action effects for  version 1 components in subsystem 2 

Action type         
       

              
      

Component 

level 

1 2 4 1.1 1 

2 0 16 1.7 1 
3 9 12 1 0.45 

      

Subsystem 

level 
1 1
0 0 1.1 0.4 

      

 
Table 9 Action effects for  version 2 components in subsystem 2 

Action type         
       

              
      

Component 

level 

1 2 5 1.1 1 

2 0 16 1.6 1 

3 9 14 1 0.5 
      

Subsystem level 1 150 0 1 0.45 
      

 

Table 10 Action effects for  version 3 components in subsystem 2 

Action type         
       

              

      

Component 

level 

1 2 5 1 1 

2 0 16 1.3 1 

3 9 13 1 0.6 
      

Subsystem 
level 

1 150 0 1 0.55 
      

 
Table 11 Action effects for  version 4 components in subsystem 2 

Action type         
       

              

      

Component 

level 

1 2 5 1 1 

2 0 16 1.3 1 

3 9 13 1 0.45 
      

Subsystem 

level 
1 150 0 1 0.6 

      

 

Like [12] and [13], for this example the population size is 

to 100 and we consider 200 iterations in the genetic 

algorithm. Besides,    and     values are supposed to be 

100 and 0.25. and the demand is considered    and      

are considered to be 0.9 and 600 respectively. The 

following table shows the optimum design for this 

example. 
 

Table 12  solution of the illustative example 

# SubSystem Version Redundancy Actions 

    

1 1 1 {8} 

 2 4 {8} 

 3 1 {8} 
    

2 1 0  

 2 1 {3} 

 3 3  

 4 0  
    

VI. CONCLUSION 

In this paper, we investigated the multi-objective joint 

reliability-redundancy allocation problem for multi-state 

series-parallel systems with repairable components and 

non-exponential distributions. We presented a new 

discrete event simulation package for Enterprise 

Dynamics simulation software that offered the 

availability estimations in a reasonable CPU-time. Then 
we combined this simulation method with genetic 

algorithm to get the best design for the problem. ActiveX 

programming standards were used for this purpose. We 

investigated the methods presented in this paper using a 

numerical example.   
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