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Abstract—This paper introduces key propositions and their
corresponding proofs pivotal in advancing a matrix-based, fully
distributed power system state estimator.

I. INTRODUCTION

In modern power systems, real-time monitoring and control
are essential to ensure reliable and efficient operation [1].
State estimation, a pivotal task in power system management,
involves the continuous assessment of the system’s operating
conditions using available measurement data [2]. Traditional
centralized state estimation approaches, while effective, face
significant challenges in scalability and robustness due to
the growing complexity and size of power systems [3]. To
address these challenges, fully distributed state estimation
methodologies have emerged as a promising alternative.

This paper focuses on the development of mathematical
propositions and proofs essential for the advancement of a
fully distributed power system state estimator. Unlike central-
ized methods, distributed state estimation leverages the com-
putational capabilities of multiple nodes, such as distributed
estimators and local measurements from phasor measurement
units (PMUs), which are dispersed throughout the power grid.
This decentralized approach enhances scalability and improves
the robustness and fault tolerance of the state estimation
process.

The core contributions of this paper are as follows:

1) Proposition and Proof of Positive Definite Symmetric
Matrix: We establish that the gain matrix, commonly
denoted as A [4], derived from the measurement matrix
H, is a positive definite symmetric matrix. This property
is fundamental for ensuring the convergence of the state
estimation algorithm.

2) Convergence Conditions for Distributed Estimators: We
derive conditions under which the Jacobi iterative update
matrix, M jor, achieves spectral radius less than one,
ensuring the convergence of the distributed state estima-
tion algorithm. Specifically, we show that the optimal
relaxation factor, w, lies within a specific range depending
on the minimum eigenvalue of the iteration matrix M ;.

3) Optimization of the Relaxation Factor: We propose an op-
timal value for the relaxation factor, w, that minimizes
the spectral radius of M jog. This optimization signifi-
cantly enhances the convergence speed of the distributed
estimation process.
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4) Case Studies and Practical Implications: Through illus-
trative examples, we demonstrate the practical application
of our theoretical results. We show how the placement
of PMUs affects the reducibility of the gain matrix A,
and subsequently, the tuning of the relaxation factor for
optimal performance in both reducible and irreducible
matrix scenarios.

The propositions and proofs presented in section II lay the
groundwork for future research and development in the area
of distributed power system state estimation.

II. PROPOSITIONS AND PROOFS

Proposition Al: Matrix A is a positive definite symmetric
matrix.

Proof. Given A
(H)TWT(HT)T
symmetric matrix.

A is a positive definite if v Av > 0 for any non zero
vector v. Let examine A : vIAv = vIH'WHv =
vIHTWTWHv = yTy > 0 = A is positive definite,
where y = WHv, W is a diagonal matrix, and its diagonal
elements are W;; = Wj;.

Proposition A2: Let A be a symmetric positive definite
matrix, B ; be a diagonal matrix, C; = A—B;, Bjor = %,
Cjor = A —Bjor, My = -B;'C; =1-BJ'A, and
Mjor = —B;5:Cior. Then, p(Mog) < 1 if and only if

= H'WH = A” = (H'"WH)” =
= H'WH = A” = A = Aisa

I<w< FE vy — where Az, min is the smallest eigenvalue
of the M ;.

Proof. By Theorem 1.56 of [5], it is sufficient to prove
the matrix Q = Bjor + BY,; — A to be a positive
definite for p(Mjor) < 1. Bjor = BT, g, since Byor
is a diagonal matrix. Hence, Q = 2Bjor — A. As per

Proposition A3 Q is positive definite if and only if Q =

_1/ 2QB is positive definite. Now we have Q =
2B 1/2BJORB 1/2 B, 1/2AB /2. _ 9B 1/213JB 1/2

1/2(1 ~ M,)B; 12— (% I + B1/2MJB 1/2
Proposition A4, eigenvalues of B} ViM JB /% are the same
as of M ;. We can get elgenvalues of Q by Ag =51+
Am,;, ¥V w > 0. If the smallest eigenvalue Ag,,,;, _> 0, then
all the eigenvalues will be A5 > 05 this w111 make Q positive
definite. Hence, we have the condition 2 -1+ AMymin >
0=>0<w< ﬁ

Proposition A3: Let B J 1s non singular diagonal matrix.
Then Q is positive definite if and only if Q = BJl/QQBJl/2
is positive definite.

Proof. Given, Q = B;l/QQB;l/2 is positive defi-
nite, for any non zero vector y, we can have y' Qy :=



TBfl/QQBfl/Q S0 = (B§71/2 )T Q(B, —1/2 V)

(B i) ¥)7Q(B;"%y) = vI'Qv > 0, Hence Q is positive
deﬁmte where v = B;l ’y.

Proposition A4: Let B /2 is non singular diagonal matrix.
Then eigenvalues of B L 2M B; /2 are same as of M J-

Proof. For the elgenvalue Aof B 1 M, B; 1/2 , We can write
Bb/ 2M B; V2 = Ax, where x is correspondlng eigenvector.
B)/°M,B; ok - M,;B;*x = AB;"*x =
MJy = )\y, hence A is also the eigenvalue of MJ, where
y =B

Proposition A5: Let A be a symmetric positive definite
matrix and D is a positive diagonal matrix with diagonal
elements of A. Define E=A —D and B; = D + F, where
F is a diagonal matrix with diagonal element F;; = nZ\Eij |

Define BJOR = CJOR = A — BJOR, and MJOR ==
JORCJOR Then p(MJOR) <1,Vwe(0,2) andn > 1.

Proof. We have M; = —B;'C; = (D + F)"(F — E).
The diagonal element of My is My = 5 F_;jF and the
non diagonal element is My;; = % My > My

because Fj; > > |E;;|, implying that M is a diagonally

dominant matrix. ]Hence, by Theorem 1.8 of [6], Re(Aar,) >
0. Imaginary part of the eigenvalues is zero because by
Proposition A4, eigenvalues of M ; and Bl/ M IB_l/ 2

same. Furthermore, it can be observed that B 1 2M B; 1z,

B;l/ 2C B; 2isa symmetric matrix so that elgenvalues w111
be real only Thus, we have Ay, > 0 = Aar,min > 0. By
Proposition A2, the condition over w for p(Mjogr) < 1is 0 <
w < . Considering Aas,min > 0 the upper bound of
w is, o vrmmm 2. Therefore p(Mjor) < 1,V w € (0,2).

Proposition A6: The spectral radius p(Mjog) is mini-
mum at optimal value of w, which is given by wyy, =
R oYy yya—" where Aps,min and Az maes are the
smallest and largest eigenvalues of M ;.

Proof. We have M jor = —B;éRCJOR = —BjéR(A -
Byor) = —Bj3r(Bs+ C; —Byogr) = —(BL)"(B, +
Cy— &) = (1 -wI-wB;'C; = (1 —w)I+wMy.
Hence, we can establish a relationship between the eigenvalues
of Mjor and My, given by Ay, = 1 — w(l — Apg)).
Variation in different eigenvalues |Aps,,i| With w are shown
in Fig.1. The trajectory of the spectral radius, which is the
largest magnitude of eigenvalues of a matrix, is shown by
red dotted lines. It can be observed that the w,,; lies on the
intersection of lines —1 + w(1 — Apf,men) and 1 — w(1 —
AMmaz)> Which gives wopr = 5— O m73+AMJm”)

Example ExI: Optimal value of w for distributed estimators:
For a system with gain matrix A we can find the wgp
with the help of Proposition A6. we can further improve
the performance by finding the optimal value of w for each
estimator based on reducibility or irreducibility of A. The
irreducibility of matrix A is contingent upon the placement
strategy of the PMUs. By Theorem 1.6 of [6], a square matrix
A is irreducible if and only if its associated directed graph
G(A) is strongly connected, where each non-zero element
of matrix A corresponds to a link in G(A). This property
is particularly useful for identifying the group of distributed
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Fig. 1: Trajectory of the spectral radius p(M joR)

estimators that contribute to making a portion of the power
system observable and obtaining the optimal weighting factor,
denoted as woyp, for that PMU set.
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Fig. 2: PMU placement Example; Star represent PMU bus
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Fig. 3: (a) matrix A for 2(a) (b) matrix A for 2(b)

Case 1. A is irreducible: For the PMU placement as shown
in Fig.2(a), PMUs are placed to ensure system observability.
The corresponding matrix A is shown in Fig. 3(a), and
its irreducibility can be verified by examining its associated
directed graph G(A), as illustrated in Fig.14.

Case 2. A is reducible: In Fig.2(b), PMUs are optimally
placed to ensure system observability. A is reducible to irre-
ducible sub-matrices. With the help of basic matrix operations,
a reducible matrix can be written in terms of its irreducible



sub-matrices, as shown in Fig. 3(b). We can directly identify
O A22 ’

We can use this property of the matrix A to tune the
relaxation factor w for each sub-matrix exclusively as per
Proposition A6, thereby obtaining the optimal convergence.
A, pertains to buses 1, 2, 3, 4, and 5, with estimators posi-
tioned at buses 1 and 5. Consequently, both of these estimators
will share the same w,,;,;, which can be computed using M jor
derived from A;. Similarly, w,,: for the estimator situated at
bus 7 can be derived using M jor obtained from Aos.

The matrices, shown in Fig 3, have directed graph G(A), as
shown in Fig.4. In the case of a reducible matrix, the directed
graph divides.
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Fig. 4 (a) G(A) of irreducible matrix A (b) G(A) of
reducible matrix A

Proposition A7. If the iteration matrix M is convergent, then
(M) 5 § as m — oo, and § = A1, represents the unique
solution.

Proof- Let an error vector €™ be defined by e(™ = §(") —
4. Similarly, e(”+1) = §(m+1) _§_ with the help of §(™+1) =
M3 +B~13, can be expressed as Md(™ + B3 —§ =
Mé(™ + B~'A§ — 6 = MJ,, + B! (B+C)d — 5 =
Mé(™ + (I+B~1C)d — & := M(6(™ — §) := Me™. We
establish a relation between two consecutive error vectors, i.e,
e(m+1) — Me(m), and this can be extended up to the initial
error vector as (™) = Me(™ = ... = M™+1e(®, Since
M is a convergent matrix (M* — O Null matrix), the error
vector e™T1) — 0 as m — 0o = 6™ — 4.
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