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Abstract 

This chapter introduces novel methodologies for characterizing phase equilibrium and estimating 
physical properties crucial to polyolefin manufacturing. It presents an in-depth discussion on the polymer 
nonrandom two-liquid (POLYNRTL) activity coefficient model (ACM), and the polymer Sanchez-Lacombe 
(POLYSL) and the polymer perturbed-chain statistical fluid theory (POLYPCSF) equations of state (EOS). 
These innovative approaches offer specific guidelines for selecting the appropriate polymer ACM or EOS 
tailored to specific polyolefin processes. 

A significant highlight is the detailed coverage of the POLYNRTL ACM, including a practical workshop for 
estimating POLYNRTL binary interaction parameters using the UNIFAC method. The chapter also explores 
the prediction of polymer physical properties through the Van Krevelen group contribution method, 
providing a hands-on workshop for estimating the physical properties of copolymers. Additionally, it 
introduces advanced techniques for parameter estimation using data regression tools, applied to both 
the POLYSL and POLYPCSF EOS models. 

Furthermore, the chapter addresses the correlation of critical polyolefin product quality indices, such as 
melt flow rate or melt index and polymer density, providing insights that enhance the understanding and 
optimization of polyolefin manufacturing processes. 

This is a preprint version of a chapter from our book - Integrated Process Modeling, Advanced Control 
and Data Analytics for Optimizing Polyolefin Manufacturing. Please cite the original work if referenced 
[52,56] 

2.1 Property Methods and Thermophysical Parameter Requirements for Process Simulation 

We present specific guidelines for the selection of an appropriate polymer ACM or EOS for modeling a 
specific polyolefin process [1,2]. 

This chapter begins by discussing the property methods and parameter requirements in simulating a 
polymer process (Section 2.1).  We then present the polymer activity coefficient model (ACM), 
particularly the polymer non-random two-liquid (POLYNRTL) ACM in Section 2.2 and cover a workshop 
for estimating POLYNRTL binary interaction parameters using UNIFAC in Section 2.3.  We discuss the 
prediction of polymer physical properties using the Van Krevelen group contribution method in Section 
2.4. and follow by a workshop to estimate physical properties of a copolymer in Section 2.5.  In Section 
2.6, we introduce the polymer Sanchez-Lacombe (POLYSL) equation of state (EOS). Section 2.7 presents 
a workshop to estimate property parameters using data regression tool. Section 2.8 introduces the 
polymer perturbed-chain statistical fluid they (POLYPCSF) EOS, and Section 2.9 presents a workshop for 
regression of property parameters for POLYPCSF EOS. In Section 2.10, we conclude this chapter by 
discussing the correlation of polyolefin product quality indices, such as melt flow rate or melt index and 
polymer density. Section 2.11 presents the bibliography. 



Aspen Plus refers to a property method as a collection of models and methods for calculating phase 
equilibria and various physical properties, such as density, enthalpy, viscosity, thermal conductivity, etc. 
We will discuss two major categories of property methods, namely, the activity coefficient models 
(ACM) and equations of state (EOS), in the following sections, and provide guidelines on how to choose 
an appropriate property method for a specific polyolefin process. 

Table 2.1 summarizes the key process modeling tasks and the essential thermophysical properties 
required for completing the tasks. The reader may search the information within Aspen Plus: Help -> 
Property requirements -> Property requirements for mass and energy balance simulations. 

Table 2.1 Process modeling tasks and essential thermophysical property requirements 

 

 

 

 

 

We discuss below the two key types of property methods for characterizing the phase equilibrium and 
estimating physical properties in polyolefin processes:  activity coefficient model (ACM), and equation of 
state (EOS). 

 

 

2.2 Polymer Activity Coefficient Models (ACM): Polymer Non-Random Two-Liquid (POLYNRTL) Model     

In Chapter 6, we present the modeling of manufacturing processes for polystyrene (PS) using free radical 
polymerization, and for poly(styrene-butadiene-styrene) rubber or SBS rubber using ionic 
polymerization. For both processes, we must account for vapor-liquid equilibrium with a high degree of 
nonideality in the presence of polar components (such as water) at low to medium pressure (< 10 bar), 
that is away from the critical region [1,2]. In the discussion below, we follow the explanation in [3 to 5]. 

2.2.1 Vapor-Liquid Equilibrium for an Ideal Vapor Phase and a Nonideal Liquid Phase 

Figure 2.1 shows a vapor-liquid mixture. We assume that the vapor phase is ideal. The partial pressure 
of component i in the vapor phase, Pi, is equal to: 

                                                                                                                               (2.1) 
 
In the equation, xi  is the liquid mole fraction of component i,  𝛾௜(𝑥௜,T) is the activity coefficient of 
component i as a function of liquid composition xi  and temperature T,  𝑃௜

௦௔௧(𝑇) is the vapor pressure of 
pure component i, yi  is the vapor mole fraction of component i,  and P is the pressure.  

Process modeling task Essential thermophysical property requirements 
Mass balance Density or standard liquid volume, phase equilibrium 

Energy balance heat capacity, heat of formation, heat of reaction, 
heat of vaporization, liquid vapor pressure 

Heat transfer Density, heat capacity, thermal conductivity, viscosity 
Pressure drop Density, viscosity 



 

Figure 2.1   A vapor-liquid mixture. 

For ideal solutions, the partial pressure P
i
 is equal to x

i
 𝑃௜

௦௔௧(𝑇)  according to Raoult’s law [1]. For 

nonideal solutions, we correct this term by multiplying it with an activity coefficient, 𝛾௜(𝑥௜,T). For an 
ideal vapor phase, the partial pressure P

i
 is equal to y

i
 P according to Dalton’s law [1]. 

  
2.2.2 General Vapor-Liquid Equilibrium Relationships Based on Fugacity Coefficient and Liquid-Phase 
Activity Coefficient 
 
Based on Walas [1], we generalize Eq. (2.1) to define the vapor-liquid equilibrium using a gas-phase 
fugacity coefficient and a liquid-phase activity coefficient: 

 
𝑥௜ϒ௜𝑓௜

௢௅ =  𝑦௜𝜙௜
௏𝑃 = 𝑃௜                          (2.2) 

 
In the equation,  𝑓௜

௢௅ is the liquid-phase reference fugacity, defined as the fugacity of a pure liquid at the 
temperature T and pressure P of the mixture, and  ϕ௜

௏  is the partial gas-phase fugacity coefficient of 
component i computed from an equation of state. 
 
2.2.3 Segment-Based Mole Fraction versus Species-Based Mole Fraction 

This section follows the discussion in [3]. There are two types of molecular accounting systems that we 
use to model physical properties and phase equilibrium in polymer-containing systems. Species-based 
calculations consider polymer chains as single molecules, while segment-based accounting considers 
every polymer repeat unit (“segment”) as an individual molecule. The segment-based approach can 
characterize polymer molecules by chemical properties of segments or monomer units that comprise 
the polymers. This makes it easier to evaluate the effect of polymer composition on thermodynamic 
properties. The segment-based approach can also consider the chain length, which is important in the 
modeling of phase equilibrium and physical properties. 

Figure 2.2 illustrates a segment-based representation of polymer chains in a mixture, which permits the 
consideration of the interaction between each segment type and solvent molecules.  



 

Figure 2.2 A segment-based representation of polymer chains in a mixture. 

We note that the mole fraction of polymer chains is often of little physical significance. Let us consider a 
mixture of 1 g high-density polyethylene (HDPE) of a molecular weight 50,000, dissolved in 10 g of n-
hexane of molecular weight 86.18. We find the mole fraction of polymer as: 

                       

   xpolymer = (moles polymer)/(moles solvent + moles polymer) = (1/50,000)/[1/86.18 + 1/50,000] = 1.72E-4 

 

Now let us consider the ethylene segment (-C2H4-) of a molecular weight of 28.05. A HDPE polymer of a 
molecular weight of 50,000 corresponds to a degree of polymerization of 50,000/28.05, or 1534.9 
segments. We treat each solvent molecule as a single segment. The segment-based mole fraction of 
polymer is then: 

                            Xpolymer = (moles polymer segments)/(moles solvent + moles polymer segments)                                                          
=[ (1/50,000) x1534.9]/ [10/28.05 + (1/50,000) x 1534.9]                                                                     
= 7.93E-2 

This segment-based mole fraction is more representative of the amount of polymer in the mixture than 
the species-based mole fraction of polymer.                                          

In general, we can convert the species-based mole fraction x to a segment-based mole fraction X 
according to the relationship [5]: 

                      (2.3)                                              

where subscript I refers to polymer segments, subscript i refers to a polymer molecule, and ri, I is the 
number of segment type I in polymer molecule i. 

2.2.4 POLYNRTL: Polymer Nonrandom Two-Liquid Activity Coefficient Model 

In the POLYNRTL model of Chen [4], the Gibbs free energy of mixing of a polymer solution is the sum of 
(1) the enthalpy of mixing, based on the nonrandom two-liquid (NRTL) theory [5], and (2) the entropy of 
mixing, based on the Flory-Huggins (F-H) theory [6 to 8]. The model calculates the activity coefficient as 
a sum of two contributions: 



   (2.4) 

  

where ϒ
 i
   is the activity coefficient of species i, superscripts NRTL and F-H represents the NRTL and 

Flory-Huggins contributions, respectively.   

We note that POLYNRTL and many other activity coefficient models ignore a third term in Eq. (2.3), 
representing the free-volume (FV) or compressibility contribution. Oishi and Prausnitz [9] proposed a 
UNIFAC-FV model to include the FV contribution. Interested readers may search “UNIFAC free volume 
model” in Aspen Plus online help to learn more detail about the model, but we do not use the model in 
this text.                                                                                                                                                                                           

The NRTL activity coefficient contribution is different for polymers (subscript i =p) and for solvents 
(subscript i =s). The relevant expressions are as follows. 

(2.5) 

(2.6) 

 

In the equations, XK  is the segment-based mole fraction defined by Eq. (2.3). The parameter GIJ relates 
the overall segment-based mole fractions to the local segment-based mole fractions. It is related to the 
binary interaction parameter τij and the nonrandomness factor αij through the following relationship: 

                                                                          Gij  = exp(-αij τij)                                                                    (2.7) 

αij has a value between 0.2 to 0.3, and its value has no significant impact on the behavior of the model 
[5]. The binary interaction parameter τij is related to the energy of interaction between species i and j, 
gij , and the energy of interaction between a pair of j species, gjj , according to: 

                                                                         τij = (gij - gjj)/RT                                                                     (2.8) 

This definition suggests that τii  is zero. 

Aspen Plus databanks provide temperature-dependent relationships for both the binary interaction 
parameters τij and the nonrandomness factor αij : 

                                                                        τij = aij  + bij /T + eij lnT + fij T                                               (2.9)                            

                                                                      αij = cij + dij (T -273.15 )                                                        (2.10) 



The Flory-Huggins contribution in Eq. (2.4) is as follows: 

                                                        (2.11) 

For a solvent, φi = Xi, which is the segment-based mole fraction of the solvent; for a polymer, φi =Xi , 
summed over all the segments. 

mi is the characteristic size of species i. It is related to the degree of polymerization by: 

                                                                                                                                    (2.12)                                                                              

where si and εi are empirical parameters with default values for both being 1.0 for small molecules. Pi is 
the degree of polymerization of species i. 

Table 2.2 summarizes the POLYNRTL model parameters. In using the POLYNRTL model within Aspen 
Plus/Polymers, we only need to enter parameters NRTL/1 to NRTL/8; Aspen Polymers sets the remaining 
model parameters to their default values. 

Table 2.2 POLYNRTL model parameters 

Parameter 
Name/Element 

Symbol Default Unit 
Keyword 

Comments 

NRTL/1 aij  and aji 0 --- Binary, 
Asymmetric 

NRTL/2 bij and bji 0 TEMP Binary, 
Asymmetric 

NRTL/3 cij 0.3 --- Binary, Symmetric 
NRTL/4 dij 0 1/TEMP Binary, Symmetric 
NRTL/5 eij and eji 0  Binary, 

Asymmetric 
NRTL/6 fij and fji  0 1/TEMP Binary, 

Asymmetric 
NRTL/7 Tmin 0 TEMP Unary 
NRTL/8 Tmax 1000 TEMP Unary 
FHSIZE/1 si 1.0 --- Unary 
FHSIZE/2 εi 1.0 --- Unary 
POLDP Pi 1.0 --- Unary 

  

2.2.5 Concept of Henry Components for Vapor-Liquid Equilibrium for a Vapor Phase and a Nonideal 
Liquid Phase Involving Supercritical Components 

A serious weakness of activity coefficient models is that they are not accurate in predicting the 
solubilities of supercritical components in the liquid phase. Those components refer to light gases and 
low molecular-weight hydrocarbons, such as H2, O2, N2, CO, CO2, H2S, NO2, SO2, CH4, C2H4, C2H6, 
C3H6, C3H8, etc.  Refer to Eq. (2.1) for the vapor-liquid equilibrium relationship between an ideal vapor 
phase and a nonideal liquid phase: 



                                                                                                                              (2.1) 

For a vapor phase and a nonideal liquid phase involving supercritical components, we modify Eq. (2.1) 
as: 

                                                                  𝑥௜ϒ௜
∗𝐻௜ = 𝜑௜

௩𝑦௜𝑃 =  𝑃௜                                                                   (2.13) 

In the equation, ϒ௜
∗=  ϒ௜/ ϒஶ,   and ϒஶ is the infinite-dilution activity coefficient. 𝐻௜ is the Henry’s law 

constant, and 𝜑௜
௩ is the vapor-phase fugacity coefficient calculated by an equation of state (EOS). For an 

ideal vapor phase, we choose the ideal gas law as the EOS; for a nonideal gas (such as a gas phase up to 
medium pressures), we use the Redlich-Kwong-Soave (RKS) EOS, which is a cubic EOS where the product 
of the pressure P and the third power (cubic) of the volume of the mixture,  𝑉௠

ଷ , is related to the ideal 
gas law constant R multiplied by the temperature T of the mixture. Interested reader may search 
“Redlich-Kwong-Soave” on Aspen Plus online help for details of the RKS EOS. 

The Henry’s law constant 𝐻௜ is typically correlated as a function of temperature. For a supercritical 
component i and a solvent A, Aspen Plus uses the following correlation: 

                                            ln(Hi,A) = ai,A + bi,A /T + ci,A lnT + di,AT + ei,A/𝑇ଶ             TL< T < TH                       (2.14) 

Table 2.3 summarizes the Henry’s law parameters. 

Table 2.3 Henry’s law parameters 

Parameter 
Name/Element 

Symbol Default Unit  

Henry/1 ai,A 0 --- 
Henry/2 bi,A 0 TEMP 
Henry/3 ci,A 0 TEMP 
Henry/4 di,A 0 TEMP 
Henry/5 TL 0 TEMP 
Henry/6 TH 2000 TEMP 
Henry/7 ei,A 0 TEMP 

 

We demonstrate below how to implement the concept of Henry components and compare the resulting 
concentrations of light gases in the solvent with and without applying Henry’s law. Consider a simple 
two-phase flash problem shown in Figure 2.3 and defined in Table 2.4. We save the simulation file as 
Example 2.1 NRTL Flash with Henry Component.bkp 

 

Figure 2.3 A simple flash unit for Example 2.1 



      Table 2.4 Specifications of Example 2.1  

Components Water,H2, N2 
Property 
method 

NRTL 

Henry’s 
components 

H2, N2 

Feed  70°C, 1 bar, Water (1000 kg/hr), 
H2(50 kg/hr), N2 (50 kg/hr) 

Flash drum 70°C, 1 bar 
 

 

 

Figure 2.4 illustrates how to specify Henry components: Properties -> Components ->Henry comps -> 
New: HC-1 -> Move H2 and N2 from “Available Components” to “Selected Component”. 

 

Figure 2.4 Specification of Henry’s components, HC-1. 

After defining the Henry components, we can see Henry’s law parameters for both H2 and N2 by 
following the path: Properties -> Methods -> Parameters -> Binary Interaction -> HENRY-1 (see Figure 
2.5). Refer to Eq. (2.13) and Table 2.3 for Henry parameters. 

 

Figure 2.5 Henry’s law parameter values for H2-N2-water mixture. 

Next, we enter the feed stream and flash conditions in Table 2.4. Subsequently, an inexperienced Aspen 
Plus user may follow the habit of clicking on the “Next” button and seeing a message of “required input 
complete” and proceed to run the simulation (see Figure 2.6). 



 

Figure 2.6 Clicking on the “Next” button, seeing the required input complete and clicking “OK” to run the 
simulation. 

This results in the mass fractions of H2 and N2 in the LIQUID product being 4.98053E-6 and 5.25986E-5, 
or 4.98 and 52.5 ppm, respectively. See Figure 2.7.  As we show shortly, despite having defined H2 and 
N2 as Henry components, these mass fractions actually result from the NRTL property method without 
incorporating the Henry’s law. 

 

Figure 2.7 Computed mass fractions of H2 and N2 in the LIQUID product without                                                                                                    
incorporating Henry’s law into the NRTL property method 

To incorporate Henry’s law into the calculation of the NRTL property method, we must tell Aspen Plus to 
do so following the path: Property -> Methods -> Specification -> Henry components -> HC-1 defined in 
Figure 2.3. We illustrate this step in Figure 2.8. 

 



Figure 2.8 Including Henry components HC-1 into the NRTL property method. 

Running the simulation again, we see in Figure 2.9 the resulting the mass fractions of H2 and N2 in the 
LIQUID product being 9.47979E-7 and 6.16813E-7, or 0.948 and 0.617 ppm, respectively (compared to 
the incorrect values of 4.98 and 52.5 ppm in Figure 2.7). The significant difference demonstrates the 
importance of correctly including Henry components into the NRTL property method. This observation 
applies to the POLYNRTL property method as well. 

 

Figure 2.9 Computed mass fractions of H2 and N2 in the LIQUID product after incorporating Henry’s law 
into the NRTL property method. 

To summarize, the POLYNRTL method is applicable to polyolefin processes involving a highly nonideal 
liquid phase (with polar and hydrogen-bonding species) up to medium pressures of approximately 10 
bar. It must be used with Henry’s law when the mixture contains light gases and low molecular-weight 
hydrocarbons. Two typical processes are polystyrene (PS) using free radical polymerization, and 
poly(styrene-butadiene-styrene) rubber or SBS rubber using ionic polymerization discussed in Chapter 6. 
For non-polyolefin systems, we apply the POLYNRTL method to Nylon, PET (polyethylene terephthalate), 
and PLA (polylactic acid), etc. for step-growth polymerization processes [3]. 

2.3 Workshop 2.1 Estimating POLYNRTL Binary Parameters Using UNIFAC 

2.3.1 Objective:  

The UNIFAC (UNIQUAC Functional-group Activity Coefficients) method [10,11] is a semi-empirical system 
for the prediction of non-electrolyte activity in non-ideal mixtures. Over the years, there have been 
numerous articles and books extending the method to more complex vapor-liquid mixtures.  The 
UNIFAC method attempts to break down the problem of predicting interactions between molecules by 
describing molecular interactions based upon functional groups, such as functional groups 1005 (>CH-), 
1100 (>CH2), 1015 (-CH3), and 2400 (CH2SH), attached to the molecule. A search of Aspen Plus online 
help for “UNIFAC Functional Groups” will give Tables 3.12 to 3.21 of the functional groups available 
within Aspen Plus. This workshop demonstrates how to use UNIFAC to estimate POLYNTRL binary 
parameters. 



2.3.2 Estimating POLYNRTL Binary Parameters Using UNIFAC for Polystyrene Manufacturing 

Figure 2.10 shows some of the components involved in polystyrene manufacturing, where Sty and STY-
SEG are styrene (monomer) and STY-SEG are styrene segment (repeat unit), and EB (ethyl benzene) and 
DDM (n-dodecyl mercaptain) are chain-transfer agents. We save the simulation file as WS2.1 Estimating 
POLYNRTL Binary Parameters Using UNIFAC.bkp. 

 

Figure 2.10 Component specifications for WS 2.1. 

If a component is present in the Aspen Enterprise Database for pure components and segments, we will 
see its structure being displayed within the “Molecular Structure” folder, as illustrated in Figure 2.11 for 
DDM (C12H26S). Additionally, Aspen Plus will automatically complete a representation of the displayed 
structure as a combination of UNIFAC functional groups, that is, C12H26S = H3C-(CH2)10-CH2SH = 
1*(Group 1015, H3C) +10*(Group 1100, CH2) +1*(Group 2400, CH2SH). In fact, Aspen Plus will do this 
for all specified components that are present in the Aspen Enterprise Database, which will enable the 
use of UNIFAC group-contribution method to estimate the binary parameters.  

We see a “Draw/Import/Edit” button in Figure 2.11. In Section 4.4.3, we will show how to import a 
molecular structure file, *.mol, from the Internet (such as Chemical Book, www.chemcalbook.com) for a 
component not available within Aspen Enterprise Database. In Section 6.1.4, we also demonstrate how 
to use the drawing tools within Aspen Plus to draw a molecular structure.  

 

Figure 2.11 Showing a graphical structure of DDM (n-dodecyl-mercaptan) available in the Aspen 
Enterprise Database. 

Next, we follow the path: Properties -> Estimation -> Input -> (1) Estimation Option -> Estimate only the 
selected parameters; (2) Parameter type -> Binary interaction parameters (see Figure 2.12). 



 

Figure 2.12 Specification to estimate binary interaction parameters. 

In Figure 2.13, we click on the “New” button, and then choose parameter, “NRTL” and method 
“UNIFAC”. We can specify component i (STYRENE) and component j (STY-SEG) and other i-j component 
combination one by one. However, this is not necessary; by choosing “ALL” for both components i and j, 
Aspen Plus will estimate the interaction parameters for all binary component combinations for us. 

 

Figure 2.13 Specification of binary interaction parameters to be estimated 

We then run the property estimation. Figure 2.14 shows the estimated binary interaction parameters, 
according to Eqs. (2.9) and (2.10) and Table 2.2. We save the simulation file as WS 2.1 Estimating Binary 
Parameters from UNIFAC.bkp. 

 

Figure 2.14 Estimated binary interaction parameters. 

Additionally, by following the path, Properties -> Methods ->Parameters -> Binary Interaction -> NRTL-1, 
we also see the estimated parameters being entered as the result (R) of the Physical Constant 
Estimation System (PCES), that is, R-PCES. See Figure 2.15. 



 

Figure 2.15 Entering the estimated binary interaction parameters to the “parameters” form. 

2.4 Prediction of Polymer Physical Properties by Van Krevelen Functional Group Method 

As we discussed vapor-liquid equilibrium according to Eq. (2.12), the POLYNRTL property method uses 
the POLYNRTL activity coefficient model for the liquid phase and applies the RKS (Redlich-Kwong-Soave) 
[12] cubic equation of state for the vapor phase. For property calculations, the POLYNRTL property 
method uses Van Krevelen functional group method to predict physical properties of polymers. 

The Van Krevelen method is based on the chemical structure of the polymers [13]. Table 2.5 summarizes 
the key concepts of applying the Van Krevelen method. A search of the online help of Aspen Plus for 
“Thermophysical Properties of Polymers” will show the large number of polymer properties that we can 
estimate by the Van Krevelen method. 

Table 2.5 Applying the Van Krevelen method to estimate properties of a system containing                                                      
polymers by going from functional groups to segments and then to polymer mixture 

1.     -CH2- Functional group (Van 
Krevelen; VK) 

Estimate segment properties 
using properties of the 
functional groups making up the 
segment(s), e.g., heat capacity 
𝐶௣,   𝐶௣ = ∑ 𝑛௞௞ 𝐶௣,௞  
 k refers to k-th functional 
group; 𝑛௞   is the number of the 
k-th functional group. When 
retrieving the segments from 
the SEGMENT databank, there 
is no need to supply functional 
groups. Otherwise, define the 
segments based on the VK 
functional groups. 
 

2.  –CH2-CH2- Segment (ethylene) Calculate polymer properties 
from segment properties, 
number-average degree of 
polymerization, and segment 
composition. 



3.  …. –Ch2-CH2-CH2-CH2-…. Polymer (polyethylene) Find the mixture properties of 
the whole component system 
(polymer, monomer, solvents, 
etc.). 

 

Let us illustrate the concept of the Van Krevelen method by considering the molar volume of a 
polymeric component, which depends on the temperature and the physical state of the polymer. Figure 
2.16 shows a plot of the molar volume versus temperature of a polymer at different physical states. In 
the figure, Vl refers to the molar volume of a polymer liquid, Vc indicates the molar volume of a 
crystalline polymer, and Vg represents the molar volume of an amorphous glassy polymer. Xc represents 
the mass fraction of a crystalline polymer. Tg and Tm are, respectively, the glass transition temperature 
and the melting transition temperature. These volume and temperature concepts are well explained in 
most introductory polymer textbooks [e.g., 14]. 

 

 

 

Figure 2.16 Molar volume versus temperature for different physical states of a polymer. 

The basic idea of a group contribution method for estimating physical properties of polymers is to 
calculate the sum of contributions of the constituents (the structural and functional groups) as an 
approximation. Consider, for example, finding the molar density of a propylene repeat segment 
illustrated in Figure 2.17. 

 

Figure 2.17 A propylene repeat segment C3H6-R. 

The molecular weight of this structural unit is 42.08 g/mol. From Table 4.5 in Van Krevelen and Nijenhuis 
[13], we know the Van der Waals volume (Vw) contribution of Van Krevelen functional group 100, -CH2-, 



at 25°C is 16.1 cm3/mol, and that of group 101, -CH(CH3)-, is 33.2 cm3/mol. The additive sum of both 
volume contributions is 49.3 cm3/mol. Therefore, the molar density of a propylene repeat segment at 
25°C is: [42.08 g/mol]/[49.3 cm3/mol], or 0.85 g/cm3. This value is in perfect agreement with the 
experimental value [13]. We note, however, that not every property prediction by the Van Krevelen 
method matches perfectly with experimental data. 

When we cannot neglect the interactions between functional and structural groups, the Van Krevelen 
method includes correction terms for the interactions. The resulting models are called group interaction 
models [13]. Interested readers can find additional details about the Van Krevelen method for 
estimating physical properties by searching Aspen Plus online help for “Van Krevelen group contribution 
methods”.   

2.5 Workshop 2.2 Estimating Physical Properties of a Copolymer Using the Van Krevelen Group 
Contribution Method 

2.5.1 Objective: 

This workshop demonstrates the procedure of applying the Van Krevelen group contribution method to 
estimate physical properties of a copolymer. These properties include, for example, CP (heat capacity), K 
(thermal conductivity), MU(viscosity), RHO (density), TG (glass transition temperature) an TM (melting 
transition temperature). We use styrene-butadiene rubber (SBR) that we shall discuss in more detail in 
Chapter 6 as our copolymer, and assume the copolymer with a number-average degree of 
polymerization (DPN) of 2000. We study the flash operation of a SB copolymer consisting of 50% by 
mole styrene and 50% by mole butadiene at 250° and 1.01325 bar. We assume the mass flow rates of 
the styrene, butadiene and SB copolymer are identical, each at 10 kg/hr. 

We show how to apply the Van Krevelen method according to the following steps: (1) drawing the 
process flowsheet; (2) specify the unit set and global options; (3) define components, segments and 
polymer, and characterize their structures; (4) choose property method and enter or estimate property 
parameters; (5) define streams and blocks; (6) create property sets; (7) define property analysis runs to 
create property tables; and (8) run the simulation, examining the results and make property plots. 

2.5.2 Draw the Process Flowsheet, and Specify the Unit Set and Global Options  

Our simple flash unit is the same as in Figure 2.3. We choose the unit set METCBAR in Setup in both 
Properties and Simulation, as demonstrated previously in Figure 1.7. For global options, we follow the 
path: Simulation -> Setup -> Global settings -> Flow basis: choose “Mass” (see Figure 1.6). 

2.5.3 Define Components, Segments and Polymer, and Characterize Their Structures 

Figure 2.18 shows our component specifications. We note two points: (1) We purposely do not specify 
the component name and alias (chemical formula) of the styrene segment, STY-SEG, as we want to 
demonstrate how to use Van Krevelen functional groups to specify this segment; and (2) We specify the 
styrene-butadiene copolymer with a number-average degree of polymerization, DPN, defined in Eqs. 
(1.5) and (1.11), of 2000, as a “generic polymer component” with an alias “polymer”. 

 



 

Figure 2.18 Component specifications 

To characterize the polymer component, we follow the path: Properties -> Components -> Polymer -> 
Segments -> Segment definition: Choose “Repeat” unit for both STY-SEG and BUT-SEG. Figure 2.19 
shows our selection of the built-in polymer attributes for “Properties Selection” for our SB copolymer. 
See Figure 1.19. We have previously explained all the selected attributes in Sections 1.3.2 and 1.3.3. 

 

Figure 2.19 Choosing the built-in “Properties selection” attribute group. 

Next, we check the path: Properties ->Components -> Molecular structure -> Structural and functional 
groups, and note that segment BUT-SEG, and pure components BUTADIEN and STYRENE are available 
within Aspen Plus segment and component databanks, and we see their structures being displayed. We 
do not need the structure of the generic polymer component, SB copolymer, but we need to specify the 
structure of the segment STY-SEG, as shown in Figure 2.20. 

 

Figure 2.20 Structure of STY-SEGA 

A search of Aspen Plus online help on “Van Krevelen Functional Group Parameters” shows that we can 
represent STY-SEG as a sum of three Van Krevelen (VK) functional groups: (1) VK group 100, -CH2-; (2) 
VK group 131, >CH-; and (3) VK group 146, benzyl group.   We specify these groups according to Figure 
2.21. 



 

Figure 2.21 Specifications of Van Krevelen functional groups for STY-SEG 

2.5.4 Choosing Property Method and Entering or Estimating Property Parameters 

We choose the POLYNRTL property method for the current problem, as in our detailed styrene-
butadiene rubber (SBR) workshop in Chapter 6. Following exactly Workshop 2.1, Section 2.6, we 
estimate all missing binary interaction parameters. Figure 2.22 shows the estimated binary parameters. 

 

Figure 2.22 Estimated binary interaction parameters 

2.5.5   Specifications of Feed Stream and Flash Block 

Figure 2.23 shows the specification of feed stream. Under component attributes, we need to specify the 
SFRAC, SFLOW and DPN for SB copolymer. 



Figure 2.23 Specification of feed stream with component attributes SFRAC, SFLOW and DPN for the 
generic polymer component, SB copolymer. 

For the flash unit, we enter a temperature of 250°C and a pressure of 1.01325 bar. 

2.5.6 Creating Property Sets 

A property set is a collection of thermodynamic, transport, and other properties that we can use in 
stream reports, physical property tables and analysis, heating and cooling curves of unit operation 
models (e.g., exchanger, condenser, and reboiler), distillation column stage property reports, reactor 
temperature profiles, etc. 

We create a property set to display the property values that we find from a physical property analysis. 
We define a property set in either the Properties or Simulation environment, and the resulting property 
set will appear in both environments. We follow the path: Properties -> Property sets -> New; name- PS-
1 -> Properties and Qualifiers (see Figures 2.24 and 2.25). Note the pull-down menu of physical 
properties and the corresponding units for the user to choose. We include CP (heat capacity), K (thermal 
conductivity), MU(viscosity), RHO (density), TG (glass transition temperature) an TM (melting transition 
temperature) in the property set. 

 

Figure 2.24 Including physical properties in the property set PS-1 



 

Figure 2.25 Qualifiers for selected properties in the property set. 

To ensure that the stream report from our flash unit includes values of the specified properties in the 
property set PS-1, we follow the path: Simulation -> Setup -> Report Options -> Streams -> Click on 
“Property Sets” button -> Property Sets: Move PS-1 from Available property sets to Selected property 
sets -> Close. See Figure 2.26. 

 

Figure 2.26 Including specified property set PS-1 in the stream report 

2.5.7 Defining Property Analysis Run to Create Property Tables 

We can use property analysis tool to generate tables and plots of physical properties of pure 
components and mixtures as a function of temperature, pressure, and composition. We should 
emphasize that both property analysis and regression tools in Aspen Plus do not support polymer 
attributes. Therefore, for property analysis and regression runs, we should define a polymer as an 
oligomer. By doing so, we eliminate the need to enter any attribute information.  We should specify its 
number of repeat units or segments, and segment composition (following the path: Components -> 
Polymers -> Characterization -> Oligomers ->Oligomer Structure -> Fill in the number of repeat units), 
and degree of polymerization. Alternatively, as in the current example, we specify the SB copolymer as a 
generic polymer component with an alias “polymer”, and specify its attributes, particularly segment 
composition by SFRAC and its degree of polymerization (see Figure 2.18 and 2.23). 

We create an analysis of stream properties by following the path: Process flowsheet -> Right-click the 
name of FEED steam -> Choose “Analysis” on the pull-down menu -> Choose analysis type, “Stream 
Properties”. See Figures 2.27 and 2.28. We then click on the “Run Analysis” button on Figure 2.28 to do 
stream property analysis. When the analysis is completed, we click on the “Results” button displayed in 
Figure 2.28 and follow the same approach as in Figures 1.22and 1.23 to make a “custom” plot of 



properties (CP, K, MU and RHO) versus temperature. Figures 2.29 and 2.30 illustrate the resulting plots 
of thermal conductivity and mass density versus temperature. The tabulated analysis results also show 
the glass transition temperature and the melt transition temperature of the SB copolymer are 45.3472°C 
and 225.23°C, respectively. This concludes the current workshop. We save the simulation file as WS 2.2 
Estimating Physical Properties of a Copolymer Using VK Group Contribution Method.bkp. 

 

Figure 2.27 Initiating an analysis of stream properties for FEED stream 

 

Figure 2.28 Specification of stream property analysis (SPROP-1) 

 



 

Figure 2.29. Thermal conductivity (K) of styrene, butadiene, and SB copolymer versus temperature. 

 

Figure 2.30 Mass density (RHO) of styrene, butadiene, and SB copolymer versus temperature. 

2.6 Polymer Sanchez-Lacombe Equation of State (POLYSL) 

To simulate polyolefin processes at high pressures, activity coefficient models, such as POLYNRTL, suffer 
from some weaknesses, as most of them are applicable only to incompressible liquid solutions. 
Additionally, activity coefficient models fail to predict correctly the phase behavior of polymer solutions 
at the lower critical solution temperature (LCST) below which the components of a mixture are miscible 
for all compositions. Activity coefficient models also fail to predict an upper bound to a temperature 
interval of partial miscibility, called the upper critical solution temperature (UCST). By contrast, an 
equation of state (EOS) can accurately represent the relationship among temperature, pressure, volume 
(or density) and composition of a vapor-liquid, or vapor-liquid-liquid mixture over the entire fluid region. 
EOS models can evaluate the physical properties of any fluid phase, liquid and/or vapor at medium to 
high pressures, as long as the fluid mixture does not contain any polar components. References [16,17] 
reviewed the development of EOSs for mixtures involving pure components, oligomers, and polymers.  



Two of the most useful EOSs for modeling polyolefin processes are: (1) Polymer Sanchez-Lacombe 
(POLYSL) EOS [18 to 20]; and (2) polymer perturbed-chain, statistical fluid theory (POLYPCSF) EOS [21 to 
23], an extension of the statistical fluid theory (SAFT) EOS [24 to 26]. We discuss the POLYSL EOS below. 

The Sanchez-Lacombe EOS is known as a lattice-gas model since the P-V-T properties of a pure 
component are calculated assuming the component is broken into parts or “mers” that are placed into a 
lattice and are allowed to interact with a mean-field-type intermolecular potential [20]. The Sanchez-
Lacombe EOS for pure fluids is: 

                 (2.15)        

where 

                                                                                (2.16) 
with 

                                                                                 (2.17) 
 

In these equations, T is absolute temperature (K), P is pressure (bar), ρ is density (kg/m3).   𝑇,෩   𝑃,෩  and 𝜌෤ 
are the reduced temperature, pressure, and density, respectively. T* (K), P*(bar) and ρ*(kg/m3) are scale 
factors that are independent of molecular size of the polymer.  ε* is a characteristic interaction energy 
per segment.  k is the Boltzmann constant, which is a proportionality constant between the quantities 
temperature (with unit kelvin) and energy (with unit joule), with a value of 1.380649E-23 J/K.  v* is the 
closed-packed volume of a segment. M is the molecular weight, and m is the number of segments per 
chain. 

We typically determine the scale factors, T* (K), P*(bar) and ρ*(kg/m3), from regressing experimental 
data, such as vapor-pressure data for conventional components and liquid-volume data for polymer 
species.  We will demonstrate how to do this in a workshop in the next section. A search of “Sanchez-
Lacombe unary parameters” in Aspen Plus online help gives the values of these unary parameters for 
many polymers, solvents, and monomers; and several published articles also give the regressed unary 
parameters for selected segments in simulating HDPE, LDPE and LLDPE processes [28 to 31]. Figure 2.31 
gives examples of POLYSL unary (or pure component) parameters for simulating a slurry HDPE 
copolymerization process [28]. In the figure, TICL4 and TEAL (triethyl aluminum) are catalyst and 
cocatalyst. CH4, C2H6 and N2 are impurities. C2H4 and C4H8 are monomer and comonomer. R-C2H4 
and R-C4H8 are ethylene and 1-butene segments, and H2 is the chain transfer agent. To enter these 
parameter values, we follow the path: Properties -> Methods -> Parameters ->Pure Components -> New: 
name = PURE-1 -> Parameters: SLTSTR, SLPSTR and SLRSTR, and enter the values. For those species with 
missing unary parameters, Aspen Plus online help suggests using the values: SLTSTR = 415 K, SLPSTR = 
3000 bar; and SLRSTR = 736 kmol/cum (which must be converted to a mass-based unit with the 
molecular weight of the component). 
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Figure 2.31 Entering unary or pure component parameters of the POLYSL EOS for simulating a HDPE 
process 

To apply the POLYSL EOS to mixtures, the model parameters become composition-dependent through 
the following mixing rules. The mixing rule for the characteristic closed-packed molar volume of “mers” 
(that is, the broken parts of a component within a lattice [20]) of the mixture, 𝑣௠௜௫ 

∗ , is 
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where the binary interaction parameter 𝜂௜௝   (called parameter SLETIJ-1 within Aspen Plus) corrects for 
deviations from arithmetic mean and where subscripts i and j   are the components in the solution 
mixture.    The segment fraction of component i,  𝜙௜, is defined as 
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where wi is the mass fraction of component i in the mixture, and 𝜌௝  and 𝑣௝ are the characteristic mass 
density and closed-packed molar volume of component j, respectively. The mixing rule for the 
characteristic interaction energy for the mixture, 𝜀௠௜௫

∗ , is 
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with 

                                                 ijjjiiij k  1                                      (2.22)                   

where 𝜀௜௜
∗  and 𝜀௝௝

∗  are the characteristic interaction energies between different broken parts of a 
component within a lattice (called mer-mer interaction in  [20]) for components i and j. The binary 
interaction parameter 𝑘௜௝  (called parameter SLKIJ-1 within Aspen Plus) accounts for specific binary 
interactions between components i and j.   Lastly, the mixing rule for the number of sites occupied by a 
molecule of the mixture, 𝑟௠௜௫ is given by 
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where 𝑟௝ is the number of site molecule j occupies in the lattice, and 𝜙௝ is the segment fraction of 
component  j, defined previously in Eq. (2.20). 

Binary interaction parameters  𝑘௜௝ and  𝜂௜௝  are typically correlated as a function of reduced temperature, 
Tr (= T/ Tref   where Tref = 298.15 K): 

                                 (2.24)     

                                                                          (2.25) 

Figures 2.32 and 2.33 shows the values of binary interaction parameters 𝑘௜௝ and  𝜂௜௝  for simulating a 
HDPE process [28]. To enter these values within Aspen Plus, follow the path: Properties -> Methods -> 
Parameters -> Binary Interaction-> New -> Name: SLKIJ-1 -> Enter the values (do the same for SLITIJ-1). 

 

Figure 2.32 Binary interaction on parameters 𝑘௜௝ for simulating a HDPE process 

 

Figure 2.33 Binary interaction on parameters 𝜂௜௝ for simulating a HDPE process 

2.7 Workshop 2.3 Estimating Property Parameters Using Data Regression Tool 

2.7.1 Objective: 

This workshop demonstrates how to use the data regression (DRS) tool to identify the pure component 
parameters and binary interaction parameters of an EOS model based on component liquid density data 
and binary vapor-liquid equilibrium (VLE) data (two of the most commonly used property data for 
property parameter regression). We use the example of a slurry HDPE process [28]. 

We show how to apply the DRS tool according to the following steps: (1) defining a DRS run; (2) specify 
the unit set and global options; (3) define components, segments, oligomer and polymer, making sure to 
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define a polymer as an oligomer; (4) choose property method and enter known property parameters 
from Aspen enterprise databanks; (5) enter experimental data; (6) specify a regression run and physical 
property parameters to be regressed (7) running the simulation, examining the results and compare the 
model predictions with experimental data. 

2.7.2 Defining a DRS Run 

We begin by creating a data regression run and save the simulation file as: WS2.3 Estimating Property 
Parameters Using Data Regression Tool.bkp. We choose a data regression in the run mode section from 
the toolbar at the top of the screen, as highlighted in Figure 2.34. 

 

Figure 2.34 Creating a data regression run 

 

2.7.3 Specifying a Unit Set and Global Options 

We define a unit set named DRS by copying most units from the unit set, SI, but change the pressure 
unit to Bar. Following Figure 1.6, we specify a global option of using a mass-based flow rate according to 
the path: Simulation -> Setup -> Specifications -> Global -> Global settings -> Flow basis: mass. 

2.7.4   Defining Components, Segments, Oligomers and Polymer 

Figure 2.35 shows the same component specifications for a commercial slurry HDPE process that we will 
simulate in detail in Chapter 5 [28]. We repeat the important information presented previously in 
Section 1.3 and emphasize that both property analysis and regression tools in Aspen Plus do not support 
polymer attributes. Therefore, for property analysis and regression runs, we should define a polymer as 
an oligomer. By doing so, we eliminate the need to enter any attribute information. 



 

Figure 2.35 Component specifications for data regression of a HDPE process 

In the figure, LP refers to an oligomer product; R-C2H4 and R-C3H6 are ethylene and propylene 
segments; C2H4 and C3H6 are monomer and co-monomer; hexane (HX) is a solvent; H2 is the chain 
transfer agent; CH4, C2H6, C4H10, and C3H8 are impurities; N2 is an inert gas. 

We note that except for HDPE and LP, Aspen Plus automatically fills in the molecular structures for other 
components that appear in the enterprise databases for pure components and segments. See: 
Properties-> Components -> Molecular Structure -> Choose component name -> Structural and 
functional group -> Graphical structure. 

We quantify both HDPE and LP by following the path: Properties -> Components ->Polymers -> 
Segments: Set both segments R-C2H4 and R-C3H6 as repeat unit; and Oligomers: Assume HDPE and LP 
to have 1500 and 16 repeat segments. Note that the exact number of repeated segments for HDPE does 
not affect the regression results. 

2.7.5 Choose Property Method and Enter Known Property Parameters from Aspen Enterprise 
Databanks 

Clicking on the “Review” button at the bottom of Figure 2.35 will ask Aspen Plus to call up all the 
relevant pure component parameters from the enterprise databanks for pure components, segments, 
and polymers. For example, Figure 2.36 shows the resulting listing of pure component parameters (both 
scalar and temperature-dependent) provided by the databanks. The figure displays the parameters for 
the ideal gas heat capacity from the segment databank, DB-SEGMET. To see the specific form of any 
temperature-dependent parameter correlation, such as CPIG, click the “Help” button in Figure 2.36 to 
access the Aspen Plus online help. We see the following correlation for CPIG in Figure 2.37. 



 

Figure 2.36 Calling up databank values of pure component parameters. 

 

Figure 2.37 Access Aspen Plus online help for CPIG parameter correlation 

Additionally, we can see the scalar pure-component parameter values by following the path: Properties-
> Methods-> Parameters-> Pure components -> REVIEW-1. See Figure 2.38. To understand the meaning 
of each listed parameter, click on the name to expand the pull-down menus, you will see a description. 

 

Figure 2.38 Values of scalar pure component parameters called up from the databanks and displayed in 
REVIEW-1 



For HDPE, Aspen Plus assume the molecular weight for HDPE to be that of the C2H4 segment, that is, 
28.0538. To enter the correct molecular weight of our HDPE “oligomer” with 1500 repeated segments, 
we follow the path: Properties -> Methods -> Parameters -> Pure Components -> New -> Name: 
MWHDPE -> Input: Component = HDPE, Parameter: MW= 42080.7(= 28.0538 x 1500). We note that the 
exact value of this MW does not affect the regression results. 

This list of pure component parameters displayed by Aspen Plus in Figure 2.38 does not include the 
values of T*, P* and ρ* defined by Eq. (2.17) and illustrated in Figure 2.31. We follow the path: 
Properties -> Methods -> Parameters ->Pure Components -> New: name = SLTPR -> Parameters: SLTSTR, 
SLPSTR and SLRSTR, and enter the values according to [28].  See Figure 2.39. These values are essential 
when running regression of vapor-liquid equilibrium data for missing binary interaction parameters. 

 

Figure 2.39 Pure component parameters for POLYSL EOS for a HDPE process 

 

2.7.6 Enter Experimental Data for Data Regression, Run the Regression and Examine the Results 

We first demonstrate how to regress the pure component parameters for POLYSL, T*, P* and ρ*, 
defined by Eq. (2.17) for C2H4, and compare with the resulting values with those listed in Figure 2.39. 
We enter the liquid density data of C2H4 [32] by following the path: Properties -> Data -> New -> Enter 
ID: C2RHOL, select type: PURE-COMP -> Setup: Category = Thermodynamic, Property = RHOL, 
Component = C2H4; Data – enter C2RHOL data according to Figure 2.40. To enter the TPXY data of 
Figure 2.41, we follw the path: Properties ->Data ->New ->Enter ID: PEXY1, select type: MIXTURE 
->Setup: Category ->Phase Equilibrium, Data type ->TPXY, Components in mixture: C2H4, HDPE, 
Composition basis: Mass fraction, Data-> enter the data displayed in Figure 2.41. 

 

Figure 2.40 Liquid density data for C2H4 for regression of pure component parameters 



 

Figure 2.41 TPXY data for regression of binary interaction parameters 

2.7.7 Specifying a Regression Run and the Parameters to be Regressed 

To regress the pure component parameters for POLYSL, we follow the path: Properties -> Regression -> 
New: Enter ID = C2 -> Input:  see Figure 2.42. 

 

Figure 2.42 Input for regressing pure component parameters using liquid density data C2RHOL 

Next, we specify the pure component parameters to be regressed. See Figure 2.43. 



 

Figure 2.43 Specification of POLYSL pure component parameters to be regressed 

2.7.8 Running the Regression Case and Examining the Results 

When running the regression, the control panel first shows which regression case to run. We choose 
case C2 and click OK to run. See Figure 2.44. 

 

Figure 2.44 Selecting the regression case C2 to run 

We follow Figure 2.45 to keep the regressed pure component parameter values in the result folder of 
regression run C2 and not replace the previously entered values. See Figure 2.46. The regressed 
parameters SLTSTR = 334.509 K, SLPSTR = 2.39886E8 kPa = 2398.86 bar, and SLRSTR = 631.704 kg/cum, 
which compare favorably with the values of 333, 2400 and 631 entered for C2H4 in Figure 2.39 [28]. 
Looking at “Profiles” folder of results, we see a table of comparison of experimental and estimated 
values of temperature, pressure, and liquid density of C2H4. See Figure 2.47. We plot the results by 
following the path: Plot (upper right corner of the computer screen) -> Custom -> X-axis: Exp Val RHO 
LQUID C2H4, kg/cum; Y-axis: Est Val RHO LQUID C2H4, kg/cum. See the initial plot in Figure 2.48 -> Plot: 
Format. Choose Squared plot and Diagonal line -> see the improved plot in Figure 2.49.                                                             

 We can use the same approach to regress the pure component parameters for the ethylene segment 
and other components using the liquid density data. Experimental data for liquid density and heat 
capacity for most components in the PE, HDPE, LDPE and LLDPE processes are available in [32 to 37]. 



 

Figure 2.45 Clicking No three times for not placing the parameter values of                                                                  
SLTSTR, STPSTR and SLRSTR previously entered in Figure 2.39. 

 

Figure 2.46 Regressed values of POLYSL pure component parameters for C2H4 

 

Figure 2.47 Comparison of experimental and estimated temperature, pressure, and liquid density of 
C2H4. 



 

Figure 2.48 The initial plot of estimated liquid density of C2H4 value versus measured value.                                                                                                        
Note the Format options of Squared plot and Diagonal line at the top. 

 

 

Figure 2.49 Improved plot of estimated versus measured liquid density of C2H4. 

Next, we demonstrate how to regress binary interaction parameters SLETIJ (𝜂௜௝ ) and SLKIJ (𝑘௜௝) based on 
Eqs. (2.24) and (2.25) using the liquid density data of C2H4, C2RHOL, of Figure 2.40 and the vapor-liquid 
equilibrium data for polyethylene and ethylene, PEXY1, of Figure 2.41.  

We create a new regression run by following the path: Properties -> Regression -> New ->Enter ID: 
C2TPXY->OK -> Setup: enter datasets PEXY1 and C2RHOL (following Figure 2.42) -> Parameters -> See 
Figure 2.50 for specifying the binary interaction parameters to be regressed. 



 

Figure 2.50 Specification of binary interaction parameters to be regressed 

Following Figures 2.44 to 2.46, we run the regression case C2TPXY, and the resulting binary interaction 
parameters appear in Figure 2.51. The accuracy of these parameters depends on the accuracy of the 
experimental data. 

 

Figure 2.51 Regressed binary interaction parameters between C2H4 and HDPE. 

 

2.8 Polymer Perturbed-Chain Statistical Fluid Theory (POLYPCSF) Equation of State 

Gross and Sadowski [21 to 23] developed the PC−SAFT EOS, which is an extension of the well-known 
SAFT EOS [24 to 26]. A key deference between the two models is that PC-SAFT model replaces the 
expression of the dispersion (attractive) interactions between isolated (or disconnected) polymer 
segments with that between connected polymer segments. See an illustration in Figure 2.52, in which 
each circle dot represents a segment. 

 

Figure 2.52 An illustration of the disconnected segments in SAFT versus the connected segments in PC-
SAFT. 

The PC-SAFT model is applicable to fluid systems of both small and large molecules over a wide range of 
temperature and pressure conditions, and it represents polymer systems very well. 

Statistical thermodynamics typically uses the Helmholtz free energy A to represent the attractive (or 
perturbation) interactions between molecules, as most properties of interest, such as pressure, can be 
obtained by proper differentiation of A. In the SAFT model, this attractive or perturbation term is a 



series expansion in terms of the reciprocal temperature, and each coefficient of the expansion depends 
on the density and composition. By contrast, the PC-SAFT model represents the molar residual 
Helmholtz free energy 𝐴௥௘௦ as a sum of two contributions 

                                         𝐴௥௘௦ =𝐴௥௘௙ +  𝐴௣௘௥௧                                                                  (2.26) 

where  𝐴௥௘௦ and 𝐴௣௘௥௧ are the reference and perturbation (attractive) contributions, respectively.  The 
reference term considers a fluid consisting of hard-sphere chains as a reference for the perturbation 
theory, and the perturbation term incorporates the attractive forces between the chains. 

The primary difference between the PC-SAFT and SAFT models is in the perturbation term. The SAFT 
model uses hard spheres, not hard-sphere chains, as a reference fluid for the perturbation contribution. 
The use of hard-sphere chains allows the PC-SAFT EOS to account for the connectivity of segments that 
comprise the chains when considering the attractions between species, resulting in a more realistic 
description of the thermodynamic behavior of mixtures of chainlike molecules.  Gross and Sadowski [21 
to 23] and others [e.g., 29 to 31] demonstrate that the PC-SAFT predictions for vapor-liquid and vapor-
liquid-liquid equilibria are superior to the SAFT model.  

The resulting PC-SAFT EOS expresses the compressibility as a sum of the ideal (with a value of unity), 
reference and perturbation contributions: 

                                                             ௉஼

ோ்
 = z =  zid + zref + zpert  =1 + zref + zpert                                           (2.27) 

Interested readers may refer to the original references for the analytical expressions of the PC-SAFT 
model [21 to 23] for the details of this contributions. A recent article by Kang et al. [27] gives a fairly 
complete analysis of the PC-SAFT model equations and their iterative solution procedures. 

The application of the PC-SAFT model requires the use of three pure-component parameters for each 
species involved: (1) segment number, m, which is a characteristic length and is directly proportional to 
the size (molecular weight) of the species; (2) segment diameter, σ Å; and (3) segment energy, ε Joule, 
typically expressed as a ratio ε/𝑘஻ in K, where 𝑘஻ is the Boltzmann’s constant, 1.38 E-23 J/K. For 
polymers, we typically replace the segment number m by a ratio r defined as m divided by the number-
average molecular weight, MWN: 

                                                                r = m/ MWN                                                                               (2.28) 

Using this ratio is more convenient because the polymer molecular weight is often unknown until the 
polymer is produced. For segments, we often use the ratio r as well. These parameters are obtained by 
fitting experimental vapor pressure and liquid molar volume data for pure components. 

Figure 2.53 illustrates the values of these pure component parameters in the simulation of a gas-phase 
PP process [42]. To enter these parameters in Aspen Plus, follow the path: Properties -> Methods -> 
Parameters -> Pure Components -> New: name = PCSAFT -> Enter parameter name, component, and 
value. In the figure, (1) parameter PCSFTM is the segment number m; (2) parameter PCSFTU represents 
the ratio of the segment energy to the Boltzmann’s constant ε/k in K; (3) parameter PCSFTV is the 
segment diameter, σ Å; and (4) parameter PCSFTR represents the ratio r in mol/g defined by Eq. (2.27). 
For those species with missing pure component parameters, a search “missing parameters (POLYPCSF)” 
of Aspen Plus online help suggests using the values: PCSFTM = 0.02434*(component molecular weight); 
PCSFTU = 267.67 K;   PCSFTV = 4.072 Å; and PCSFTR = 0.02434 mol/g for polymer species and segments. 



 

Figure 2.53 Pure component parameters for POLYPCSF model for simulating a PP process. 

The POLYPCSF model also requires binary interaction parameters that are correlated by Eq. (2.24) as a 
function of Tr (= T/ Tref   where Tref = 298.15 K): 

                                                                                     (2.24) 

These parameters may be obtained by regressing phase-equilibrium data. When these parameter values 
are not supplied, they default to zero. 

2.9 Workshop 2.4 Regression of Property Parameters for POLYPCSF EOS 

2.9.1 Objective and Data Sources: 

The objective of this workshop is to demonstrate the step-by-step procedure of Workshop 2.3 for 
regression of property parameters the POLYSL EOS is directly applicable to the POLYPCSF EOS.  

For polymer components, we may find relevant thermophysical property and phase equilibrium data: (1) 
for ethylene and propylene in [35,36,37]; (2) for polymer solutions and components in [32,33,38,39,41]; 
(3) for solvent vapor and liquid phase data in [34]; and (4) for pure component parameters for POLYPCSF 
for PP process in [42]. 

2.9.2 Regression of Pure Component Parameters for POLYPCSF EOS 

Following Figure 2.34, we begin by creating a data regression run and choosing the MET unit set and 
save the simulation file as: WS2.4 Regressing Property Parameters for POLYPCSF.bkp. 

Figure 2.54 shows the component specification. As discussed in Sections 2.7.4, both property analysis 
and regression tools in Aspen Plus do not support polymer attributes. Therefore, for property analysis 
and regression runs, we define PE as an oligomer. 

 

Figure 2.54 Component specifications. 
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We follow the path: Properties -> Components -> Polymers -> Characterization: (1) Segments – Define 
C2H4SEG as repeat segment; (2) Oligomers: Specify PE to include 1250 C2H4SEG. Next, we click on 
“Review” button illustrated in Figure 2.54 to call up pure component parameters from Aspen Plus 
databanks for pure components, segments and polymers. Following the path: Properties -> Parameters -
> Pure Components -> REVIEW-1 -> we see in Figure 2.55 the molecular weight (MW) for PE being 
28.0538, which is the molecular weight of the monomer C2H4, not that of the oligomer with 1250 
C2H4SEG repeated segments. To specify the correct molecular weight of PE, we follow the path: 
Properties -> Parameters ->Pure Components -> New -> Choose type = scalar and specify name = MWPE 
-> OK -> Input: enter component PE, parameter MW =35067.25 (28.0538 x 1250). 

 

Figure 2.55 Pure component parameters from Aspen databanks 

We follow the procedure in Figure 2.40 to enter the liquid density dataset PERHOL for PE (see Figure 
2.56), and to enter the vapor-liquid equilibrium dataset PETPXY1 for C2H4-PE of Figure 2.41 (with 
component name PE replacing HDPE).  

 

Figure 2.56 Liquid density dataset PERHOL of PE 

Following Figure 2.42, we set up a regression run C2H4SEG to estimate the POLYPCSF pure component 
parameters PCSFTU (the ratio of the segment energy to the Boltzmann’s constant ε/k in K), PCSFTV (the 
segment diameter, σ Å), and PCSFTR (the ratio r in mol/g defined by Eq. (2.27)) for C2SEG. See Figure 
2.57. 



 

Figure 2.57 Setting up a regression run for POLYPCSF pure component parameters of C2SEG 

Executing a regression run based on the liquid density dataset C2RHOL gives the resulting pure 
component parameters of Figure 2.58. 

 

Figure 2.58 Regressed POLYPCSF pure component parameters for C2H4 Segment 

The last two columns in Figure 2.59 show that the estimated liquid density data of PE match the 
experimental data well. 

 

Figure 2.59 A comparison of estimated and experimental data of liquid density data of PE. 



Following Figure 2.50, we create a regression run BINARY to estimate the binary interaction parameter 
PCSKIJ between components C2H4 and C2H4SEG using the vapor-liquid equilibrium dataset PETPXY1 for 
C2H4-PE of Figure 2.41 (with component name PE replacing HDPE). See Figure 2.60. 

 

Figure 2.60 Input to regress binary interaction parameter PCSKIJ 

Figure 2.61 shows the resulting binary interaction parameter. This concludes the current workshop. We 
save the simulation file as WS 2.4 Regressing Property Parameters for POLYPCSF.bkp. 

 

Figure 2.61 Regressed POLYPCSF binary interaction parameter 

This workshop concludes our sections of selection of thermodynamic methods and estimation of 
physical properties. We summarize our discussion of the differences between an equation of state (EOS) 
and an activity coefficient (gamma) model for polymer applications in Table 2.6. 

Table 2.6 Comparison of an equation of state and an activity coefficient model for polymer applications 

EOS Models Gamma or Activity Coefficient Models 
Limited in ability to represent nonideal liquid Can represent highly nonlinear liquids with polar 

and hydrogen-bonding species 
Fewer binary interaction parameters required Many binary interaction parameters required; 

Section 2.3 
Parameters extrapolate reasonably with 
temperature 

Binary interaction parameters are highly 
temperature-dependent 

Can represent both vapor and liquid Can only represent the liquid phase 
Consistent in critical region for light gases and 
low-molecular weight components 

Inconsistent in critical region, resulting in 
incorrect concentrations of light gases and low-
molecular weight components in liquid phase, 
Section 2.2.5 



Common EOS Models Common Gamma Models 
POLYSL, Polymer Sanchez-Lacombe EOS, Sections 
2.6 and 2.7; POLYPCSF, Polymer Perturbed-Chain 
Statistical Fluid Theory EOS, Sections 2.8 and 2.9 

POLYNRTL, Polymer Non-Random Two-Liquid 
Activity Coefficient Model, Sections 2.2.4 and 2.3 

 

2.10 Correlation of Polymer Product Quality Indices and Structure-Property Correlations 

2.10.1 Polyolefin Product Quality Indices 

Fundamentally speaking, polymer products are characterized by their molecular structures. The key 
quality measures include molecular weight averages (MWN and MWW), polydispersity index, copolymer 
composition, type and frequency of branching, tacticity, etc. Aspen Polymers can predict these quality 
indices from the moment equations as a part of the simulation model. 

In practice, industrial polymer producers focus more on empirical product quality indices. Two most 
important quality measures are melt index (MI) or melt flow rate (MFR), and polymer density. MI or MFR 
is defined as the mass of polymer, in grams, flowing in ten minutes (gm/10 min) through a capillary of a 
specific diameter and length by a pressure applied via prescribed alternative gravimetric weights for 
alternative prescribed temperatures. The standard testing methods are ASTM D1238 for flow rates of 
thermoplastics by extrusion plastometer, and ISO 1133 for determination of MFR of thermoplastics. For 
density, the standard testing methods are ASTM D1505 for density of plastics, ASTM D792-00 for density 
and specific gravity of plastics, and ISO 1183 for density of plastics. 

Figure 2.62 illustrates a melt-flow plastometer for MI determination. The polymer melt flows through 
the barrel, entrance region (or contraction) and capillary. The blow-up depicts the entrance region, 
where funneling flow takes place. The size of the capillary is standardized at 0.083” diameter and 0.250” 
length. For polyethylenes, the most common conditions are 190° C and 2.16 kg force. For polypropylene, 
the temperature is 230°C. For some polyethylene, the load is increased to 21.6 kg, which is called the 
High Load Melt Index, (HLMI) [43]. MI gives a relative indication of the molecular weight and viscosity of 
the polymer. The lower the MI, the higher the molecular weight and viscosity. 

 

Figure 2.62 Melt-flow plastometer for MI determination. 

The tacticity is an important quality measure of polypropylene. In Figure 2.63, we see in an isotactic PP, 
(all the repeating methyl CH3) groups, represented by the dark downward arrow, are arranged along the 
same side of the polymer chain.  In the syndiotactic (syntactic) PP, the repeating methyl groups are 
arranged on an alternating side of the polymer chain, while in the atactic PP, the repeating methyl 



groups are on either side of the polymer chain. In Chapter 5, we show that Aspen Polymers simulation 
quantifies the tacticity of PP by an atactic fraction (ATFRAC), which is defined as the ratio of atactic 
propagation reaction rate to the total propagation reaction rate. 

 

 

Figure 2.63 Three stereochemical configurations of PP 

2.10.2 Empirical Correlations of Polymer Product Quality Targets 

We first note that the estimated molecular weight distribution can vary by catalyst, process, plant 
operation, and testing method. Therefore, empirical correlations of polymer product quality targets 
have a limited range of applicability. Correlations from a particular catalyst, a particular comonomer, a 
single reactor, or from multi-reactor operations could be different. 

In an early publication in 1953, Sparati, et al. [44] presented a fairly complete study of eleven property 
correlations of LDPE. Two of the reported correlations include: 

                                                                  Log (MI) = 5.09 – 1.53x 10-4 (MWN)                                        (2.29) 

                                                                   Density =2.0 x 10-3 (crystallinity) + 0.03                                 (2.30) 

A popular correlation for HDPE or LLDPE copolymer density is of the form 

                                                                   Density = A –B*(SFRAC*100)C                                                   (2.31) 

where A, B and C are constants, and SFRAC is the mole fraction of the comonomer in the polymer 
product (e.g., comonomer 1-butene with monomer ethylene). 

In the literature, most empirical correlations for MI for polyolefins with broad MWD or large PDI are 
based on the weight-average molecular weight (MWW). For example, a general MI correlation with 
MWW [44 to 46] is in the form of  

                                                                         MI = a(MWW)-b                                                                                             (2.32) 

where a and b are correlating parameters. For PP, the MI may depend on the MWW as well as the 
atactic fraction (ATFRAC), calculated by the atactic chain propagation reaction (ATACT-PROP) in Aspen 
Polymers [42].  



The polymer density is usually measured for the pellets and correlated as a function of the MWW. For 
copolymerization, we often correlate the polymer density as a function of mole fraction of the 
comonomer and the MWW [46,47]. In reference [47], the HDPE density obtained from ethylene 
copolymerization with comonomer 1-butene follows the following correlation: 

                                       ( 1- 0.0081𝑥஻
଴.ଵସ଼଼ଽହ)x [1.137247 − 0.014314 ln(MWW)]                (2.33) 

where xB is the mole fraction of 1-butene.  

We demonstrate below how to develop simple linear and nonlinear correlations of melt index based on 
the measured data from a PP process using Excel. We save the Excel file as Example 2.2 Correlation of 
Melt Index.xlsx. 

  

Figure 2.64 Using Excel to develop a correlation for melt index 

 

Referring to Figure 2.64, we see the measured data for MI, MWN, and MWW, and PDI (= MWW/MWN) 
for polymer grade 1 in cells B10 to B13, C10 to C13, E10 to E13 and D10 to D13; and for polymer grade 2 
in cells B17 to B20, C17to C20, E17 to E20and D17 to D20. Based on assumed values of parameters a and 
b, we find the sum of squared errors (SOE) between the estimated values and experimental data, and 
then use Goal Seek solver in Excel to find the fitted values of parameters a and b that minimize the SOE. 
To access the Goal Seek solver, follow the path: Data -> What-If Analysis -> Goal Seek. We note that 
because of the significant difference in the values of MI for grades 1 and 2, it may be best to develop 
two separate correlations for the measured data. 

2.10.3 Estimation of Apparent Newtonian Viscosity from MI-MWW Measurement 

We begin with some background about Newtonian and non-Newtonian fluids. Newtonian fluids satisfy 
Newton's law of viscosity, where the proportionality constant η is the viscosity of the fluid. 

                                     τ (shear stress, Pa) = η (viscosity, Pa-s) x 𝛾 ̇  (shear rate, 1/s)            (2.34) 

In reality, most fluids are non-Newtonian, which means that their viscosity depends on shear rate (shear 
thinning or thickening) or the deformation history. Non-Newtonian fluids display a nonlinear relation 
between viscosity and shear rate (see Figure 2.65). A fluid is shear thickening if the viscosity of the fluid 
increases as the shear rate increases. A common example of shear thickening fluids is a mixture of corn 



starch and water. Fluids are shear thinning if the viscosity decreases as the shear rate increases. 
Common examples include ketchup, paints and blood.  

 

 

Figure 2.65 An illustration of shear thickening, shear thinning and Newtonian fluid. 

Seavey et al. [45] review the relationships among the molecular weight distribution, Non-Newtonian 
shear viscosity, and melt index. Both simple and more complex semi-empirical methods exist to relate 
these variables. For example, Bremner et al. [49] present experimental data and study the relationship 
between different molecular weight averages and melt index for several commercial thermoplastics, 
including PS, PP, LPDE, and HDPE.  

Rohlfing and Janzen [50] take a different approach by using a model for the flow within the melt indexer 
itself to predict the melt index. Sharma and Liu [53],[54] review the relationship of melt index and 
molecular weights  with input process parameters.  Referring to Figure 2.62, they consider the pressure 
drop in the melt indexer as a sum of the pressure drops in the barrel, entrance region and the capillary. 
They develop a set of integral-algebraic equations relating the shear rates at the barrel wall, at the 
capillary wall, and in the capillary, the barrel pressure drop, the capillary pressure drop, the entrance 
pressure drop, and the volumetric flow rate.  

For a Newtonian fluid with viscosity μ (in Pascal-second, or Pa-s) and based on the melt indexer of Figure 
2.62 with standard dimensions specified in Section 2.10.1, analytical solutions of the Rohlfing and Janzen 
model equations is possible, and it results in a simple equation: 

                                                                         MI = 7280/μ                                                         (2.35)                      

The details appear in [45].  

Working backwards from the melt index to predict the non-Newtonian shear viscosity (or "flow curve") 
is difficult because of the integral-algebraic equations involved. In cases where the integral covers part 
of the shear-thinning region of the flow curve, solutions to the flow model are not unique. For example, 
a polymer with a high Newtonian viscosity but with a rapid onset of shear thinning may have the same 
melt index as a polymer with a lower Newtonian viscosity with less shear-thinning behavior.  

Therefore, in our example below, we limit ourselves to the characterization of the apparent Newtonian 
viscosity of a polymer sample which can be estimated using the analytical correlation, Eq. (2.34). Once 
the apparent Newtonian viscosities are estimated from the MI data, we can use a power-law expression 
to correlate MWW with the viscosity.  



Let us open the Excel spreadsheet, Example 2.2 MI vs MWW.xlxs. Columns B and C show the data of MI 
vs. MWW for LLDPE samples from Table 1 of [48]. See Figure 2.66. Based on Eq. (2.35), we can find 
column E from Column C, that is, μ= 7280/ MI. 

 

Figure 2.66 MI vs MWW for LDPE samples [48] 

We then use Excel to develop a correlation between μ and MWW. See Figure 2.67. We note that this 
approach will work well for low MI materials where the flow through the melt indexer is primarily 
Newtonian. 

 

Figure 2.67 Developing a correlation between apparent Newtonian viscosity μ and MWW. 

Finally, we note that we demonstrate how to implement the correlations for MI and polymer density, 
Eqs. (2.31) and (2.32), in steady-state polymer process simulation in Section 5.8.11 using FORTRAN in 
Aspen Polymers, and in dynamic polymer-grade changes using “Tasks” in Aspen Plus Dynamics in Section 
7.6.3. 

Conclusion 

This chapter is published with Wiley publication in the book Integrated Process Modeling, Advanced 
Control and Data Analytics for Optimizing Polyolefin Manufacturing by Liu & Sharma. [55-68] 
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