Selection of Property Methods and Estimation of Physical Properties for Polymer Process Modeling

Y.A. Liu and Niket Sharma

Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.

Abstract

This chapter introduces novel methodologies for characterizing phase equilibrium and estimating physical properties crucial to polyolefin manufacturing. It presents an in-depth discussion on the polymer nonrandom two-liquid (POLYNRTL) activity coefficient model (ACM), and the polymer Sanchez-Lacombe (POLYSL) and the polymer perturbed-chain statistical fluid theory (POLYPCSF) equations of state (EOS). These innovative approaches offer specific guidelines for selecting the appropriate polymer ACM or EOS tailored to specific polyolefin processes.

A significant highlight is the detailed coverage of the POLYNRTL ACM, including a practical workshop for estimating POLYNRTL binary interaction parameters using the UNIFAC method. The chapter also explores the prediction of polymer physical properties through the Van Krevelen group contribution method, providing a hands-on workshop for estimating the physical properties of copolymers. Additionally, it introduces advanced techniques for parameter estimation using data regression tools, applied to both the POLYSL and POLYPCSF EOS models.

Furthermore, the chapter addresses the correlation of critical polyolefin product quality indices, such as melt flow rate or melt index and polymer density, providing insights that enhance the understanding and optimization of polyolefin manufacturing processes.

This is a preprint version of a chapter from our book - *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing. Please cite the original work if referenced* [52,56]

2.1 Property Methods and Thermophysical Parameter Requirements for Process Simulation

We present specific guidelines for the selection of an appropriate polymer ACM or EOS for modeling a specific polyolefin process [1,2].

This chapter begins by discussing the property methods and parameter requirements in simulating a polymer process (Section 2.1). We then present the polymer activity coefficient model (ACM), particularly the polymer non-random two-liquid (POLYNRTL) ACM in Section 2.2 and cover a workshop for estimating POLYNRTL binary interaction parameters using UNIFAC in Section 2.3. We discuss the prediction of polymer physical properties using the Van Krevelen group contribution method in Section 2.4. and follow by a workshop to estimate physical properties of a copolymer in Section 2.5. In Section 2.6, we introduce the polymer Sanchez-Lacombe (POLYSL) equation of state (EOS). Section 2.7 presents a workshop to estimate property parameters using data regression tool. Section 2.8 introduces the polymer perturbed-chain statistical fluid they (POLYPCSF) EOS, and Section 2.9 presents a workshop for regression of property parameters for POLYPCSF EOS. In Section 2.10, we conclude this chapter by discussing the correlation of polyolefin product quality indices, such as melt flow rate or melt index and polymer density. Section 2.11 presents the bibliography.

Aspen Plus refers to a property method as a collection of models and methods for calculating phase equilibria and various physical properties, such as density, enthalpy, viscosity, thermal conductivity, etc. We will discuss two major categories of property methods, namely, the activity coefficient models (ACM) and equations of state (EOS), in the following sections, and provide guidelines on how to choose an appropriate property method for a specific polyolefin process.

Table 2.1 summarizes the key process modeling tasks and the essential thermophysical properties required for completing the tasks. The reader may search the information within Aspen Plus: Help -> Property requirements -> Property requirements for mass and energy balance simulations.

Process modeling task	Essential thermophysical property requirements
Mass balance	Density or standard liquid volume, phase equilibrium
Energy balance	heat capacity, heat of formation, heat of reaction,
	heat of vaporization, liquid vapor pressure
Heat transfer	Density, heat capacity, thermal conductivity, viscosity
Pressure drop	Density, viscosity

Table 2.1 Process modeling tasks and essential thermophysical property requirements

We discuss below the two key types of property methods for characterizing the phase equilibrium and estimating physical properties in polyolefin processes: activity coefficient model (ACM), and equation of state (EOS).

2.2 Polymer Activity Coefficient Models (ACM): Polymer Non-Random Two-Liquid (POLYNRTL) Model

In Chapter 6, we present the modeling of manufacturing processes for polystyrene (PS) using free radical polymerization, and for poly(styrene-butadiene-styrene) rubber or SBS rubber using ionic polymerization. For both processes, we must account for vapor-liquid equilibrium with a high degree of nonideality in the presence of polar components (such as water) at low to medium pressure (< 10 bar), that is away from the critical region [1,2]. In the discussion below, we follow the explanation in [3 to 5].

2.2.1 Vapor-Liquid Equilibrium for an Ideal Vapor Phase and a Nonideal Liquid Phase

Figure 2.1 shows a vapor-liquid mixture. We assume that the vapor phase is ideal. The partial pressure of component i in the vapor phase, P_i , is equal to:

$$P_i = x_i \gamma_i (x_i, T) P_i^{sat} (T) = y_i P$$
(2.1)

In the equation, x_i is the liquid mole fraction of component *i*, $\gamma_i(x_i, T)$ is the activity coefficient of component *i* as a function of liquid composition x_i and temperature T, $P_i^{sat}(T)$ is the vapor pressure of pure component *i*, y_i is the vapor mole fraction of component *i*, and *P* is the pressure.

Figure 2.1 A vapor-liquid mixture.

For ideal solutions, the partial pressure P_i is equal to $x_i P_i^{sat}(T)$ according to Raoult's law [1]. For nonideal solutions, we correct this term by multiplying it with an activity coefficient, $\gamma_i(x_i, T)$. For an ideal vapor phase, the partial pressure P_i is equal to $y_i P$ according to Dalton's law [1].

2.2.2 General Vapor-Liquid Equilibrium Relationships Based on Fugacity Coefficient and Liquid-Phase Activity Coefficient

Based on Walas [1], we generalize Eq. (2.1) to define the vapor-liquid equilibrium using a gas-phase fugacity coefficient and a liquid-phase activity coefficient:

$$x_i \Upsilon_i f_i^{oL} = y_i \phi_i^V P = P_i \tag{2.2}$$

In the equation, f_i^{oL} is the liquid-phase reference fugacity, defined as the fugacity of a pure liquid at the temperature *T* and pressure *P* of the mixture, and ϕ_i^V is the partial gas-phase fugacity coefficient of component *i* computed from an equation of state.

2.2.3 Segment-Based Mole Fraction versus Species-Based Mole Fraction

This section follows the discussion in [3]. There are two types of molecular accounting systems that we use to model physical properties and phase equilibrium in polymer-containing systems. Species-based calculations consider polymer chains as single molecules, while segment-based accounting considers every polymer repeat unit ("segment") as an individual molecule. The segment-based approach can characterize polymer molecules by chemical properties of segments or monomer units that comprise the polymers. This makes it easier to evaluate the effect of polymer composition on thermodynamic properties. The segment-based approach can also consider the chain length, which is important in the modeling of phase equilibrium and physical properties.

Figure 2.2 illustrates a segment-based representation of polymer chains in a mixture, which permits the consideration of the interaction between each segment type and solvent molecules.

Figure 2.2 A segment-based representation of polymer chains in a mixture.

We note that the mole fraction of polymer chains is often of little physical significance. Let us consider a mixture of 1 g high-density polyethylene (HDPE) of a molecular weight 50,000, dissolved in 10 g of n-hexane of molecular weight 86.18. We find the mole fraction of polymer as:

 $x_{polymer}$ = (moles polymer)/(moles solvent + moles polymer) = (1/50,000)/[1/86.18 + 1/50,000] = 1.72E-4

Now let us consider the ethylene segment (-C2H4-) of a molecular weight of 28.05. A HDPE polymer of a molecular weight of 50,000 corresponds to a degree of polymerization of 50,000/28.05, or 1534.9 segments. We treat each solvent molecule as a single segment. The segment-based mole fraction of polymer is then:

 $X_{polymer}$ = (moles polymer segments)/(moles solvent + moles polymer segments) =[(1/50,000) x1534.9]/ [10/28.05 + (1/50,000) x 1534.9] = 7.93E-2

This segment-based mole fraction is more representative of the amount of polymer in the mixture than the species-based mole fraction of polymer.

In general, we can convert the species-based mole fraction *x* to a segment-based mole fraction *X* according to the relationship [5]:

$$X_{I} = \frac{x_{i}r_{i,I}}{\sum_{i}\sum_{I}x_{i}r_{i,I}}$$
(2.3)

where subscript *I* refers to polymer segments, subscript *i* refers to a polymer molecule, and $r_{i, l}$ is the number of segment type *I* in polymer molecule *i*.

2.2.4 POLYNRTL: Polymer Nonrandom Two-Liquid Activity Coefficient Model

In the POLYNRTL model of Chen [4], the Gibbs free energy of mixing of a polymer solution is the sum of (1) the enthalpy of mixing, based on the nonrandom two-liquid (NRTL) theory [5], and (2) the entropy of mixing, based on the Flory-Huggins (F-H) theory [6 to 8]. The model calculates the activity coefficient as a sum of two contributions:

$$\ln \gamma_i = \ln \gamma_i^{NRTL} + \ln \gamma_i^{F-H}$$
(2.4)

where Υ_{i} is the activity coefficient of species i, superscripts *NRTL* and *F-H* represents the NRTL and Flory-Huggins contributions, respectively.

We note that POLYNRTL and many other activity coefficient models ignore a third term in Eq. (2.3), representing the free-volume (FV) or compressibility contribution. Oishi and Prausnitz [9] proposed a UNIFAC-FV model to include the FV contribution. Interested readers may search "UNIFAC free volume model" in Aspen Plus online help to learn more detail about the model, but we do not use the model in this text.

The NRTL activity coefficient contribution is different for polymers (subscript i = p) and for solvents (subscript i = s). The relevant expressions are as follows.

In the equations, X_{κ} is the segment-based mole fraction defined by Eq. (2.3). The parameter G_{ii} relates the overall segment-based mole fractions to the local segment-based mole fractions. It is related to the binary interaction parameter τ_{ij} and the nonrandomness factor α_{ij} through the following relationship:

$$G_{ij} = \exp(-\alpha_{ij} \tau_{ij}) \tag{2.7}$$

 α_{ij} has a value between 0.2 to 0.3, and its value has no significant impact on the behavior of the model [5]. The binary interaction parameter τ_{ij} is related to the energy of interaction between species *i* and *j*, g_{ij} , and the energy of interaction between a pair of *j* species, g_{jj} , according to:

$$\tau_{ij} = (g_{ij} - g_{jj})/RT$$
 (2.8)

This definition suggests that τ_{ii} is zero.

Aspen Plus databanks provide temperature-dependent relationships for both the binary interaction parameters τ_{ij} and the nonrandomness factor α_{ij} :

$$\tau_{ij} = a_{ij} + b_{ij} / T + e_{ij} \ln T + f_{ij} T$$
(2.9)

$$\alpha_{ij} = c_{ij} + d_{ij} \left(T - 273.15 \right) \tag{2.10}$$

The Flory-Huggins contribution in Eq. (2.4) is as follows:

$$\ln \gamma_I^{FH} = \ln \left(\frac{\phi_I}{X_I}\right) + 1 - m_I \sum_J \left(\frac{\phi_J}{m_J}\right)$$
(2.11)

For a solvent, $\phi_i = X_i$, which is the segment-based mole fraction of the solvent; for a polymer, $\phi_i = X_i$, summed over all the segments.

 m_i is the characteristic size of species i. It is related to the degree of polymerization by:

$$m_i = s_i \times P_i^{\varepsilon_i} \tag{2.12}$$

where s_i and ε_i are empirical parameters with default values for both being 1.0 for small molecules. P_i is the degree of polymerization of species i.

Table 2.2 summarizes the POLYNRTL model parameters. In using the POLYNRTL model within Aspen Plus/Polymers, we only need to enter parameters NRTL/1 to NRTL/8; Aspen Polymers sets the remaining model parameters to their default values.

Parameter	Symbol	Default	Unit	Comments
Name/Element			Keyword	
NRTL/1	a _{ij} and a _{ji}	0		Binary,
				Asymmetric
NRTL/2	b _{ij} and bji	0	TEMP	Binary,
				Asymmetric
NRTL/3	C _{ij}	0.3		Binary, Symmetric
NRTL/4	d _{ij}	0	1/TEMP	Binary, Symmetric
NRTL/5	e _{ij} and e _{ji}	0		Binary,
				Asymmetric
NRTL/6	f _{ij} and f _{ji}	0	1/TEMP	Binary,
				Asymmetric
NRTL/7	Tmin	0	TEMP	Unary
NRTL/8	Tmax	1000	TEMP	Unary
FHSIZE/1	Si	1.0		Unary
FHSIZE/2	εί	1.0		Unary
POLDP	Pi	1.0		Unary

Table 2.2 POLYNRTL model parameters

2.2.5 Concept of Henry Components for Vapor-Liquid Equilibrium for a Vapor Phase and a Nonideal Liquid Phase Involving Supercritical Components

A serious weakness of activity coefficient models is that they are not accurate in predicting the solubilities of supercritical components in the liquid phase. Those components refer to light gases and low molecular-weight hydrocarbons, such as H2, O2, N2, CO, CO2, H2S, NO2, SO2, CH4, C2H4, C2H6, C3H6, C3H8, etc. Refer to Eq. (2.1) for the vapor-liquid equilibrium relationship between an ideal vapor phase and a nonideal liquid phase:

$$P_i = x_i \gamma_i (x_i, T) P_i^{sat} (T) = y_i P$$
(2.1)

For a vapor phase and a nonideal liquid phase involving supercritical components, we modify Eq. (2.1) as:

$$x_i \Upsilon_i^* H_i = \varphi_i^{\nu} y_i P = P_i \tag{2.13}$$

In the equation, $\Upsilon_i^* = \Upsilon_i / \Upsilon_{\infty}$, and Υ_{∞} is the infinite-dilution activity coefficient. H_i is the Henry's law constant, and φ_i^v is the vapor-phase fugacity coefficient calculated by an equation of state (EOS). For an ideal vapor phase, we choose the ideal gas law as the EOS; for a nonideal gas (such as a gas phase up to medium pressures), we use the Redlich-Kwong-Soave (RKS) EOS, which is a cubic EOS where the product of the pressure P and the third power (cubic) of the volume of the mixture, V_m^3 , is related to the ideal gas law constant R multiplied by the temperature T of the mixture. Interested reader may search "Redlich-Kwong-Soave" on Aspen Plus online help for details of the RKS EOS.

The Henry's law constant H_i is typically correlated as a function of temperature. For a supercritical component *i* and a solvent *A*, Aspen Plus uses the following correlation:

$$\ln(H_{i,A}) = a_{i,A} + b_{i,A} / T + c_{i,A} \ln T + d_{i,A} T + e_{i,A} / T^2 \qquad T_L < T < T_H \qquad (2.14)$$

Table 2.3 summarizes the Henry's law parameters.

Parameter Name/Element	Symbol	Default	Unit
Henry/1	a i,A	0	
Henry/2	b _{i,A}	0	TEMP
Henry/3	Ci,A	0	TEMP
Henry/4	$d_{i,A}$	0	TEMP
Henry/5	ΤL	0	TEMP
Henry/6	Τ _Η	2000	TEMP
Henry/7	e _{i,A}	0	TEMP

Table 2.3 Henry's law parameters

We demonstrate below how to implement the concept of Henry components and compare the resulting concentrations of light gases in the solvent *with and without* applying Henry's law. Consider a simple two-phase flash problem shown in Figure 2.3 and defined in Table 2.4. We save the simulation file as *Example 2.1 NRTL Flash with Henry Component.bkp*

Figure 2.3 A simple flash unit for Example 2.1

Components	Water,H2, N2
Property	NRTL
method	
Henry's	H2, N2
components	
Feed	70°C, 1 bar, Water (1000 kg/hr),
	H2(50 kg/hr), N2 (50 kg/hr)
Flash drum	70°C, 1 bar

Table 2.4 Specifications of Example 2.1

Figure 2.4 illustrates how to specify Henry components: Properties -> Components ->Henry comps -> New: HC-1 -> Move H2 and N2 from "Available Components" to "Selected Component".

Properties	۰.	Henry Comps - HC-1 × +
All Items	•	Selection Comments Select Henry components
 Specifications Molecular Structure Assay/Blend Light End Properties Petro Characterization 	m	Available components Selected components WATER H2 N2
Component Attributes		

Figure 2.4 Specification of Henry's components, HC-1.

After defining the Henry components, we can see Henry's law parameters for both H2 and N2 by following the path: Properties -> Methods -> Parameters -> Binary Interaction -> HENRY-1 (see Figure 2.5). Refer to Eq. (2.13) and Table 2.3 for Henry parameters.

Properties	1	Binary	Interaction - H	ENRY-1 (T-DEP	ENDENT) × +									
All Items	-	🕑 İnp	out 🥝 Databa	anks Comment	ts									
🔺 🙋 Methods 📃						_						_		
Specifications		Parame	eter HENRY		Help	Data set	1	Swap	View Regressi	on Informatio	n Search			
Selected Methods		Tem	erature-denen	dent binary parar	neters									
🔺 🔯 Parameters		Tem	crature depend	sent binary parar	lictors									
Pure Components			Component	Component Th	Source 7	Temperature	Property	AU 🏹	BIJ 😱	CIJ 🏹	DIJ 🏹	TLOWER	TUPPER.	EU 🌾
Binary Interaction		1				units	units							
O ANDKIJ-1		\mathbb{P}	H2	WATER	APV110 BINARY	С	bar	180.066	-6993.51	-26.3119	0.0150431	0.85	65.85	0
O ANDMU-1		- P	N2	WATER	APV110 BINARY	с	bar	164.994	-8432.77	-21.558	-0.00843624	-0.15	72.85	0
THENRY-1														
MLQKIJ-1														

Figure 2.5 Henry's law parameter values for H2-N2-water mixture.

Next, we enter the feed stream and flash conditions in Table 2.4. Subsequently, an inexperienced Aspen Plus user may follow the habit of clicking on the "Next" button and seeing a message of "required input complete" and proceed to run the simulation (see Figure 2.6).

Figure 2.6 Clicking on the "Next" button, seeing the required input complete and clicking "OK" to run the simulation.

This results in the mass fractions of H2 and N2 in the LIQUID product being 4.98053E-6 and 5.25986E-5, or 4.98 and 52.5 ppm, respectively. See Figure 2.7. As we show shortly, despite having defined H2 and N2 as Henry components, these mass fractions actually result from the NRTL property method *without* incorporating the Henry's law.

ial	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids		
				Units	FEED -		VAPOR
,	Molar Solid Fract	d Fraction or Fraction d Fraction l Fraction alpy opy opy opy sity low			0	0	o
1	Mass Vapor Fract	tion			0.288115	0	1
	Mass Liquid Frac	tion			0.711885	1	c
	Mass Solid Fracti	on			0	0	c.
١	Molar Enthalpy		kc	al/mol	-44.0272	-67.4398	-17.681
1	Mass Enthalpy		kc	al/kg	-3285.88	-3743.56	-2155.04
r	Molar Entropy		са	l/mol-K	-19.6117	-36.424	-0.692967
ľ	Mass Entropy		ca	l/gm-K	-1.46368	-2.02188	-0.0844617
	Molar Density		kn	nol/cum	0.074436	52.6958	0.0350501
r	Mass Density		kg	/cum	0.997359	949.31	0.287569
E	Enthalpy Flow		Go	al/hr	-3.61447	-2.93148	-0.682988
1	Average MW				13.3989	18.0149	8.20452
+ 1	Mass Flows		kg	/hr	1100	783.074	316.926
- 1	Mass Fractions						
	WATER				0.909091	0.999942	0.684611
	H2				0.0454545	4.98053e-06	0.157753
	N2				0.0454545	5.25986e-05	0.157636

Figure 2.7 Computed mass fractions of H2 and N2 in the LIQUID product without incorporating Henry's law into the NRTL property method

To incorporate Henry's law into the calculation of the NRTL property method, we must tell Aspen Plus to do so following the path: Property -> Methods -> Specification -> Henry components -> HC-1 defined in Figure 2.3. We illustrate this step in Figure 2.8.

Properties	٠.	Methods - S	pecificatio	ons × Cor	trol Panel \times	+
All Items	•	Global	Flowshe	et Sections	Referenced	Comments
 Setup Components 		Property m	iethods &	options	-	Method name
Methods Specifications		Base metho	od	NRTL	•	NRTL
Selected Methods		Henry com	ponents	HC-1	•	- Modify -
Parameters Parameters Parameters		Petroleur	n calculat	ion options		Vapor EOS

Figure 2.8 Including Henry components HC-1 into the NRTL property method.

Running the simulation again, we see in Figure 2.9 the resulting the mass fractions of H2 and N2 in the LIQUID product being 9.47979E-7 and 6.16813E-7, or 0.948 and 0.617 ppm, respectively (compared to the incorrect values of 4.98 and 52.5 ppm in Figure 2.7). The significant difference demonstrates the importance of correctly including Henry components into the NRTL property method. This observation applies to the POLYNRTL property method as well.

erial	Vol.% Curves	Wt. % Curves	Petroleun	n Polymers	Solids		
				Units	FEED		VAPOR -
3	Molar Solid Frac	tion				0 0	0
5	Mass Vapor Frac	tion			0.28819	7 0	1
31	Mass Liquid Frac	tion			0.71180	3 1	0
8	Mass Solid Fract	ion				0 0	0
34	Molar Enthalpy		k	cal/mol	-44.026	8 -67.4445	-17.6823
1	Mass Enthalpy		k	cal/kg	-3285.8	6 -3743.77	-2154.89
1	Molar Entropy		с	al/mol-K	-19.610	9 -36.4269	-0.693001
1	Mass Entropy		c	al/gm-K	-1.4636	2 -2.02202	-0.0844539
1	Molar Density		k	mol/cum	0.074425	2 52.7001	0.0350501
3	Mass Density		k	g/cum	0.99721	5 949.401	0.287609
3	Enthalpy Flow		G	ical/hr	-3.6144	4 -2.93131	-0.683135
6	Average MW				13.398	9 18.0151	8.20567
+	Mass Flows		k	g/hr	110	0 782.984	317.016
- 1	Mass Fractions						
	WATER				0.90909	1 0.999998	0.684563
	H2				0.045454	5 9.47979e-07	0.157718
	N2				0.045454	5 6.16813e-07	0.157719

Figure 2.9 Computed mass fractions of H2 and N2 in the LIQUID product after incorporating Henry's law into the NRTL property method.

To summarize, the POLYNRTL method is applicable to polyolefin processes involving a highly nonideal liquid phase (with polar and hydrogen-bonding species) up to medium pressures of approximately 10 bar. It must be used with Henry's law when the mixture contains light gases and low molecular-weight hydrocarbons. Two typical processes are polystyrene (PS) using free radical polymerization, and poly(styrene-butadiene-styrene) rubber or SBS rubber using ionic polymerization discussed in Chapter 6. For non-polyolefin systems, we apply the POLYNRTL method to Nylon, PET (polyethylene terephthalate), and PLA (polylactic acid), etc. for step-growth polymerization processes [3].

2.3 Workshop 2.1 Estimating POLYNRTL Binary Parameters Using UNIFAC

2.3.1 Objective:

The UNIFAC (<u>UNIQUAC F</u>unctional-group <u>A</u>ctivity <u>C</u>oefficients) method [10,11] is a semi-empirical system for the prediction of non-electrolyte activity in non-ideal mixtures. Over the years, there have been numerous articles and books extending the method to more complex vapor-liquid mixtures. The UNIFAC method attempts to break down the problem of predicting interactions between molecules by describing molecular interactions based upon functional groups, such as functional groups 1005 (>CH-), 1100 (>CH2), 1015 (-CH3), and 2400 (CH2SH), attached to the molecule. A search of Aspen Plus online help for "UNIFAC Functional Groups" will give Tables 3.12 to 3.21 of the functional groups available *within* Aspen Plus. This workshop demonstrates how to use UNIFAC to estimate POLYNTRL binary parameters.

2.3.2 Estimating POLYNRTL Binary Parameters Using UNIFAC for Polystyrene Manufacturing

Figure 2.10 shows some of the components involved in polystyrene manufacturing, where Sty and STY-SEG are styrene (monomer) and STY-SEG are styrene segment (repeat unit), and EB (ethyl benzene) and DDM (n-dodecyl mercaptain) are chain-transfer agents. We save the simulation file as **WS2.1 Estimating POLYNRTL Binary Parameters Using UNIFAC.bkp**.

Properties	< 0	Components - Specifications × +									
All Items	•	0	Selection	Petroleu	m Nonconventional	Centerprise Databas	e Comments				
 Setup Components 	-	Sele	elect components								
Specifications Molecular Structure		1	Compone	ent ID	Тур	be	Component name	Alia			
0 DDM		j.	STYRENE		Conventional		STYRENE	C8H8			
💽 EB		÷	STY-SEG		Segment		STYRENE-R	C8H8-R			
O STV-SEG		j.	PS		Polymer		POLY(STYRENE)	PS-1			
STYRENE	_	Þ	EB		Conventional		ETHYLBENZENE	C8H10-4			
Assay/Blend Light End Properties	-	-	DDM		Conventional		N-DODECYL-MERCAPTAN	C12H265			

Figure 2.10 Component specifications for WS 2.1.

If a component is present in the Aspen Enterprise Database for pure components and segments, we will see its structure being displayed within the "Molecular Structure" folder, as illustrated in Figure 2.11 for DDM (C12H26S). Additionally, Aspen Plus will automatically complete a representation of the displayed structure as a combination of UNIFAC functional groups, that is, C12H26S = H3C-(CH2)₁₀-CH2SH = 1*(Group 1015, H3C) + 10*(Group 1100, CH2) + 1*(Group 2400, CH2SH). In fact, Aspen Plus will do this for all specified components that are present in the Aspen Enterprise Database, which will enable the use of UNIFAC group-contribution method to estimate the binary parameters.

We see a "Draw/Import/Edit" button in Figure 2.11. In Section 4.4.3, we will show how to import a molecular structure file, *.mol, from the Internet (such as Chemical Book, <u>www.chemcalbook.com</u>) for a component not available within Aspen Enterprise Database. In Section 6.1.4, we also demonstrate how to use the drawing tools within Aspen Plus to draw a molecular structure.

Figure 2.11 Showing a graphical structure of DDM (n-dodecyl-mercaptan) available in the Aspen Enterprise Database.

Next, we follow the path: Properties -> Estimation -> Input -> (1) Estimation Option -> Estimate only the selected parameters; (2) Parameter type -> Binary interaction parameters (see Figure 2.12).

Figure 2.12 Specification to estimate binary interaction parameters.

In Figure 2.13, we click on the "New" button, and then choose parameter, "NRTL" and method "UNIFAC". We can specify component *i* (STYRENE) and component *j* (STY-SEG) and other *i-j* component combination one by one. However, this is not necessary; by choosing "ALL" for both components i and *j*, Aspen Plus will estimate the interaction parameters for all binary component combinations for us.

Properties	<	< Estimation - Input × +									
All Items	*	Setup	Pure Component	T-Dependent	Binary	UNIFAC Group	Co				
 Setup Components Methods 		Parameter Method	< NRTL		- [>]	New					
 Chemistry Property Sets Data 		Compone	nts and estimation m	nethods	nent i	Temperatu	re				
 Estimation Input 		STY	RENE	STY-SEG	inclue y	Temperata					
S Results				ALL							

Figure 2.13 Specification of binary interaction parameters to be estimated

We then run the property estimation. Figure 2.14 shows the estimated binary interaction parameters, according to Eqs. (2.9) and (2.10) and Table 2.2. We save the simulation file as **WS 2.1 Estimating Binary Parameters from UNIFAC.bkp**.

ciippoard Units		ivavigate		10015	l	Jata Source	Kun woo	e		
Properties	< 1	Estimation - Input ×	Control Panel	×) Esti	nation - Results	×]+				
All Items	•	Pure Component	T-Dependent	Binary	UNIFAC Group	Status 🖉				
 Setup Components Methods Chemistry 	*	NRTL	arameters	>						
		Component i	Component j	a	ij aji		bij	bji	Alpha	Method
Property Sets	=	STYRENE	STY-SEG				65.8755	-50.1147	0.3	UNIFAC
Estimation		STYRENE	EB				-134.461	147.181	0.3	UNIFAC
Input		STYRENE	DDM				-121.084	87.1706	0.3	UNIFAC
Results		STY-SEG	EB				105.46	-79.4476	0.3	UNIFAC
🗀 Analysis	•	STY-SEG	DDM				391.35	-252.193	0.3	UNIFAC
T Properties		EB	DDM				-176.542	205.584	0.3	UNIFAC

Figure 2.14 Estimated binary interaction parameters.

Additionally, by following the path, Properties -> Methods ->Parameters -> Binary Interaction -> NRTL-1, we also see the estimated parameters being entered as the result (R) of the Physical Constant Estimation System (PCES), that is, R-PCES. See Figure 2.15.

Properties <	Es	stima	tion - Input × C	Control Panel 📯	Binary Interaction - I	NRTL-1 (T-DEP	ENDENT)	×] +			× .							
All Items 🔹		🧿 Ing	out 🕜 Databank	cs Comments														
Setup Components Methods	Pa	rame	eter NRTL	at hinany paramet	Help	Data set 1		Swa	p Ente	r Dechema F	ormat		Estimat	e using	UNIF	AC	View Re	gression I
Specifications Selected Methods Parameters			Component i 🎲	Component ji	Source 🐨	Temperature units	AIJ 🎲	AJI 🏹	BIJ 🏹	BJI 🏹	CIJ	DIJ	EIJ	EJI	FIJ	FJI	TLOWER	TUPPER
Pure Components). F	STYRENE	EB	APV110 VLE-IG	с	-0.975	1.385	37.6404	-56.0044	0.3	0	0	0	0	0	57.67	97
A Binary Interaction		(F)	STYRENE	STY-SEG	R-PCES	с	0	0	65.8755	-50.1147	0.3	0	0	0	0	0	25	25
ANDKIJ-1			STY-SEG	EB	R-PCES	c	0	0	105.46	-79.4476	0.3	0	0	0	0	0	25	25
WHENRY-1		p.	STYRENE	DDM	R-PCES	с	0	0	-121.084	87.1706	0.3	0	0	0	0	0	25	25
MLQKIJ-1		Þ	STY-SEG	DDM	R-PCES	с	0	0	391.35	-252.193	0.3	0	0	0	0	0	25	25
MUKIJ-1 MULIJ-1 NRTL-1		Þ. +	EB	DDM	R-PCES	c	0	0	-176.542	205.584	0.3	0	0	0	0	0	25	25

Figure 2.15 Entering the estimated binary interaction parameters to the "parameters" form.

2.4 Prediction of Polymer Physical Properties by Van Krevelen Functional Group Method

As we discussed vapor-liquid equilibrium according to Eq. (2.12), the POLYNRTL property method uses the POLYNRTL activity coefficient model for the liquid phase and applies the RKS (Redlich-Kwong-Soave) [12] cubic equation of state for the vapor phase. For property calculations, *the POLYNRTL property method uses Van Krevelen functional group method to predict physical properties of polymers.*

The Van Krevelen method is based on the chemical structure of the polymers [13]. Table 2.5 summarizes the key concepts of applying the Van Krevelen method. A search of the online help of Aspen Plus for "Thermophysical Properties of Polymers" will show the large number of polymer properties that we can estimate by the Van Krevelen method.

1CH2-	Functional group (Van Krevelen; VK)	Estimate segment properties using properties of the functional groups making up the segment(s), e.g., heat capacity C_p , $C_p = \sum_k n_k C_{p,k}$ k refers to k-th functional group; n_k is the number of the k-th functional group. When retrieving the segments from the SEGMENT databank, there is no need to supply functional groups. Otherwise, define the segments based on the VK functional groups.
2. –CH2-CH2-	Segment (ethylene)	Calculate polymer properties from segment properties, number-average degree of polymerization, and segment composition.

Table 2.5 Applying the Van Krevelen method to estimate properties of a system containing polymers by going from functional groups to segments and then to polymer mixture

3 –Ch2-CH2-CH2-CH2	Polymer (polyethylene)	Find the mixture properties of
		the whole component system
		(polymer, monomer, solvents,
		etc.).

Let us illustrate the concept of the Van Krevelen method by considering the molar volume of a polymeric component, which depends on the temperature and the physical state of the polymer. Figure 2.16 shows a plot of the molar volume versus temperature of a polymer at different physical states. In the figure, V₁ refers to the molar volume of a polymer liquid, V_c indicates the molar volume of a crystalline polymer, and V_g represents the molar volume of an amorphous glassy polymer. X_c represents the mass fraction of a crystalline polymer. T_g and T_m are, respectively, the glass transition temperature and the melting transition temperature. These volume and temperature concepts are well explained in most introductory polymer textbooks [e.g., 14].

Figure 2.16 Molar volume versus temperature for different physical states of a polymer.

The basic idea of a group contribution method for estimating physical properties of polymers is to calculate the sum of contributions of the constituents (the structural and functional groups) as an approximation. Consider, for example, finding the molar density of a propylene repeat segment illustrated in Figure 2.17.

Figure 2.17 A propylene repeat segment C3H6-R.

The molecular weight of this structural unit is 42.08 g/mol. From Table 4.5 in Van Krevelen and Nijenhuis [13], we know the Van der Waals volume (V_w) contribution of Van Krevelen functional group 100, -CH2-,

at 25°C is 16.1 cm³/mol, and that of group 101, -CH(CH3)-, is 33.2 cm³/mol. The additive sum of both volume contributions is 49.3 cm³/mol. Therefore, the molar density of a propylene repeat segment at 25°C is: [42.08 g/mol]/[49.3 cm³/mol], or 0.85 g/cm³. This value is in perfect agreement with the experimental value [13]. We note, however, that not every property prediction by the Van Krevelen method matches perfectly with experimental data.

When we cannot neglect the interactions between functional and structural groups, the Van Krevelen method includes correction terms for the interactions. The resulting models are called *group interaction models* [13]. Interested readers can find additional details about the Van Krevelen method for estimating physical properties by searching Aspen Plus online help for "Van Krevelen group contribution methods".

2.5 Workshop 2.2 Estimating Physical Properties of a Copolymer Using the Van Krevelen Group Contribution Method

2.5.1 Objective:

This workshop demonstrates the procedure of applying the Van Krevelen group contribution method to estimate physical properties of a copolymer. These properties include, for example, CP (heat capacity), K (thermal conductivity), MU(viscosity), RHO (density), TG (glass transition temperature) an TM (melting transition temperature). We use styrene-butadiene rubber (SBR) that we shall discuss in more detail in Chapter 6 as our copolymer, and assume the copolymer with a number-average degree of polymerization (DPN) of 2000. We study the flash operation of a SB copolymer consisting of 50% by mole styrene and 50% by mole butadiene at 250° and 1.01325 bar. We assume the mass flow rates of the styrene, butadiene and SB copolymer are identical, each at 10 kg/hr.

We show how to apply the Van Krevelen method according to the following steps: (1) drawing the process flowsheet; (2) specify the unit set and global options; (3) define components, segments and polymer, and characterize their structures; (4) choose property method and enter or estimate property parameters; (5) define streams and blocks; (6) create property sets; (7) define property analysis runs to create property tables; and (8) run the simulation, examining the results and make property plots.

2.5.2 Draw the Process Flowsheet, and Specify the Unit Set and Global Options

Our simple flash unit is the same as in Figure 2.3. We choose the unit set METCBAR in Setup in both Properties and Simulation, as demonstrated previously in Figure 1.7. For global options, we follow the path: Simulation -> Setup -> Global settings -> Flow basis: choose "Mass" (see Figure 1.6).

2.5.3 Define Components, Segments and Polymer, and Characterize Their Structures

Figure 2.18 shows our component specifications. We note two points: (1) We purposely do not specify the component name and alias (chemical formula) of the styrene segment, STY-SEG, as we want to demonstrate how to use Van Krevelen functional groups to specify this segment; and (2) We specify the styrene-butadiene copolymer with a number-average degree of polymerization, DPN, defined in Eqs. (1.5) and (1.11), of 2000, as a "generic polymer component" with an alias "polymer".

0	Selection Petrole	um Nonconventio	onal 🛛 🥝 Enterprise Database 🗍 Comme	nts
le	ct components			
	Component ID	Туре	Component name	Alias
2	STY-SEG	Segment		
	STYRENE	Conventional	STYRENE	С8Н8
•	BUT-SEG	Segment	BUTADIENE-R-1	C4H6-R-1
1	BUTADIEN	Conventional	1,3-BUTADIENE	C4H6-4
	CP	Polymer	GENERIC POLYMER COMPONENT	POLYMER

Figure 2.18 Component specifications

To characterize the polymer component, we follow the path: Properties -> Components -> Polymer -> Segments -> Segment definition: Choose "Repeat" unit for both STY-SEG and BUT-SEG. Figure 2.19 shows our selection of the built-in polymer attributes for "Properties Selection" for our SB copolymer. See Figure 1.19. We have previously explained all the selected attributes in Sections 1.3.2 and 1.3.3.

Figure 2.19 Choosing the built-in "Properties selection" attribute group.

Next, we check the path: Properties ->Components -> Molecular structure -> Structural and functional groups, and note that segment BUT-SEG, and pure components BUTADIEN and STYRENE are available within Aspen Plus segment and component databanks, and we see their structures being displayed. We do not need the structure of the generic polymer component, SB copolymer, but we need to specify the structure of the segment STY-SEG, as shown in Figure 2.20.

Figure 2.20 Structure of STY-SEGA

A search of Aspen Plus online help on "Van Krevelen Functional Group Parameters" shows that we can represent STY-SEG as a sum of three Van Krevelen (VK) functional groups: (1) VK group 100, -CH2-; (2) VK group 131, >CH-; and (3) VK group 146, benzyl group. We specify these groups according to Figure 2.21.

Properties (Molecular Structure - STY-SEG × +				
All Items	General Structure and Functional G	Group Formula Comme	nts		
Setup Components	Graphical Structure	Functional Group			
Specifications		Method	VANKREV	•	
Molecular Structure		Functional Group Typ	e All	-	
Ø BUTADIEN					
💽 SB		Group	100 -CH2-	•	
STY-SEG			Add		
STYRENE					
Assay/Blend	Draw/Impact/Edit				
Eight End Properties Petro Characterization	Draw/import/Edit				
Pseudocomponents	Calculate Bonds				Number of
Component Attributes		Group nu	umber Imag	e Description	occurrences
Henry Comps		-			
ONIFAC Groups					
Polymers		100		-CH2-	1
Specifications					
Selected Methods					
A 🔯 Parameters					
Pure Components		▶ 131		>CH- group	1
Properties					
러 <mark>급</mark> Simulation					
Safety Analysis		146		Benzyl group	1

Figure 2.21 Specifications of Van Krevelen functional groups for STY-SEG

2.5.4 Choosing Property Method and Entering or Estimating Property Parameters

We choose the POLYNRTL property method for the current problem, as in our detailed styrenebutadiene rubber (SBR) workshop in Chapter 6. Following exactly Workshop 2.1, Section 2.6, we estimate all missing binary interaction parameters. Figure 2.22 shows the estimated binary parameters.

🕑 İnj	put 🥝 Databa	anks Commen	ts													
iram	eter NRTL	d		Help	Data	set	I (Swap	Ent	ter De	chema	a Forn	nat	E E	stimate usi	ng UNIFA
Iem	Component 7	Component	Source	Temperature units	AIJ	AJI	BIJ 🏹	вл 🎝	CIVIL	DIJ	EIJ	EJI	FIJ	FJI	TLOWER	TUPPER
Þ	STYRENE	BUT-SEG	R-PCES	C	0	0	-24.2903	17.9355	0.3	0	0	0	0	0	25	25
÷.	STYRENE	BUTADIEN	R-PCES	C	0	0	-131.901	223.243	0.3	0	0	0	0	0	25	25
×	BUT-SEG	BUTADIEN	R-PCES	c	0	0	-81.3649	133.427	0.3	0	0	0	0	0	25	25

Figure 2.22 Estimated binary interaction parameters

2.5.5 Specifications of Feed Stream and Flash Block

Figure 2.23 shows the specification of feed stream. Under component attributes, we need to specify the SFRAC, SFLOW and DPN for SB copolymer.

Main Flowsheet	FEED (MATERIA	AL) -													
Moved Ci Solis	6 NC Solid	Flash Op	tions EO C	pations Co	sting	Comment									
Specifications											(0)	Compose	nt Attributes		
Flash Type	Temperature		Pressure			omposition					Con	Iponent ID	058		
- Marian Stratebarer					1	Mass-Flow	-	kg/hr		•	Attri	Dute ID	@ SFRAC		1
Temperature		250	1		1 F			10000		- 1		Elemen	et.	Value	
Permiseratione						Comp	onent		Value			STY-SEG			0.5
FIELDLER		1.01325	bar			* STYRENE				10		BUT-SEG			0.5
Vapor fraction						 BUTACHER 	4			10	0	Weight only Without I	manuscourse .		
Total flow basis	Mass	-				e 54				10	0	PRECISE SHOE	Distribution		
Total flow rate		(~)	Componer	nt Attributes			(A) (A)	omnone	ent Attribut	les.					
		Tom	CI treero	(SR			0.	Compone	In Auros	10.3					
		Comp	Nonemi ID				Compon	ent ID	@ SB			-			
		Attrib	ute ID	SFLOW	_		Attribute	- ID	O DPN			-			
			Elemen	t	N	/alue	- interior of the	1.196.1							
		- 5	TY-SEG			10		Eleme	nt.	Va	lue				
			UT-SEG			10	DP	1			200	00			

Figure 2.23 Specification of feed stream with component attributes SFRAC, SFLOW and DPN for the generic polymer component, SB copolymer.

For the flash unit, we enter a temperature of 250°C and a pressure of 1.01325 bar.

2.5.6 Creating Property Sets

A property set is a collection of thermodynamic, transport, and other properties that we can use in stream reports, physical property tables and analysis, heating and cooling curves of unit operation models (e.g., exchanger, condenser, and reboiler), distillation column stage property reports, reactor temperature profiles, etc.

We create a property set to display the property values that we find from a physical property analysis. We define a property set in either the Properties or Simulation environment, and the resulting property set will appear in both environments. We follow the path: Properties -> Property sets -> New; name- PS-1 -> Properties and Qualifiers (see Figures 2.24 and 2.25). Note the pull-down menu of physical properties and the corresponding units for the user to choose. We include *CP (heat capacity), K (thermal conductivity), MU(viscosity), RHO (density), TG (glass transition temperature) an TM (melting transition temperature)* in the property set.

Figure 2.24 Including physical properties in the property set PS-1

Properties	Qualifiers	Comments			
Phase			Liquid		
Compone	ent		STYRENE	BUTADIEN	SB
2nd liqui	d key component				
Temperat	ure 📝 System	С			
Pressure	System	bar			

Figure 2.25 Qualifiers for selected properties in the property set.

To ensure that the stream report from our flash unit includes values of the specified properties in the property set PS-1, we follow the path: Simulation -> Setup -> Report Options -> Streams -> Click on "Property Sets" button -> Property Sets: Move PS-1 from Available property sets to Selected property sets -> Close. See Figure 2.26.

 Setup General Flowsheet Block Stream Stream Specifications Calculation Options Stream Class Solids Comp-Groups Comp-Groups Generate a standard stream report Include stream descriptions Property Sets Stream Price Wole Mass Std.liq.volume Std.liq	Items	Main Flowsheet X Setup - Report Options X +
 Solids open. Comp-Groups Comp-Lists Generate a standard stream report Include stream descriptions Generate a standard stream report Include stream descriptions Stream Price Costing Options Stream Price Mole Mole Mass Std.liq.volume New New New Std.liq.volume New New New New Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.liq.volume Std.	Setup Setup Specifications Calculation Options Stream Class	General Flowsheet Block Stream Property ADA These options only affect the report file (*.rep). To customize the Material sheet of stream results forms. use the Stream Summary tab of the ribbon available when the Material sheet is Stream Stream <td< th=""></td<>
 Stream-Groups Variable-Groups Costing Options Stream Price White Wole Mole Mole Stadard Stadiavolume Stad.liq.volume Stad.liq.volume Sort stree Property Sets Stad.liq.volume Stad.liq.volume Sort stree Sort stree Sprop-r1 Flow hasis State Stream Stream Stream Stream Names Batch Operation Supplement 	 Solids Comp-Groups Comp-Lists 	open. ☑ Generate a standard stream report ☑ Include stream descriptions
	 G Stream-Groups Variable-Groups Costing Options Stream Price Unit Sets Custom Units Report Options Property Sets PS-1 Analysis SPROP-1 Flowsheet 	Items to be included in stream report Property Sets Items to be included in stream report Property Sets Items to be included in stream report Image: Stream form report sets Image: Std.liq.volume Image: Std.liq.volume Image: Std.liq.volume

Figure 2.26 Including specified property set PS-1 in the stream report

2.5.7 Defining Property Analysis Run to Create Property Tables

We can use property analysis tool to generate tables and plots of physical properties of pure components and mixtures as a function of temperature, pressure, and composition. We should emphasize that both property analysis and regression tools in Aspen Plus do **not** support polymer attributes. Therefore, for property analysis and regression runs, we should define a polymer as an oligomer. By doing so, we eliminate the need to enter any attribute information. We should specify its number of repeat units or segments, and segment composition (following the path: Components -> Polymers -> Characterization -> Oligomers ->Oligomer Structure -> Fill in the number of repeat units), and degree of polymerization. Alternatively, as in the current example, we specify the SB copolymer as *a generic polymer component* with an alias "polymer", and specify its attributes, particularly segment composition by SFRAC and its degree of polymerization (see Figure 2.18 and 2.23).

We create an analysis of stream properties by following the path: Process flowsheet -> Right-click the name of FEED steam -> Choose "Analysis" on the pull-down menu -> Choose analysis type, "Stream Properties". See Figures 2.27 and 2.28. We then click on the "Run Analysis" button on Figure 2.28 to do stream property analysis. When the analysis is completed, we click on the "Results" button displayed in Figure 2.28 and follow the same approach as in Figures 1.22and 1.23 to make a "custom" plot of

properties (CP, K, MU and RHO) versus temperature. Figures 2.29 and 2.30 illustrate the resulting plots of thermal conductivity and mass density versus temperature. The tabulated analysis results also show the glass transition temperature and the melt transition temperature of the SB copolymer are 45.3472°C and 225.23°C, respectively. This concludes the current workshop. We save the simulation file as **WS 2.2 Estimating Physical Properties of a Copolymer Using VK Group Contribution Method.bkp.**

Figure 2.27 Initiating an analysis of stream properties for FEED stream

All Items	- 7	Main Flowsheet × Setup - F	Report Option	s × An	alysis × SPRC	P-1 (MIXT	URE) - Input	× +	
🔺 🔯 Setup	-	Stream Property Analysis	Calculation	Ontions	Diagnostics	Reculte	Commonte	Ctature	
Specifications		Sucan Property Analysis	Calculation	options	Diagnostics	Results	comments	Status	
Calculation Options						Propertie	es to Report		
💽 Stream Class		Reference stream FEED			•	Troperti			
Solids								>	PS-1
Comp-Groups								>>	
Comp-Lists									
Stream-Groups	=							<	
Variable-Groups								<<	
Costing Options									
Stream Price								New	
Unit Sets									
Custom Units		 Selected manipulated a 	and parametri	c variable	s				
Report Options		Manipulated variable				Paramet	ric Variable		
 Property Sets 		indifipulated valiable				Turumet	ne vanabie		
Ø PS-1		Temperature •			*	Pressu	re 👻	bar	•
Analysis		Equidistant O Loga	rithmic 🛛 🔿 I	ist of valu	les	Enter Va	lues		
A SPROP-1				-				1.01	325
M Input		Start point	40	C				1.01	525
Flowsheet		End point	300	С	-				
A Costreams		Number of intervals	20 🗘						
P LO FEED	-	C Increment	13	C	-				
	_	Cincicitent	15						
Safety Analysis									
44			Run Analysis						
Second Analysis		le le le le le le le le le le le le le l							

Figure 2.28 Specification of stream property analysis (SPROP-1)

Figure 2.29. Thermal conductivity (K) of styrene, butadiene, and SB copolymer versus temperature.

Figure 2.30 Mass density (RHO) of styrene, butadiene, and SB copolymer versus temperature.

2.6 Polymer Sanchez-Lacombe Equation of State (POLYSL)

To simulate polyolefin processes at high pressures, activity coefficient models, such as POLYNRTL, suffer from some weaknesses, as most of them are applicable only to incompressible liquid solutions. Additionally, activity coefficient models fail to predict correctly the phase behavior of polymer solutions at the lower critical solution temperature (LCST) below which the components of a mixture are miscible for all compositions. Activity coefficient models also fail to predict an upper bound to a temperature interval of partial miscibility, called the upper critical solution temperature (UCST). By contrast, an equation of state (EOS) can accurately represent the relationship among temperature, pressure, volume (or density) and composition of a vapor-liquid, or vapor-liquid-liquid mixture over the *entire* fluid region. *EOS models can evaluate the physical properties of any fluid phase, liquid and/or vapor at medium to high pressures, as long as the fluid mixture does not contain any polar components*. References [16,17] reviewed the development of EOSs for mixtures involving pure components, oligomers, and polymers.

Two of the most useful EOSs for modeling polyolefin processes are: (1) Polymer Sanchez-Lacombe (POLYSL) EOS [18 to 20]; and (2) polymer perturbed-chain, statistical fluid theory (POLYPCSF) EOS [21 to 23], an extension of the statistical fluid theory (SAFT) EOS [24 to 26]. We discuss the POLYSL EOS below.

The Sanchez-Lacombe EOS is known as a lattice-gas model since the P-V-T properties of a pure component are calculated *assuming the component is broken into parts or "mers" that are placed into a lattice and are allowed to interact with a mean-field-type intermolecular potential* [20]. The Sanchez-Lacombe EOS for pure fluids is:

$$\widetilde{\rho}^{2} + \widetilde{P} + \widetilde{T} \left[\ln(1 - \widetilde{\rho}) + \left(1 - \frac{1}{m}\right) \widetilde{\rho} \right] = 0$$
(2.15)

where

$$\widetilde{T} = \frac{T}{T^*} \qquad \widetilde{P} = \frac{P}{P^*} \qquad \widetilde{\rho} = \frac{\rho}{\rho^*}$$
(2.16)

with

$$T^* = \frac{\varepsilon^*}{k} \qquad P^* = \frac{\varepsilon^*}{v^*} \qquad \rho^* = \frac{M}{mv^*}$$
(2.17)

In these equations, *T* is absolute temperature (K), *P* is pressure (bar), ρ is density (kg/m³). *T*, *P*, and $\tilde{\rho}$ are the reduced temperature, pressure, and density, respectively. *T** (K), *P**(bar) and ρ *(kg/m³) are scale factors that are independent of molecular size of the polymer. ε * is a characteristic interaction energy per segment. *k* is the Boltzmann constant, which is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule), with a value of 1.380649E-23 J/K. *v** is the closed-packed volume of a segment. *M* is the molecular weight, and *m* is the number of segments per chain.

We typically determine the scale factors, T^* (K), P^* (bar) and ρ^* (kg/m³), from regressing experimental data, such as vapor-pressure data for conventional components and liquid-volume data for polymer species. We will demonstrate how to do this in a workshop in the next section. A search of "Sanchez-Lacombe unary parameters" in Aspen Plus online help gives the values of these unary parameters for many polymers, solvents, and monomers; and several published articles also give the regressed unary parameters for selected segments in simulating HDPE, LDPE and LLDPE processes [28 to 31]. Figure 2.31 gives examples of POLYSL unary (or pure component) parameters for simulating a slurry HDPE copolymerization process [28]. In the figure, TICL4 and TEAL (triethyl aluminum) are catalyst and cocatalyst. CH4, C2H6 and N2 are impurities. C2H4 and C4H8 are monomer and comonomer. R-C2H4 and R-C4H8 are ethylene and 1-butene segments, and H2 is the chain transfer agent. To enter these parameter values, we follow the path: Properties -> Methods -> Parameters ->Pure Components -> New: name = PURE-1 -> Parameters: SLTSTR, SLPSTR and SLRSTR, and enter the values. For those species with missing unary parameters, Aspen Plus online help suggests using the values: SLTSTR = 415 K, SLPSTR = 3000 bar; and SLRSTR = 736 kmol/cum (which must be converted to a mass-based unit with the molecular weight of the component).

Properties	« (f	Pure	Component	ts - PURE-1	× +													
All Items	•	01	nput Com	ments														
Selected Methods Parameters	*	Pur	e componer	nt scalar par	rameter	rs												
Pure Components					Data	Component	Componen	Componen	Component	Componen	Componen	Component	Component	Component	Component	Component	omponer	
CPIG-1			Parameter	s Units	set	TICL4 -	TEAL +	CH4 -	C2H6 -	нх -	N2 -	C4H10 -	R-C2H4 -	R-C4H8 -	C2H4 •	C4H8 -	H2 -	
CPIGDP-1			SLTSTR	к	1	924.87	924.87	224	315	483.13	140.77	412.78	663.15 -	924.87	333	396.62	45.89	
CPSDIP-1			SLPSTR	bar	1	4000	4000	2482	3273	2900	1786.17	3257.9	4000	4000	2400	2900	1000	
OHVLDP-1	н		SLRSTR	kg/cum	1	866.97	866.97	500	640	786	922.5	755.68	896.6	866.97	631	671.5	142.66	

Figure 2.31 Entering unary or pure component parameters of the POLYSL EOS for simulating a HDPE process

To apply the POLYSL EOS to mixtures, the model parameters become composition-dependent through the following mixing rules. The mixing rule for the characteristic closed-packed molar volume of "mers" (that is, the broken parts of a component within a lattice [20]) of the mixture, v_{mix}^* , is

$$v_{mix}^{*} = \sum_{i} \sum_{j} \phi_{i} \phi_{j} v_{ij}^{*}$$
 (2.18)

with

$$v_{ij}^{*} = \frac{1}{2} \left[v_{ii}^{*} + v_{jj}^{*} \right] \left(1 - \eta_{ij} \right)$$
(2.19)

where the binary interaction parameter η_{ij} (called parameter SLETIJ-1 within Aspen Plus) corrects for deviations from arithmetic mean and where subscripts *i* and *j* are the components in the solution mixture. The segment fraction of component *i*, ϕ_i , is defined as

$$\phi_{i} = \frac{\frac{w_{i}}{\rho_{i}^{*}v_{i}^{*}}}{\sum_{j} \left(\frac{w_{j}}{\rho_{j}^{*}v_{j}^{*}}\right)}$$
(2.20)

where w_i is the mass fraction of component *i* in the mixture, and ρ_j and v_j are the characteristic mass density and closed-packed molar volume of component *j*, respectively. The mixing rule for the characteristic interaction energy for the mixture, ε_{mix}^* , is

$$\varepsilon_{mix}^* = \frac{1}{v_{mix}^*} \sum_i \sum_j \phi_i \phi_j \varepsilon_{ij}^* v_{ij}^*$$
(2.21)

with

$$\varepsilon_{ij}^* = \sqrt{\varepsilon_{ii}^* \varepsilon_{jj}^*} \left(1 - k_{ij} \right)$$
(2.22)

where ε_{ii}^* and ε_{jj}^* are the characteristic interaction energies between different broken parts of a component within a lattice (called mer-mer interaction in [20]) for components *i* and *j*. The binary interaction parameter k_{ij} (called parameter SLKIJ-1 within Aspen Plus) accounts for specific binary interactions between components *i* and *j*. Lastly, the mixing rule for the number of sites occupied by a molecule of the mixture, r_{mix} is given by

$$\frac{1}{r_{mix}} = \sum_{j} \frac{\phi_j}{r_j}$$
(2.23)

where r_j is the number of site molecule *j* occupies in the lattice, and ϕ_j is the segment fraction of component *j*, defined previously in Eq. (2.20).

Binary interaction parameters k_{ij} and η_{ij} are typically correlated as a function of reduced temperature, $T_r (= T/T_{ref}$ where $T_{ref} = 298.15$ K):

$$k_{ij} = a_{ij} + \frac{b_{ij}}{T_r} + c_{ij} \ln T_r + d_{ij} T_r + e_{ij} T_r^2$$
(2.24)
$$\eta_{ij} = a_{ij}' + b_{ij}' / T_r + c_{ij}' \ln T_r + d_{ij}' T_r + e_{ij}' T_r^2$$
(2.25)

Figures 2.32 and 2.33 shows the values of binary interaction parameters k_{ij} and η_{ij} for simulating a HDPE process [28]. To enter these values within Aspen Plus, follow the path: Properties -> Methods -> Parameters -> Binary Interaction-> New -> Name: SLKIJ-1 -> Enter the values (do the same for SLITIJ-1).

🕑 İnj	out Databar	nks Commer	nts							
Param	eter SLKU			Help	Data set 1		Swa	ap	Se	arch
Tem	perature-depe	ndent binary p	arameters –							
	Componen	Componen	Source Vi	Temperature units	AU 🏹	BU 🏹	CIN	DIJ	EIJ	TREF
Þ.	C2H4	C4H8	USER	К	0.0248	0	0	0	0	298.15
P.	C2H4	нх	USER	К	0.0248	0	0	0	0	298.15
F.	C4H8	HDPE	USER	к	0.0208	0	0	0	0	298.15
F.	нх	HDPE	USER	К	-0.14	0	0	0	0	298.15
þ.	CH4	нх	USER	к	0.01951	0	0	0	0	298.15
	C2H6	нх	USER	к	0.00853	0	0	0	0	298.15
Þ.	H2	нх	USER	к	0.100705	0	0	0	0	298.15
•	C4H10	нх	USER	к	-0.002286	0	0	0	0	298.15

Figure 2.32 Binary interaction on parameters k_{ii} for simulating a HDPE process

🕑 in	put Databar	nks Commer	nts								
aram	eter SLKIJ			Help	Data set	1		Swa	p	Se	arch
Tem	perature-depe	ndent binary p	arameters –								
	Componenti	Component	Source	Temperature units	AIJ	76	BU 🎲	CIN	DIJ	EIJ	TREF
ŀ.	C2H4	C4H8	USER	К	0.024	8	0	0	0	0	298.15
÷.	C2H4	нх	USER	к	0.024	8	0	0	0	0	298.15
÷.	C4H8	HDPE	USER	К	0.020	8	0	0	0	0	298.15
÷.	нх	HDPE	USER	К	-0.1	4	0	0	0	0	298.15
Þ	CH4	нх	USER	к	0.0195	1	0	0	0	0	298.15
Þ.	C2H6	нх	USER	к	0.0085	3	0	0	0	0	298.15
P.	H2	нх	USER	к	0.10070	5	0	0	0	0	298.15
•	C4H10	нх	USER	к	-0.00228	6	0	0	0	0	298.15

Figure 2.33 Binary interaction on parameters η_{ii} for simulating a HDPE process

2.7 Workshop 2.3 Estimating Property Parameters Using Data Regression Tool

2.7.1 Objective:

This workshop demonstrates how to use the data regression (DRS) tool to identify the pure component parameters and binary interaction parameters of an EOS model based on component liquid density data and binary vapor-liquid equilibrium (VLE) data (two of the most commonly used property data for property parameter regression). We use the example of a slurry HDPE process [28].

We show how to apply the DRS tool according to the following steps: (1) defining a DRS run; (2) specify the unit set and global options; (3) define components, segments, oligomer and polymer, making sure to

define a polymer as an oligomer; (4) choose property method and enter known property parameters from Aspen enterprise databanks; (5) enter experimental data; (6) specify a regression run and physical property parameters to be regressed (7) running the simulation, examining the results and compare the model predictions with experimental data.

2.7.2 Defining a DRS Run

We begin by creating a data regression run and save the simulation file as: **WS2.3 Estimating Property Parameters Using Data Regression Tool.bkp.** We choose a data regression in the run mode section from the toolbar at the top of the screen, as highlighted in Figure 2.34.

File Home View	Customize	Resources					
Cut DRS Cut Unit Sets Clipboard Units	Setup Setup Components A Methods Navig	Na ⁺ Chemistry <u>V</u> Customize Prop Sets pate	Draw Structure	 Methods Assistant Clean Parameters Retrieve Parameter Tools 	NIST ④ DECHEMA S 및 DIPPR Data Source	Analysis Carlot Analysis Carlo	
Properties	< Setup	Specifications	× +				
All Items	▼ ØGlo	obal 🕜 Descri	ption Acc	ounting Diagnostics	Comments		
 Setup Specifications Calculation Options Comp-Groups Unit Sets DRS ENG MET St 	Title E Global	WS2. unit set DRS	3 Estimatin	g Property Parameter Global settings – Valid phases Free water	s Using Data Regr Vapor-Liquid No	ession • •	

Figure 2.34 Creating a data regression run

2.7.3 Specifying a Unit Set and Global Options

We define a unit set named DRS by copying most units from the unit set, SI, but change the pressure unit to Bar. Following Figure 1.6, we specify a global option of using a mass-based flow rate according to the path: Simulation -> Setup -> Specifications -> Global -> Global settings -> Flow basis: mass.

2.7.4 Defining Components, Segments, Oligomers and Polymer

Figure 2.35 shows the same component specifications for a commercial slurry HDPE process that we will simulate in detail in Chapter 5 [28]. We repeat the important information presented previously in Section 1.3 and emphasize that both property analysis and regression tools in Aspen Plus do **not** support polymer attributes. Therefore, for property analysis and regression runs, we should define a polymer as an oligomer. By doing so, we eliminate the need to enter any attribute information.

Properties <	C2C	PIG × Control Par	nel × C2CPIG - Results × C2CPIG (Regress	sion) - Prop. vs T - Plot × Compone	ents × +
All Items 🔹	0	Selection Petroleu	ım 🛛 Nonconventional 🛛 🥝 Enterprise Datab	ase Comments	
🕨 📷 Setup	6.1				
Components	Sele	ct components			
Methods		Component ID	Type	Component name	Alias
Specifications		Linear	and the second sec		UDDE
Selected Methods	-	HUPE	Oligomer	HIGH-DENSITY-POLY(ETHYLE	HDPE
A parameters	P.	LP	Oligomer	HIGH-DENSITY-POLY(ETHYLE	HDPE
Binary Interaction	×.	R-C2H4	Segment	ETHYLENE-R	C2H4-R
Electrolyte Pair	÷.	R-C3H6	Segment	PROPYLENE-R	C3H6-R
Electrolyte Ternary	÷.	C2H4	Conventional	ETHYLENE	C2H4
UNIFAC Groups	×.	СЗН6	Conventional	PROPYLENE	C3H6-2
Results	÷.	нх	Conventional	N-HEXANE	C6H14-1
🔁 Routes	÷.	H2	Conventional	HYDROGEN	H2
NC Props	×	PZ	Conventional	TITANIUM-TETRACHLORIDE	TICL4
Chemistry	×.	AT	Conventional	TRIETHYL-ALUMINUM	C6H15AL
Property Sets	×	CH4	Conventional	METHANE	CH4
Data	×.	C2H6	Conventional	ETHANE	C2H6
Estimation		C4H10	Conventional		C4H10-1
A Regression	-	CHITO	Conventional	N-DOTANE	C4III0-I
	1	СЗН8	Conventional	PROPANE	СЗН8
	1	N2	Conventional	NITROGEN	N2
Properties	×.				
⊡{ [□] _□ Simulation		Find Elec W	izard SFE Assistant User Defined	Reorder	

Figure 2.35 Component specifications for data regression of a HDPE process

In the figure, LP refers to an oligomer product; R-C2H4 and R-C3H6 are ethylene and propylene segments; C2H4 and C3H6 are monomer and co-monomer; hexane (HX) is a solvent; H2 is the chain transfer agent; CH4, C2H6, C4H10, and C3H8 are impurities; N2 is an inert gas.

We note that except for HDPE and LP, Aspen Plus automatically fills in the molecular structures for other components that appear in the enterprise databases for pure components and segments. See: Properties-> Components -> Molecular Structure -> Choose component name -> Structural and functional group -> Graphical structure.

We quantify both HDPE and LP by following the path: Properties -> Components ->Polymers -> Segments: Set both segments R-C2H4 and R-C3H6 as repeat unit; and Oligomers: Assume HDPE and LP to have 1500 and 16 repeat segments. Note that the exact number of repeated segments for HDPE does not affect the regression results.

2.7.5 Choose Property Method and Enter Known Property Parameters from Aspen Enterprise Databanks

Clicking on the "Review" button at the bottom of Figure 2.35 will ask Aspen Plus to call up all the relevant pure component parameters from the enterprise databanks for pure components, segments, and polymers. For example, Figure 2.36 shows the resulting listing of pure component parameters (both scalar and temperature-dependent) provided by the databanks. The figure displays the parameters for the ideal gas heat capacity from the segment databank, DB-SEGMET. To see the specific form of any temperature-dependent parameter correlation, such as CPIG, click the "Help" button in Figure 2.36 to access the Aspen Plus online help. We see the following correlation for CPIG in Figure 2.37.

Properties	• 2	C2CF	IG × Control Pan	el 🗙 C2CPIG - R	lesults × °C	CPIG (Regressi	on) - Prop. v	s T - Plot 🛛 🗙	Pure Com	ponents - CPIC	i-1×	+					
All Items	Ŧ	Ø	nput Comments														
Parameters A B Pure Components	*	Paran	neter CPIG		Help	Data	set 1										
CPIG-1		Ten	nperature-depender	nt correlation para	imeters												
CPIGDP-1			Components V	Source V	Temperature units	Property units	1 %	2 7,	3 🖏	4 %	5 %	6	7 %	8 74	9 Te	10 🖏	11 %
CPSDIP-1			R-C2H4	DB-SEGMENT	К	J/kmol-K	-39748	400	-0.4998	0.0002298	0	0	280	1000	36029.2	1.0708e-54	23.4104
O DHVLWT-1	=	Þ	R-C3H6	DB-SEGMENT	к	J/kmol-K	-42339	500.92	-0.5574	0.0002412	0	Ó	280	1000	36029.2	0.00161263	2.92717
ONLDIP-1	-	+															
ONSDIP-1																	
KLDIP-1																	
MULDIP-1																	
MUVDIP-1																	

Figure 2.36 Calling up databank values of pure component parameters.

Aspen Ideal Gas Heat Capacity Polynomial

The ideal gas heat capacity polynomial is available for components stored in ASPENPCD, AQUEOUS, and

 $C_p^{*,ig} = C_{1i} + C_{2i}T + C_{3i}T^2 + C_{4i}T^3 + C_{5i}T^4 + C_{6i}T^5 \text{ for } C_{7i} \le T \le C_{8i}$ $C_p^{*,ig} = C_{9i} + C_{10i}T^{C_{11i}} \text{ for } T < C_{7i}$

 $C_p^{*,ig}$ is linearly extrapolated using slope at C_{8i} for $T > C_{8i}$.

Parameter Name/ Element	Symbol	Default	MDS	Lower Limit	Upper Limit	Units
CPIG/1	C1/				0000	MOLE-HEAT- CAPACITY, TEMPERATURE
CPIG/2,, 6	C ₂₁ ,, C ₆ ,	0	-	-		MOLE-HEAT- CAPACITY, TEMPERATURE
CPIG/7	C71	0				TEMPERATURE
CPIG/8	C_{Bi}	1000			—	TEMPERATURE
CPIG/9, 10, 11	C _{9i} , C _{10i} , C _{11i}	27 <u>-</u> 7			() <u></u>	MOLE-HEAT- CAPACITY, TEMPERATURE †

Figure 2.37 Access Aspen Plus online help for CPIG parameter correlation

Additionally, we can see the scalar pure-component parameter values by following the path: Properties-> Methods-> Parameters-> Pure components -> REVIEW-1. See Figure 2.38. To understand the meaning of each listed parameter, click on the name to expand the pull-down menus, you will see a description.

								6		
Properties	< ۲	C2CP	IG × Control	Panel × C2CPIG	i - Results \times	C2CPIG (Reg	gression) - Prop.	vs T - Plot × Pur	: Components - F	(EVIEW-1 ×
All Items	-	🛛 📀 In	put Commer	nts						
CPIGDP-1	*	Pure	e component sc	alar parameters —						
CPLDIP-1						Componer	at Compone	ent Component	Component	Componen
CPSDIP-1			Parameters	Units	Data set	componer	it compone	Component	Component	componen
DHVLDP-1						C2H4	- C3H6	• HX •	H2 -	PZ
OHVLWT-1		- F	API		1	265	.5 139	9.6 81.6	340	-49,274
💿 DNLDIP-1			Contraction of the second second		1					
ONSDIP-1		P.	CRITMW		1					
KLDIP-1		×.	DCPLS	J/kmol-K	1		2930	1.9 43537.9	6892.2	18686.
💽 KVDIP-1		1	DELTA	(J/cum)**.5	1	11869	.8 1270	2.6 14880	6650.04	1827
MULDIP-1		-								
MUVDIP-1			DGFORM	J/kmol	1	6.844e+0	07 6.264e+	07 -66340	0	-7.267e+0
Standard free	energy of	format	ion for ideal 🥣	J/kmol	1	5.251e+0	07 2.023e+	07 -1.6694e+08	0	-7.6166e+0
gas at 25 deg	С.		DGEVK	J/kmol	1	1.34871e+0	7 1.87317e+	07 2.88018e+07	896545	3.40085e+0
REVIEW-1			DGFVKM							
SIGDIP-1		P.	DGSFRM	K	1	10	94 87	7.9 177.83	13.95	249.0

Figure 2.38 Values of scalar pure component parameters called up from the databanks and displayed in REVIEW-1

For HDPE, Aspen Plus assume the molecular weight for HDPE to be that of the C2H4 segment, that is, 28.0538. To enter the correct molecular weight of our HDPE "oligomer" with 1500 repeated segments, we follow the path: Properties -> Methods -> Parameters -> Pure Components -> New -> Name: MWHDPE -> Input: Component = HDPE, Parameter: MW= 42080.7(= 28.0538 x 1500). We note that the exact value of this MW does not affect the regression results.

This list of pure component parameters displayed by Aspen Plus in Figure 2.38 does not include the values of T^* , P^* and ρ^* defined by Eq. (2.17) and illustrated in Figure 2.31. We follow the path: Properties -> Methods -> Parameters ->Pure Components -> New: name = SLTPR -> Parameters: SLTSTR, SLPSTR and SLRSTR, and enter the values according to [28]. See Figure 2.39. These values are essential when running regression of vapor-liquid equilibrium data for missing binary interaction parameters.

Properties <	1	Pure C	Components	- SLTPR×	+											-	
All Items	-	🕑 Inj	put Comr	nents													
I REVIEW-1		Pure	component	scalar para	meters												
SLTPR					Data	Component	Component	t Component	Component	Componen	Component	Component	Component	Component	Componen	Componen	Componen
THRSWT-1			Parameters	Units	set	R-C2H4 -	C2H4 -	AT •	PZ ·	нх -	R-C3H6 *	C4H10 -	СЗН6 -	H2 -	N2 •	СН4 -	СЗН8 -
TRNSWT-1		-4				Sec. Sec.											
VKGRP-1		÷.	SLTSTR	К	1	663.15	333	924.87	924.87	483.13	724.3	412.78	360.43	45.89	140.77	224	354.33
WATSOL-1		÷.	SLPSTR	bar	1	4000	2400	4000	4000	2900	2800	3257.9	3100	1000	1786.17	2482	2800
Binary Interaction		1	SLRSTR	kg/cum	1	896.6	631	866.97	866.97	786	938.87	755.68	670.83	142.66	922.5	500	615.91

Figure 2.39 Pure component parameters for POLYSL EOS for a HDPE process

2.7.6 Enter Experimental Data for Data Regression, Run the Regression and Examine the Results

We first demonstrate how to regress the pure component parameters for POLYSL, T^* , P^* and ρ^* , defined by Eq. (2.17) for C2H4, and compare with the resulting values with those listed in Figure 2.39. We enter the liquid density data of C2H4 [32] by following the path: Properties -> Data -> New -> Enter ID: C2RHOL, select type: PURE-COMP -> Setup: Category = Thermodynamic, Property = RHOL, Component = C2H4; Data - enter C2RHOL data according to Figure 2.40. To enter the TPXY data of Figure 2.41, we follw the path: Properties ->Data ->New ->Enter ID: PEXY1, select type: MIXTURE ->Setup: Category ->Phase Equilibrium, Data type ->TPXY, Components in mixture: C2H4, HDPE, Composition basis: Mass fraction, Data-> enter the data displayed in Figure 2.41.

Properties	٠ ـ	C3 ×	Control Panel	× C2 - Input × Data - C	2RHOL (PURE-COMP)	×]+
All Items	•	ØSe	etup 🥝 Data	Comments		
Routes NC Props	^	Expe	rimental data —		1	
Tabpoly				TEMPERATU	RE PRESSURE	RHO
Chemistry			Usage	K	✓ kPa	★ kg/cum
Property Sets		•	STD-DEV	0.1	0.1%	1%
C2CPL) () ()	DATA	169.43	101.3	567.92
C2CPV		÷.	DATA	183	213	547.95
C2RHOL	=	×.	DATA	193	341	532.88
C2TP		×.	DATA	203	518	517.17
C3PT		×.	DATA	213	755	500.61
C3RHOL		Þ	DATA	223	1063	482.84
O H2HX1		×.	DATA	233	1453	463.41
M2HX3		÷.	DATA	243	1938	441.61
I H2HX4			DATA	263	3240	385.64
H2HX5			DATA	281	4899	287.43

Figure 2.40 Liquid density data for C2H4 for regression of pure component parameters

Properties	× /	Data - I	PEXY1 (MIXT	URE) × +					
All Items	•	Set	tup 🕜 Data	Constraint	s Measurer	nent Method	Comment	ts	
 H2HX4 H2HX5 H2HX6 	*	Data ty	rpe TPXY	F	letrieve TDE B	inary Data	Genera	ate Data	Clear
THE HEAT		Exper	internal data	TEMPERATURE	PRESSURE	x	x	Y	Y
I H2RHOL			Usage	К -	bar -	HDPE -	C2H4 -	HDPI -	C2H4
H2TP		1	STD-DEV	0.1	0.1%	0.1%	0	1%	0
I HXRHOL		×.	DATA	399.15	455.8	0.9982	0.0018	0	1
PEXY1		÷.	DATA	399.15	790.3	0.9963	0.0037	0	1
PSATHEX		b.	DATA	399.15	1135	0.9945	0.0055	0	1
Regression		×.	DATA	399.15	1479	0.9925	0.0075	0	1
🔺 🔯 C2		•	DATA	399.15	1824	0.9893	0.0107	0	1
Input		- F	DATA	399.15	2168	0.9864	0.0136	0	1
▲ 200 C3		- P.	DATA	399.15	2513	0.9842	0.0158	0	1
💽 Input		E.	DATA	399.15	2847	0.9825	0.0175	0	1
Results		×.	DATA	399.15	3202	0.9802	0.0198	0	1
Analysis		- F	DATA	399.15	3546	0.9779	0.0221	0	1
Customize		×.	DATA	399.15	3891	0.9758	0.0242	Ó	1
Results	Ψ.	×.	DATA	399.15	4235	0.9745	0.0255	0	1
Properties	-	×	DATA	399.15	4580	0.9715	0.0285	0	1
		- F.	DATA	399.15	4924	0.9695	0.0305	0	1
* E		1	DATA	399.15	5269	0.967	0.033	0	1
Safety Analysis		1	DATA	399.15	5613	0.9641	0.0359	0	1

Figure 2.41 TPXY data for regression of binary interaction parameters

2.7.7 Specifying a Regression Run and the Parameters to be Regressed

To regress the pure component parameters for POLYSL, we follow the path: Properties -> Regression -> New: Enter ID = C2 -> Input: see Figure 2.42.

Participation and		1	T	T a	T	Î.			
All Items	Setup	Parame	ters Report	Algorithm	Diagnostics	Generic Propert	ty Comments		
Components	Property	options			Calculat	on type			
Specifications	Method	F	OLYSL		O Regree	ession 💿 Eval	uation		
Selected Methods	Henry co	mponents			-				
Parameters	Chemistr	y ID			-				
Koutes									
NC Props	🗹 Use tr	ue compone	nts						
 NC Props Tabpoly 	Use tr	rue compone	nts						
NC Props Tabpoly Chemistry Property Sets	Use tr	rue compone Data si	nts et	Weight	Consistency	Reject data	Test method	Area tolerance %	Point tol
NC Props Tabpoly Chemistry Roperty Sets Data	Use tr	ue compone Data si RHOL	et	Weight 1	Consistency	Reject data	Test method Area tests	Area tolerance %	Point tol
NC Props Tabpoly Chemistry Chemistry Soft Arrow Sets Data Estimation	Use tr	rue compone Data si RHOL	et	Weight 1	Consistency	Reject data	Test method Area tests	Area tolerance % 10	Point tol
☑ NC Props ☑ Tabpoly ☑ Chemistry ▷ ☑ Property Sets ▷ ☑ Data ▷ ☑ Estimation ▲ ☑ Regression	Use tr	rue compone Data si RHOL	et	Weight 1	Consistency	Reject data	Test method Area tests	Area tolerance % 10	Point tol

Figure 2.42 Input for regressing pure component parameters using liquid density data C2RHOL Next, we specify the pure component parameters to be regressed. See Figure 2.43.

Properties	< _	C3 ×	Control Panel	\times C2 - Input \times	Data - C2F	RHOL (PURE-CO	MP) \times Regression
All Items	-	⊘ Se	etup 🛛 🔗 Param	eters Report	Algorithm	n Diagnostics	Generic Property
 Components Rethods 	~	Para	meters to be reg	ressed			
Specifications Image: Specification s Image: Specification s Image: Specification s		4	Туре	Parameter	Para	neter	Parameter
Parameters		1	Name	SLTSTR	SLPS	TR	SLRSTR
NC Props		-	Element				
Tabpoly			Component or	C2H4	C2H4	()	C2H4
Chemistry		÷.	Group				
 Property Sets Data 		- F					
Estimation		- F					
A Regression	=	- F.	Usage	Regress	Regre	255	Regress
A C2		>	Initial value		300	2e+08	500
Results		3	Lower bound		300	2e+08	500
4 🔯 C3		÷.	Upper bound	1	1000	4e+08	1000
Results		1.	Scale factor		1	1	1
▷ → H2		- P	Set Aji = Aij	No	No		No

Figure 2.43 Specification of POLYSL pure component parameters to be regressed

2.7.8 Running the Regression Case and Examining the Results

When running the regression, the control panel first shows which regression case to run. We choose case C2 and click OK to run. See Figure 2.44.

on't Run		Run
C3 H2	>>	C2

Figure 2.44 Selecting the regression case C2 to run

We follow Figure 2.45 to keep the regressed pure component parameter values in the result folder of regression run C2 and not replace the previously entered values. See Figure 2.46. *The regressed parameters SLTSTR = 334.509 K, SLPSTR = 2.39886E8 kPa = 2398.86 bar, and SLRSTR = 631.704 kg/cum, which compare favorably with the values of 333, 2400 and 631 entered for C2H4 in Figure 2.39 [28].* Looking at "Profiles" folder of results, we see a table of comparison of experimental and estimated values of temperature, pressure, and liquid density of C2H4. See Figure 2.47. We plot the results by following the path: Plot (upper right corner of the computer screen) -> Custom -> X-axis: Exp Val RHO LQUID C2H4, kg/cum; Y-axis: Est Val RHO LQUID C2H4, kg/cum. See the initial plot in Figure 2.48 -> Plot: Format. Choose Squared plot and Diagonal line -> see the improved plot in Figure 2.49.

We can use the same approach to regress the pure component parameters for the ethylene segment and other components using the liquid density data. Experimental data for liquid density and heat capacity for most components in the PE, HDPE, LDPE and LLDPE processes are available in [32 to 37]. R Parameter Values

Value of parameter SLTSTR already exists for components C2H4 on the Parameters form. You can choose to replace it with the regressed results from DRS.

Choose the ""Yes to all"" option to replace existing parameters with the regressed value(s) in all subsequent cases

Yes	No	Yes to All	No to All

 \times

Figure 2.45 Clicking No three times for not placing the parameter values of SLTSTR, STPSTR and SLRSTR previously entered in Figure 2.39.

ls	🕖 Pro	op Sets	Structure	🔦 Retriev	ve Parameter	s PR DIPPR		Regression	on	Pa	anel
Nav	vigate Tools Data Source Run Mode Run Control Panel × C2 - Input × Data - C2RHOL (PURE-COMP) × Regression × C2 - Results × + ameters Consistency Tests Residual Profiles Correlation Sum of Squares Evaluation Extra Property Image: Component i gressed parameters Parameter Component i Component j Value (SI units) Standard deviation SLTSTR/1 C2H4 334.508 3.5356 SLPSTR/1 C2H4 2.39886e+08 5.22819e+0	12									
C3 >	Contr	ol Panel $ imes$	C2 - Inp	out 🗙 🏾 Da	ta - C2RHOL	(PURE-COMP) × (Regression	C2 - Resu	lts × +	
Para	meters	Consisten	cy Tests	Residual	Profiles	Correlation	Sum	of Squares	Evaluation	Extra Property	ØS
Reg	gressed p	arameters									
Reg	gressed p P	arameters arameter		Compone	nti	Component	tj	Value (SI units)	Standard devia	ation
Reg	gressed p P SLTSTR,	arameters - arameter /1	C2H	Componer	nti	Component	tj	Value (SI units) 334.508	Standard devia	ation .53568
Reg	gressed p P SLTSTR, SLPSTR,	arameters - arameter /1 /1	C2H C2H	Componer 14	nti	Component	tj	Value (SI units) 334.508 .39886e+08	Standard devia 3 5.2281	ation .53568 9e+06

Figure 2.46 Regressed values of POLYSL pure component parameters for C2H4

arar	meters Consister	ncy Tests [Residual	Profiles	Correl	ation	Sum of Sq	uares	Evaluation	Extra Pro	perty
ta s	et C2RHOL										
um	mary of regression	results									
	Exp Val TEMP	Est Val	TEMP	Exp Val P	PRES	Est V	al PRES	Exp \	/al RHO D C2H4	Est Val R LIQUID C	но 2Н4
1	к -	к	•	bar	•	bar	→]	kg/cun	n -	kg/cum	8
▶.	169.43	1	69.429		1.013		1.013		567.92	564	1.137
	183		183		2.13		2.13		547.95	547	7.494
Þ	193	1	93.001		3.41		3.41		532.88	533	3.808
2	203	2	203.001		5.18		5.18		517.17	518	3.791
Þ	213	2	13.001		7.55		7.55		500.61	502	2.287
Þ	223	2	23.001		10.63		10.63		482.84	484	1.083
	233	2	233.001		14.53		14.53		463.41	463	3.865
Þ	243	2	42.999		19.38		19.38		441.61	441	1.165
2	263	2	62.996		32.4		32.4001		385.64	384	1.401
2	281	2	81.002		48.99		48.9898		287.43	287	.461

Figure 2.47 Comparison of experimental and estimated temperature, pressure, and liquid density of C2H4.

Figure 2.48 The initial plot of estimated liquid density of C2H4 value versus measured value. Note the Format options of Squared plot and Diagonal line at the top.

Figure 2.49 Improved plot of estimated versus measured liquid density of C2H4.

Next, we demonstrate how to regress binary interaction parameters SLETIJ (η_{ij}) and SLKIJ (k_{ij}) based on Eqs. (2.24) and (2.25) using the liquid density data of C2H4, C2RHOL, of Figure 2.40 and the vapor-liquid equilibrium data for polyethylene and ethylene, PEXY1, of Figure 2.41.

We create a new regression run by following the path: Properties -> Regression -> New ->Enter ID: C2TPXY->OK -> Setup: enter datasets PEXY1 and C2RHOL (following Figure 2.42) -> Parameters -> See Figure 2.50 for specifying the binary interaction parameters to be regressed.

s	etup 🥝 Parame	eters	Report Alg	orithm	Diagnostics
ara	meters to be rear	essed	ſ		
1	1				
÷	Туре	Bin	ary parameter	Bina	ry parameter
þ.	Name	SLE	TU	SLK	U
ŀ	Element	1		1	
Þ	Component or	C2	-14	C2H	4
j.	Group	HD	PE	HDP	E
þ.					
þ.					
ÿ.	Usage	Reg	ress	Regr	ess
Þ.	Initial value		0.03	3	0.25
Þ	Lower bound		0.012	2	0.16
	Upper bound			L.	1
Þ	Scale factor		1	()	1
p.	Set Aii = Aii	No		No	

Figure 2.50 Specification of binary interaction parameters to be regressed

Following Figures 2.44 to 2.46, we run the regression case C2TPXY, and the resulting binary interaction parameters appear in Figure 2.51. The accuracy of these parameters depends on the accuracy of the experimental data.

Reg	gressed parameters —			п	
	Parameter	Component i	Component j	Value (SI units)	Standard deviation
۲	SLETIJ/1	C2H4	HDPE	0.012	0
	SLKIJ/1	C2H4	HDPE	0.219778	0.0219851

Figure 2.51 Regressed binary interaction parameters between C2H4 and HDPE.

2.8 Polymer Perturbed-Chain Statistical Fluid Theory (POLYPCSF) Equation of State

Gross and Sadowski [21 to 23] developed the PC–SAFT EOS, which is an extension of the well-known SAFT EOS [24 to 26]. A key deference between the two models is that PC-SAFT model replaces the expression of the dispersion (attractive) interactions between isolated (or disconnected) polymer segments with that between connected polymer segments. See an illustration in Figure 2.52, in which each circle dot represents a segment.

Figure 2.52 An illustration of the disconnected segments in SAFT versus the connected segments in PC-SAFT.

The PC-SAFT model is applicable to fluid systems of both small and large molecules over a wide range of temperature and pressure conditions, and it represents polymer systems very well.

Statistical thermodynamics typically uses the Helmholtz free energy *A* to represent the attractive (or perturbation) interactions between molecules, as most properties of interest, such as pressure, can be obtained by proper differentiation of *A*. In the SAFT model, this attractive or perturbation term is a

series expansion in terms of the reciprocal temperature, and each coefficient of the expansion depends on the density and composition. By contrast, the PC-SAFT model represents the molar residual Helmholtz free energy A^{res} as a sum of two contributions

$$A^{res} = A^{ref} + A^{pert} \tag{2.26}$$

where A^{res} and A^{pert} are the reference and perturbation (attractive) contributions, respectively. The reference term considers a fluid consisting of hard-sphere chains as a reference for the perturbation theory, and the perturbation term incorporates the attractive forces between the chains.

The primary difference between the PC-SAFT and SAFT models is in the perturbation term. The SAFT model uses hard spheres, not hard-sphere chains, as a reference fluid for the perturbation contribution. The use of hard-sphere chains allows the PC-SAFT EOS to account for the connectivity of segments that comprise the chains when considering the attractions between species, resulting in a more realistic description of the thermodynamic behavior of mixtures of chainlike molecules. Gross and Sadowski [21 to 23] and others [e.g., 29 to 31] demonstrate that the PC-SAFT predictions for vapor-liquid and vapor-liquid-liquid equilibria are superior to the SAFT model.

The resulting PC-SAFT EOS expresses the compressibility as a sum of the ideal (with a value of unity), reference and perturbation contributions:

$$\frac{PC}{RT} = z = z^{id} + z^{ref} + z^{pert} = 1 + z^{ref} + z^{pert}$$
(2.27)

Interested readers may refer to the original references for the analytical expressions of the PC-SAFT model [21 to 23] for the details of this contributions. A recent article by Kang et al. [27] gives a fairly complete analysis of the PC-SAFT model equations and their iterative solution procedures.

The application of the PC-SAFT model requires the use of three pure-component parameters for each species involved: (1) *segment number, m,* which is a characteristic length and is directly proportional to the size (molecular weight) of the species; (2) *segment diameter, o* Å; and (3) *segment energy,* ε Joule, typically expressed as a ratio ε/k_B in K, where k_B is the Boltzmann's constant, 1.38 E-23 J/K. For polymers, we typically replace the segment number *m* by a ratio *r* defined as *m* divided by the number-average molecular weight, MWN:

$$r = m/MWN \tag{2.28}$$

Using this ratio is more convenient because the polymer molecular weight is often unknown until the polymer is produced. For segments, we often use the ratio *r* as well. These parameters are obtained by fitting experimental vapor pressure and liquid molar volume data for pure components.

Figure 2.53 illustrates the values of these pure component parameters in the simulation of a gas-phase PP process [42]. To enter these parameters in Aspen Plus, follow the path: Properties -> Methods -> Parameters -> Pure Components -> New: name = PCSAFT -> Enter parameter name, component, and value. In the figure, (1) parameter PCSFTM is the segment number *m*; (2) parameter PCSFTU represents the ratio of the segment energy to the Boltzmann's constant ε/k in K; (3) parameter PCSFTV is the segment diameter, σ Å; and (4) parameter PCSFTR represents the ratio *r* in mol/g defined by Eq. (2.27). For those species with missing pure component parameters, a search "missing parameters (POLYPCSF)" of Aspen Plus online help suggests using the values: PCSFTM = 0.02434*(component molecular weight); PCSFTU = 267.67 K; PCSFTV = 4.072 Å; and PCSFTR = 0.02434 mol/g for polymer species and segments.

Properties	٠	Comp	ponents - Sp	ecificati	ions ×	Control Panel	× Pure Co	omponents - I	PCSAFT × Pu	ire Component	s - CPIG-1 ×	+				
All Items	-	🖉 In	iput Comr	nents												
 Setup Components 		Pure	e component	t scalar	paramet	ters								1		
Methods					Data	Component	Component	Component	Component	Component	Component	Component	Component	Component	Component	Component
Specifications			Parameters	Units	set	CAT -	COCA	H2 -	ETHYLEN -	ETHANE *	02 -	PROPEN -	PROPAN -	DIBDN -	C3-SEG -	C2-SEG -
Selected Methods		>	PCSFTM		1	25	25	0.828469	1.55873	1.6068	1.7677	1.9598	2.002	25		
A Pure Components		-	PCSFTU	к	1	198.821	198.821	12.5276	179.412	191.42	83.6089	207.19	208.11	198.821	298.639	252
CPIG-1		÷	PCSFTV		1	2.66798	2.66798	2.97294	3.43405	3.5206	3.1191	3.5356	3.6184	2.66798	4.14728	4.0217
PCES-1	Ξ	÷	PCSFTR		1										0.025279	0.0263

Figure 2.53 Pure component parameters for POLYPCSF model for simulating a PP process.

The POLYPCSF model also requires binary interaction parameters that are correlated by Eq. (2.24) as a function of T_r (= T/T_{ref} where T_{ref} = 298.15 K):

$$k_{ij} = a_{ij} + \frac{b_{ij}}{T_r} + c_{ij} \ln T_r + d_{ij} T_r + e_{ij} T_r^2$$
(2.24)

These parameters may be obtained by regressing phase-equilibrium data. When these parameter values are not supplied, they default to zero.

2.9 Workshop 2.4 Regression of Property Parameters for POLYPCSF EOS

2.9.1 Objective and Data Sources:

The objective of this workshop is to demonstrate the step-by-step procedure of Workshop 2.3 for regression of property parameters the POLYSL EOS is directly applicable to the POLYPCSF EOS.

For polymer components, we may find relevant thermophysical property and phase equilibrium data: (1) for ethylene and propylene in [35,36,37]; (2) for polymer solutions and components in [32,33,38,39,41]; (3) for solvent vapor and liquid phase data in [34]; and (4) for pure component parameters for POLYPCSF for PP process in [42].

2.9.2 Regression of Pure Component Parameters for POLYPCSF EOS

Following Figure 2.34, we begin by creating a data regression run and choosing the MET unit set and save the simulation file as: *WS2.4 Regressing Property Parameters for POLYPCSF.bkp*.

Figure 2.54 shows the component specification. As discussed in Sections 2.7.4, both property analysis and regression tools in Aspen Plus do *not* support polymer attributes. Therefore, for property analysis and regression runs, we define PE as an oligomer.

0	Selection	Petroleu	um Nonconventional	Centerprise Database	e Comments		
ele	ct compon	ents					
2	Compo	nent ID	Тур	be	Component name	Alia	
Þ.	PE		Oligomer		POLY(ETHYLENE)	PE	
þ.	C2H4		Conventional		ETHYLENE	C2H4	
þ.	C2H4SEG		Segment		ETHYLENE-R	C2H4-R	
þ.							

Figure 2.54 Component specifications.

We follow the path: Properties -> Components -> Polymers -> Characterization: (1) Segments - Define C2H4SEG as repeat segment; (2) Oligomers: Specify PE to include 1250 C2H4SEG. Next, we click on "Review" button illustrated in Figure 2.54 to call up pure component parameters from Aspen Plus databanks for pure components, segments and polymers. Following the path: Properties -> Parameters -> Pure Components -> REVIEW-1 -> we see in Figure 2.55 the molecular weight (MW) for PE being 28.0538, which is the molecular weight of the monomer C2H4, not that of the oligomer with 1250 C2H4SEG repeated segments. To specify the correct molecular weight of PE, we follow the path: Properties -> Parameters -> New -> Choose type = scalar and specify name = MWPE -> OK -> Input: enter component PE, parameter MW =35067.25 (28.0538 x 1250).

Properties	٠	Pure	e Con	nponents - R	EVIEW-1× +				
All Items	-	0	Input	Comment	5				
Pure Components	*	PI	ire co	mponent sca	lar parameters -				
CPIG-1					100.00		Component	Component	Component
CPLDIP-1				Parameters	Units	Data set	C2H4 -	PE -	C2H4SEG -
CPSDIP-1			A	PI		1	265.5		
OHVLOP-1			> ci	RITMW		1		3500	
ONLDIP-1			D	GFORM	cal/mol	1	16346.6		
ONSDIP-1			D	HFORM	cal/mol	1	12541.8		
KVDIP-1	=		D	HVLB	cal/mol	1	3221.34		
MULDIP-1			FF	REEZEPT	к	1	104		
MUVDIP-1			H	сом	cal/mol	1	-315993		
PLANT-1			H	FUS	cal/mol	1	800.373		
REVIEW-1			M	IUP	debye	1	0		
S-1			M	w		1	28.0538	28.0538	28.0538
SIGDIP-1			0	MEGA		1	0.0862484	0	

Figure 2.55 Pure component parameters from Aspen databanks

We follow the procedure in Figure 2.40 to enter the liquid density dataset PERHOL for PE (see Figure 2.56), and to enter the vapor-liquid equilibrium dataset PETPXY1 for C2H4-PE of Figure 2.41 (with component name PE replacing HDPE).

S	etup 🥝 Data	Comments	
Expe	erimental data –		
		TEMPER	RATURE
4	Usage	c	✓ kg/cum
Þ.	STD-DEV	0.1	1%
¥.	DATA	135.1	787.9
þ.	DATA	142.7	783.58
F.	DATA	149.5	779.61
þ.	DATA	160.5	773.4
E	DATA	172	767.05
E	DATA	184.8	760.05
þ.	DATA	198	753.38

Figure 2.56 Liquid density dataset PERHOL of PE

Following Figure 2.42, we set up a regression run C2H4SEG to estimate the POLYPCSF pure component parameters PCSFTU (the ratio of the segment energy to the Boltzmann's constant ε/k in K), PCSFTV (the segment diameter, σ Å), and PCSFTR (the ratio r in mol/g defined by Eq. (2.27)) for C2SEG. See Figure 2.57.

Properties <	C2SEG ×	+							
All Items	Setup	o 🕜 Parame	eters	Report	Algorit	hm Diag	nostics	Generic Property	Com
 Setup Components 	Paramet	ers to be regr	essed						
Methods Specifications	► Ty	pe	Para	meter		Parameter		Parameter	
Parameters Routes	P Na	ime ement	PCSF	τU		PCSFTV		PCSFTR	
NC Props	> Co	mponent or oup	C2SE	G	1	C2SEG		C2SEG	
Chemistry Property Sets	*								
C2RHOL	▶ Us	age	Regr	ess	1	Regress		Regress	
Estimation	lni	tial value wer bound		2	200		1.964 1.5	0.2	26
C2SEG	▶ Up	per bound			500		5	C	.8
Log VLE Analysis Customize	Sc.	ale factor t Aji = Aij	No		1	No	1	No	1

Figure 2.57 Setting up a regression run for POLYPCSF pure component parameters of C2SEG

Executing a regression run based on the liquid density dataset C2RHOL gives the resulting pure component parameters of Figure 2.58.

Para	meters	Consistency	Tests Residual	Profiles	Correlation	Sum of Squares	Evaluation	Extra Property	00
				100000000000000000000000000000000000000	A CONTRACTOR OF A	I construction device action	- Second Second Second		
Reg	gressed p	oarameters —	4						
	F	Parameter	Compone	nt i	Componen	tj Value	(SI units)	Standard deviat	ion
Þ	PCSFTU	J/1	C2H4SEG				254.445	1.9	5559
	PCSFTV	//1	C2H4SEG				1.94588	0.077	8691
	PCSETR	/1	C2H4SEG				0.232374	0.027	8565

Figure 2.58 Regressed POLYPCSF pure component parameters for C2H4 Segment

The last two columns in Figure 2.59 show that the estimated liquid density data of PE match the experimental data well.

Parar	neters	Consisten	cy Tests	Residual	Profiles	Correl	lation	Sum of Sq	uares	Evaluation	Extra Prop	erty
)ata s	et PER	HOL	-									
Sum	mary of	regression r	esults -									
	Exp V	/al TEMP	Est Va	I TEMP	Exp Val F	PRES	Est	Val PRES	Exp LIQ	val RHO UID PE	Est Val RH LIQUID F	IO PE
- 24	к	•	К	•	atm	•	atm	-	kg/cur	n 🗸	kg/cum	
)÷		408.25		408.25		1		1		787.9	787	73
1		415.85		415.85		1		1		783.58	783	45
÷.		422.65		422.65		1		1		779.61	779.	65
÷.		433.65		433.65		1		1		773.4	77.	3.5
÷.		445.15		445.15		1		1		767.05	767.	23
		457.95		457.95		1		1		760.05	760	.24
1		471.15		471.15		1		1		753.38	75	3.0

Figure 2.59 A comparison of estimated and experimental data of liquid density data of PE.

Following Figure 2.50, we create a regression run BINARY to estimate the binary interaction parameter PCSKIJ between components C2H4 and C2H4SEG using the vapor-liquid equilibrium dataset PETPXY1 for C2H4-PE of Figure 2.41 (with component name PE replacing HDPE). See Figure 2.60.

Properties	٠	Data	- PERHOL (PI	URE-COMF	r) × Co	ntrol Panel >			
All Items	-	Setup Parameters Report Ale				Algorithm			
UNIFAC Groups	Bin	Para	Parameters to be regressed						
Results Routes		•	Type		Binary parameter				
NC Props		•	Name	PCS	PCSKIJ 1 C2H4				
Chemistry		÷.	Element	1					
Property Sets		- F	Componen	t or C2H					
4 🔯 Data		- F	Group	C2H	C2H4SEG				
PERHOL		×							
Estimation		1							
Regression BINARY		- P	Usage	Reg	Regress				
	_		Initial value			0.01			
Results	_		Lower bour	nd	-0.5				
🔺 🔯 C2SEG	E		Upper bour	nd		0.5			
Input			Scale factor	r	1				
analysis			Set Aji = Aj	j No					

Figure 2.60 Input to regress binary interaction parameter PCSKIJ

Figure 2.61 shows the resulting binary interaction parameter. This concludes the current workshop. We save the simulation file as *WS 2.4 Regressing Property Parameters for POLYPCSF.bkp.*

Data	- PERHO	DL (PURE-COMP) ×	Control Pa	anel \times β	INARY - Input	BINARY - Resu	lts× +		
Para	meters	Consistency Tests	Residual	Profiles	Correlation	Sum of Squares	Evaluation	Extra Property	ØS
Reg	pressed p	arameters							
	Ł	Parameter	Compone	nti	Componen	tj Value	(SI units)	Standard deviat	tion
Þ	PCSKIJ/	'1 C.	2H4	(2H4SEG		-0.151531	0.0010	01759

Figure 2.61 Regressed POLYPCSF binary interaction parameter

This workshop concludes our sections of selection of thermodynamic methods and estimation of physical properties. We summarize our discussion of the differences between an equation of state (EOS) and an activity coefficient (gamma) model for polymer applications in Table 2.6.

Table 2.6 Comparison of an equation of state and an activity coefficient model for polymer applications

EOS Models	Gamma or Activity Coefficient Models
Limited in ability to represent nonideal liquid	Can represent highly nonlinear liquids with polar
	and hydrogen-bonding species
Fewer binary interaction parameters required	Many binary interaction parameters required;
	Section 2.3
Parameters extrapolate reasonably with	Binary interaction parameters are highly
temperature	temperature-dependent
Can represent both vapor and liquid	Can only represent the liquid phase
Consistent in critical region for light gases and	Inconsistent in critical region, resulting in
low-molecular weight components	incorrect concentrations of light gases and low-
	molecular weight components in liquid phase,
	Section 2.2.5

Common EOS Models	Common Gamma Models
POLYSL, Polymer Sanchez-Lacombe EOS, Sections	POLYNRTL, Polymer Non-Random Two-Liquid
2.6 and 2.7; POLYPCSF, Polymer Perturbed-Chain	Activity Coefficient Model, Sections 2.2.4 and 2.3
Statistical Fluid Theory EOS, Sections 2.8 and 2.9	

2.10 Correlation of Polymer Product Quality Indices and Structure-Property Correlations

2.10.1 Polyolefin Product Quality Indices

Fundamentally speaking, polymer products are characterized by their molecular structures. The key quality measures include molecular weight averages (MWN and MWW), polydispersity index, copolymer composition, type and frequency of branching, tacticity, etc. Aspen Polymers can predict these quality indices from the moment equations as a part of the simulation model.

In practice, industrial polymer producers focus more on empirical product quality indices. Two most important quality measures are *melt index (MI) or melt flow rate (MFR)*, and *polymer density*. MI or MFR is defined as the mass of polymer, in grams, flowing in ten minutes (gm/10 min) through a capillary of a specific diameter and length by a pressure applied via prescribed alternative gravimetric weights for alternative prescribed temperatures. The standard testing methods are ASTM D1238 for flow rates of thermoplastics by extrusion plastometer, and ISO 1133 for determination of MFR of thermoplastics. For density, the standard testing methods are ASTM D1505 for density of plastics, ASTM D792-00 for density and specific gravity of plastics, and ISO 1183 for density of plastics.

Figure 2.62 illustrates a melt-flow plastometer for MI determination. The polymer melt flows through the barrel, entrance region (or contraction) and capillary. The blow-up depicts the entrance region, where funneling flow takes place. The size of the capillary is standardized at 0.083" diameter and 0.250" length. For polyethylenes, the most common conditions are 190° C and 2.16 kg force. For polypropylene, the temperature is 230°C. For some polyethylene, the load is increased to 21.6 kg, which is called *the High Load Melt Index, (HLMI)* [43]. MI gives a relative indication of the molecular weight and viscosity of the polymer. The lower the MI, the higher the molecular weight and viscosity.

Figure 2.62 Melt-flow plastometer for MI determination.

The tacticity is an important quality measure of polypropylene. In Figure 2.63, we see in an *isotactic* PP, (all the repeating methyl CH3) groups, represented by the dark downward arrow, are arranged along the same side of the polymer chain. In the *syndiotactic (syntactic)* PP, the repeating methyl groups are arranged on an alternating side of the polymer chain, while in the *atactic* PP, the repeating methyl

groups are on either side of the polymer chain. In Chapter 5, we show that Aspen Polymers simulation quantifies the tacticity of PP by an *atactic fraction (ATFRAC)*, which is defined as the ratio of atactic propagation reaction rate to the total propagation reaction rate.

Figure 2.63 Three stereochemical configurations of PP

2.10.2 Empirical Correlations of Polymer Product Quality Targets

We first note that the estimated molecular weight distribution can vary by catalyst, process, plant operation, and testing method. Therefore, empirical correlations of polymer product quality targets have a limited range of applicability. Correlations from a particular catalyst, a particular comonomer, a single reactor, or from multi-reactor operations could be different.

In an early publication in 1953, Sparati, et al. [44] presented a fairly complete study of eleven property correlations of LDPE. Two of the reported correlations include:

$$Log (MI) = 5.09 - 1.53 \times 10^{-4} (MWN)$$
 (2.29)

Density =
$$2.0 \times 10^{-3}$$
 (crystallinity) + 0.03 (2.30)

A popular correlation for HDPE or LLDPE copolymer density is of the form

$$Density = A - B^* (SFRAC^* 100)^C$$
(2.31)

where A, B and C are constants, and SFRAC is the mole fraction of the comonomer in the polymer product (e.g., comonomer 1-butene with monomer ethylene).

In the literature, most empirical correlations for MI for polyolefins with broad MWD or large PDI are based on the weight-average molecular weight (MWW). For example, a general MI correlation with MWW [44 to 46] is in the form of

$$MI = a(MWW)^{-b}$$
 (2.32)

where a and b are correlating parameters. For PP, the MI may depend on the MWW as well as the atactic fraction (ATFRAC), calculated by the atactic chain propagation reaction (ATACT-PROP) in Aspen Polymers [42].

The polymer density is usually measured for the pellets and correlated as a function of the MWW. For copolymerization, we often correlate the polymer density as a function of mole fraction of the comonomer and the MWW [46,47]. In reference [47], the HDPE density obtained from ethylene copolymerization with comonomer 1-butene follows the following correlation:

$$(1-0.0081x_B^{0.148895})$$
 x $[1.137247 - 0.014314 \ln(MWW)]$ (2.33)

where x_B is the mole fraction of 1-butene.

We demonstrate below how to develop simple linear and nonlinear correlations of melt index based on the measured data from a PP process using Excel. We save the Excel file as *Example 2.2 Correlation of Melt Index.xlsx*.

	В	С	D	E	F	G	н	1	
1									
2	MI = (a/M	ww)^b							
3	3 use solver to minimize sum of squared errors		(SOE)						
4	4 i. e.,SOE = sum((MI-(a/MWW)^b)^2)								
5	5 by adjusting a and b								
6	MWW=PD	I*MWN							
7									
8	Grade 1						b	2.640954	
9	MI	MWN	PDI	MWW	(a/MWW)^b	Squared Error	a	2338559.779516	
10	175	60000	5.5	330000	176.1809067	1.394540573			
11	155	63000	5.52	347760	153.4036518	2.548327434			
12	115	70000	5.54	387800	115.038746	0.001501253			
13	65	80000	6	480000	65.4942942	0.244326757			
14					SOE	4.188696017			
15	Grade 2						b	3.774509	
16	MI	MWN	PDI	MWW	(a/MWW)^b	Squared Error	a	491762.151756	
17	1.4	80000	5.6	448000	1.421612106	0.000467083			
18	1.15	83000	5.7	473100	1.157230495	5.22801E-05			
19	0.9	90000	5.8	522000	0.798329336	0.010336924			
20	0.4	96000	6.2	595200	0.486478563	0.007478542			
21					SOE	0.018334829			
22									

Figure 2.64 Using Excel to develop a correlation for melt index

Referring to Figure 2.64, we see the measured data for MI, MWN, and MWW, and PDI (= MWW/MWN) for polymer grade 1 in cells B10 to B13, C10 to C13, E10 to E13 and D10 to D13; and for polymer grade 2 in cells B17 to B20, C17to C20, E17 to E20and D17 to D20. Based on assumed values of parameters a and b, we find the sum of squared errors (SOE) between the estimated values and experimental data, and then use Goal Seek solver in Excel to find the fitted values of parameters a and b that minimize the SOE. To access the Goal Seek solver, follow the path: Data -> What-If Analysis -> Goal Seek. We note that because of the significant difference in the values of MI for grades 1 and 2, it may be best to develop two separate correlations for the measured data.

2.10.3 Estimation of Apparent Newtonian Viscosity from MI-MWW Measurement

We begin with some background about Newtonian and non-Newtonian fluids. Newtonian fluids satisfy Newton's law of viscosity, where the proportionality constant η is the viscosity of the fluid.

$$\tau$$
 (shear stress, Pa) = η (viscosity, Pa-s) x $\dot{\gamma}$ (shear rate, 1/s) (2.34)

In reality, most fluids are non-Newtonian, which means that their viscosity depends on shear rate (shear thinning or thickening) or the deformation history. Non-Newtonian fluids display a nonlinear relation between viscosity and shear rate (see Figure 2.65). A fluid is shear thickening if the viscosity of the fluid increases as the shear rate increases. A common example of shear thickening fluids is a mixture of corn

starch and water. Fluids are shear thinning if the viscosity decreases as the shear rate increases. Common examples include ketchup, paints and blood.

Figure 2.65 An illustration of shear thickening, shear thinning and Newtonian fluid.

Seavey et al. [45] review the relationships among the molecular weight distribution, Non-Newtonian shear viscosity, and melt index. Both simple and more complex semi-empirical methods exist to relate these variables. For example, Bremner et al. [49] present experimental data and study the relationship between different molecular weight averages and melt index for several commercial thermoplastics, including PS, PP, LPDE, and HDPE.

Rohlfing and Janzen [50] take a different approach by using a model for the flow within the melt indexer itself to predict the melt index. Sharma and Liu [53],[54] review the relationship of melt index and molecular weights with input process parameters. Referring to Figure 2.62, they consider the pressure drop in the melt indexer as a sum of the pressure drops in the barrel, entrance region and the capillary. They develop a set of *integral-algebraic equations* relating the shear rates at the barrel wall, at the capillary wall, and in the capillary, the barrel pressure drop, the capillary pressure drop, the entrance pressure drop, and the volumetric flow rate.

For a *Newtonian* fluid with viscosity μ (in Pascal-second, or Pa-s) and based on the melt indexer of Figure 2.62 with standard dimensions specified in Section 2.10.1, analytical solutions of the Rohlfing and Janzen model equations is possible, and it results in a simple equation:

$$MI = 7280/\mu$$
 (2.35)

The details appear in [45].

Working backwards from the melt index to predict the non-Newtonian shear viscosity (or "flow curve") is difficult because of the integral-algebraic equations involved. In cases where the integral covers part of the shear-thinning region of the flow curve, solutions to the flow model are not unique. For example, a polymer with a high Newtonian viscosity but with a rapid onset of shear thinning may have the same melt index as a polymer with a lower Newtonian viscosity with less shear-thinning behavior.

Therefore, in our example below, we limit ourselves to the characterization of the apparent Newtonian viscosity of a polymer sample which can be estimated using the analytical correlation, Eq. (2.34). Once the apparent Newtonian viscosities are estimated from the MI data, we can use a power-law expression to correlate MWW with the viscosity.

Let us open the Excel spreadsheet, *Example 2.2 MI vs MWW.xlxs.* Columns B and C show the data of MI vs. MWW for LLDPE samples from Table 1 of [48]. See Figure 2.66. Based on Eq. (2.35), we can find column E from Column C, that is, μ = 7280/ MI.

	A	В	С	D	E
1					
2					
3					
4					Step 1
5		Data (Bremner, Rudi	n, and Cook, 1990)		Calculate apparent Newtonian Viscosity
6		MWW (g/mol)	MI (g/10min)		Viscosity (µ, Pa s)
7		167000	0.3		24267
8		103000	0.6		12133
9		145000	1		7280
10		131000	0.8		9100
11		68000	1.2		6067
12		79000	4		1820
13		102000	2		3640
14		54000	20		364
15		48000	50		146
16		38000	100		73
4-7					

We then use Excel to develop a correlation between μ and MWW. See Figure 2.67. We note that this approach will work well for low MI materials where the flow through the melt indexer is primarily Newtonian.

Figure 2.67 Developing a correlation between apparent Newtonian viscosity μ and MWW.

Finally, we note that we demonstrate how to implement the correlations for MI and polymer density, Eqs. (2.31) and (2.32), in steady-state polymer process simulation in Section 5.8.11 using FORTRAN in Aspen Polymers, and in dynamic polymer-grade changes using "Tasks" in Aspen Plus Dynamics in Section 7.6.3.

Conclusion

This chapter is published with Wiley publication in the book *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing by Liu & Sharma.* [55-68]

2.11 Bibliography

1. Walas, S. M. (1985). *Phase Equilibria in Chemical Engineering*, Butterworth, Stoneham, MA.

2. Bokis, C. P.; Orbey, H.; Chen, C. C. (1999). Properly Model Polymer Processes. <u>*Chem. Eng. Prog.*</u>, **95**, No. 4, 39, April.

3. Seavey, K. C.; Liu, Y. A. (2008). <u>Step-Growth Polymerization Process Modeling and Product Design</u>. Wiley, New York, pp. 87-92.

4. Chen, C. C. (1993). A Segment-Based Local Composition Model for Gibbs Energy of Polymer Solutions. *Fluid Phase Equilib.*, **83**, 135.

- 5. Renon, H.; Prausnitz, J. M. (1968). Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. <u>*AIChE J.*</u>, **14**, 135.
- 6. Flory, P. J. (1942). Thermodynamics of High Polymer Solutions. J. Chem. Phys., 10, 51.
- 7. Flory, P. J. (1953). *Principles of Polymer Chemistry*. Cornell University Press, New York.

8. Huggins, M. L. (1942). Some Properties of Solutions of Long-Chain Compounds. <u>J. Phys. Chem</u>., **46**, 151.

9. Oishi, T.; Prausnitz, J. M. (1978). Estimation of Solvent Activity in Polymer Solutions Using a Group Contribution Method. *Ind. Eng. Chem. Process Des. Dev.*, **17**, 333.

- 10. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. (1975). Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. <u>AIChE J.</u>, **21**, 1086.
- 11. Fredenslund, A. (1977). <u>Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method</u>. Elsevier, New York.
- 12. Redlich, O.; Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. *Chem. Rev.*, **44**, 233.

13. Van Krevelen, D. W.; Nijenhuis, K. te (2009). <u>Properties of Polymers - Their Correlation with Chemical</u> <u>Structure; Their Numerical Estimation and Prediction from Additive Group Contributions</u>. Fourth Edition, Elsevier, Amsterdam.

14. Painter, P. C.; Coleman, M. M. (1977). *Fundamentals of Polymer Science: An Introductory Text*. Second edition. Techonomic Publishing Company, Inc., Lancaster, PA.

15. Lambert, S. M.; Song, Y.; Prausnitz, J. M. (2000). Equations of State for Polymer Systems. In J. V. Sengers, R. F. Kayer, C. J. Peters, and H. J. White (Eds.), *Equations of State for Fluids and Fluid Mixtures*. pp. 523-588. Elsevier, New York.

16. Wei, Y. S.; Sadus, R. J. (2000). Equations of State for Calculation of Fluid-Phase Equilibria. <u>AIChE</u> <u>Journal</u>, **46**, 169.

17. Sanchez, I. C.; Lacombe, R. H. (1976). An Elementary Molecular Theory of Classical Fluids. Pure Fluids. *J. Phys. Chem.*, **80**, 2352.

18. Lacombe, R. H.; Sanchez, I. C. (1976). Statistical Thermodynamics of Fluid Mixtures., <u>J. Phys. Chem</u>. **80**, 2568.

19. Sanchez, I. C.; Lacombe, R. H. (1978). Statistical Thermodynamics of Polymer Solutions. *Macromolecules*, **11**, 1145.

20. McHugh, M. A.; Krukonis, V. J. (1994). *Supercritical Fluid Extraction: Principles and Practice*, 2nd edition. pp.99-134.

21. Gross, J.; Sadowski, G. (2001). Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. *Ind. Eng. Chem. Res.*, **40**, 1244.

22. Gross, J.; Sadowski, G. (2002). Modeling Polymer Systems Using of Perturbed-Chain SAFT Equation of State. *Ind. Eng. Chem. Res.*, **41**, 1084.

23. Gross, J.; Sadowski, G. (2002). Application of Perturbed-Chain SAFT Equation of State to Associating Systems. *Ind. Eng. Chem. Res.*, **41**, 5510.

24. Chapman, W. G., Gubbins, K. E.; Jackson, G.; Radosz, M. (1990). New Reference Equation of State for Associating Liquids. *Ind. Eng. Chem. Res.* **29**, 1709.

25. Huang, S. H.; Radosz, M. (1990). Equation of State for Small, Large, Polydisperse, and Associating Molecules. *Ind. Eng. Chem.Res.*, **29**, 2284.

26. Huang, S. H.; Radosz, M. (1991). Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures. *Ind. Eng. Chem. Res.* **30**, 1994.

27. Kang, J.; Zhu, L.; Xu, S.; Shao, Z.; Chen, X. (2018). Equation-Oriented Approach for Handling the Perturbed-chain SAFT Equation of State in Simulation and Optimization of Polymerization Process. *Ind. Eng. Chem. Res.*, **57**, 4697.

28. Khare, N.P.; Seavey, K. C.; Liu, Y.A.; Ramanathan, S.; Lingard, S.; Chen, C. C. (2002) Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes. *Ind. Eng. Chem. Res.* **41**, 5601.

29. Orbey, H., Bokis, C. P., Chen, C. C. (1998). Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process: The Sanchez–Lacombe, Statistical Associating Fluid Theory, and Polymer-Soave–Redlich–Kwong Equations of State. *Ind. Eng. Chem.*, **37**, 4481.

30. Bokis, C. P., Ramanathan, S., Franjione, J., Buchelli, A., Call, M. L., Brown, A. L. (2002). Physical Properties, Reactor Modeling, and Polymerization Kinetics in the Low-Density Polyethylene Tubular Reactor Process. *Ind. Eng. Chem. Res.*, **41**, 1017.

31. Krallis, A.; Kanellopoulos, V. (2013). Application of Sanchez-Lacombe and Perturbed-Chain Statistical Fluid Theory Equation of State Models in Catalytic Olefins (Co)Polymerization Industrial Applications. *Ind. Eng. Chem. Res.*, **52**, 9060.

32. Hao, W.; Elbro, H. S.; Alessi, P. (1992). *Polymer Solution Data Collection. Chemistry Data Series*, XIV, Part 1, DECHME: Frankfurt, Germany.

33. Danner, R. P.; Hugh, M. S. (1993). *Handbook of Polymer Solution Thermodynamics.* Design Institute for Physical property Research, American Institute of Chemical Engineers, New York.

34. NIST (National Institute of Science and Technology), <u>NIST Chemistry Webbook, SRD69,</u> <u>Thermophysical Properties of Fluid Systems, https://webbook.nist.gov/chemistry/fluid/</u>, accessed May 15, 2021.

35. William, R. B.; Katz, D. L. (1954). Vapor-Liquid Equilibria in Binary Systems. Hydrogen with Ethylene, Ethane, Propylene, and Propane. *Ind. Eng. Chem.*, **46**, 2512.

36. Beaton, C. F.; Hewitt, G. F. (1989). *Physical Property Data for the Design Engineer*; Hemisphere Publishing Corp., New York.

37. Sychev, V. V.; Vasserman, A. A.; Golovsky, E. A.; Kozlov, A. D.; Spiridonov, G. A.; Tsymarny, V. A. (1987). *Thermodynamic Properties of Ethylene*; Hemisphere Publishing Corp., New York.

38. Olabisi, O.; Simha, R. (1975). "Pressure-Volume-Temperature Studies of Amorphous and Crystalline Polymers. I. Experimental. *Macromolecules*, **8**, 206.

39. Gaur, U.; Wunderlich, B. (1981). Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. II. Polyethylene. <u>J. Phys. Chem. Ref. Data</u>, **10**, 119.

40. Knapp, H.; Doring, R.; Oellrich, L.; Plocker, U.; Prausnitz, J. M. (1982). <u>Vapor-Liquid Equilibria for</u> <u>Mixtures of Low Boiling Substances; Chemistry Data Series</u>: <u>Vol VI, Part 1</u>; DECHEMA: Frankfurt, Germany.

41. Brandrup, J.; Immergut, E. H.; Grulke, E. A. (1999). *Polymer Handbook*, 4th edition, Wiley, New York.

42. Khare, N.P.; Lucas, B.; Seavey, K. C.; Liu, Y. A.; Sirohi, A.; Ramanathan, S.; Lingard, S.; Song, Y. ; Chen, C. C. (2004). Steady-State and Dynamic Modeling of Gas-Phase Polypropylene Processes Using Stirred-Bed Reactors. *Ind. Eng. Chem. Res.*, **43**, 884.

43. Griff, A. L. (2003). Melt Index Mysteries Unmasked. See: <u>https://griffex.com/wp-content/uploads/2020/09/Griff-meltindex.pdf</u>. Accessed May 16, 2021.

44. Sperati, C. A.; Franta, W. A.; Starkweather, H. W. (1953). The Molecular Structure of Polyethylene V. The effect of Chain Branching and Molecular Weight on Physical Properties., <u>J. Amer. Chem. Soc</u>., <u>75</u>, 6127.

45. Sinclair, K. B. (1983). "Characteristics of Linear LDPE and Description of the UCC Has Phase Process", Process Economics Report, SRI International, Menlo Park, CA.

46. Seavey, K. C.; Khare, N. P.; Liu, Y. A.; Bremner, T.; Chen, C. C. (2003). Quantifying Relationships among the Molecular Weight Distribution, Non-Newtonian Shear Viscosity and Melt Index for Linear Polymers. *Ind. Eng. Chem. Res.*, **42**, 5354.

<u>47.</u> Mattos Neto, A. G.; Freitas, M. F.; Nele, M.; Pinto, J. C. (2005). Modeling Ethylene/1-Butene Copolymerization in Industrial Slurry Reactors. *Ind. Eng. Chem. Res.*, **44**, 2697.

48. Meng, W.; Li, J.; Chen, B.; Li, H. (2013). Modeling and Simulation of Ethylene Polymerization in Industrial Slurry Reactor Series. *Chin. J. Chem. Eng.*, **21**, 850.

49. Aspen Technology, Inc. (2020). Top Questions about Aspen Polymer Process Modeling in Aspen Plus. AspenTech FAQ. <u>https://www.aspentech.com/en/resources/faq-documents/top-questions-about-polymer-process-modeling-in-aspen-plus</u>, accessed June 4, 2021.

50. Bremner, T.; Rudin, A.; Cook, D. G. (1990). Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics. *J. Appl. Polym. Sci.* **41**, 1617.

51. Rohlfing, D. C.; Janzen, J. (1997). What is Happening in the Melt-Flow Plastometer: The Role of Elongational Viscosity. <u>Ann. Tech. Conf.–Soc. Plast. Eng</u>. p. 1010.

52. Liu, Y. A., & Sharma, N. (2023). *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing*. Wiley-VCH GmbH (<u>https://doi.org/10.1002/9783527843831</u>)

53. Sharma, N., & Liu, Y. A. (2019). 110th anniversary: an effective methodology for kinetic parameter estimation for modeling commercial polyolefin processes from plant data using efficient simulation software tools. *Industrial & Engineering Chemistry Research, 58*(31), 14209-14226. https://doi.org/10.1021/acs.iecr.9b02277

54. Sharma, N., & Liu, Y. A. (2022). A hybrid science-guided machine learning approach for modeling chemical processes: A review. *AIChE Journal*, *68*(5), e17609. <u>https://doi.org/10.1002/aic.17609</u>

55. Liu, Y. A., & Sharma, N. (2023). Introduction to Integrated Process Modeling, Advanced Control, and Data Analytics in Optimizing Polyolefin Manufacturing. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing* (Chapter 1, pp. 1-40). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch1</u>

56. Liu, Y. A., & Sharma, N. (2023). Selection of Property Methods and Estimation of Physical Properties for Polymer Process Modeling. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing* (Chapter 2, pp. 41-86). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch2

57. Liu, Y. A., & Sharma, N. (2023). Reactor Modeling, Convergence Tips, and Data-Fit Tool. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing* (Chapter 3, pp. 87-114). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch3</u>

58. Liu, Y. A., & Sharma, N. (2023). Free Radical Polymerizations: LDPE and EVA. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing* (Chapter 4, pp. 115-162). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch4</u>

69. Liu, Y. A., & Sharma, N. (2023). Ziegler–Natta Polymerization: HDPE, PP, LLDPE, and EPDM. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing.* (Chapter 5, pp. 163-265). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch5</u>

60. Liu, Y. A., & Sharma, N. (2023). Free Radical and Ionic Polymerizations: PS and SBS Rubber. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing*. (Chapter 6, pp. 267-319). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch6

61. Liu, Y. A., & Sharma, N. (2023). Improved Polymer Process Operability and Control Through Steady-State and Dynamic Simulation Models. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing.* (Chapter 7, pp. 321-379). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch7</u>

62. Liu, Y. A., & Sharma, N. (2023). Model-Predictive Control of Polyolefin Processes. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing.* (Chapter 8, pp. 381-476). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch8</u>

63. Liu, Y. A., & Sharma, N. .2023. Application of Multivariate Statistics to Optimizing Polyolefin Manufacturing. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing* (Chapter 9, pp. 477-531). Wiley-VCH GmbH. <u>https://doi.org/10.1002/9783527843831.ch9</u>

64. Liu, Y. A., & Sharma, N. (2023). Applications of Machine Learning to Optimizing Polyolefin Manufacturing. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing*. (Chapter 10, pp. 553-650). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch10.

65. Liu, Y. A., & Sharma, N. (2023). A Hybrid Science-Guided Machine Learning Approach for Modeling Chemical and Polymer Processes. In *Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing*. (Chapter 11, pp. 651-698). Wiley-VCH GmbH. https://doi.org/10.1002/9783527843831.ch11

66. Sharma, N. and Liu, Y., 2019, November. Polyolefin Process Modeling and Monitoring. In 2019 AIChE Annual Meeting. AIChE.

67. Sharma, N. and Liu, Y., 2020, November. Polyolefin Process Improvement Using Machine Learning. In 2020 Virtual AIChE Annual Meeting. AIChE

68. Sharma, N., 2022, November. Polyolefin Property Estimation using Process Modeling and Machine Learning in Industry. In *2022 AIChE Annual Meeting*. AIChE.