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Abstract: Hydraulic fracturing extracts oil and gas from deep underground, with fracture conductivity 

being crucial for efficient production. Traditional lab techniques for measuring conductivity are costly and 

time-consuming. This paper explores using machine learning, specifically multivariate regression, to 

predict fracture conductivity based on experimental data like Poisson’s ratio and proppant size. Optimizing 

these models can enhance hydraulic fracturing efficiency in shale formations. 

 

Hydraulic fracturing, often referred to as fracking, is a technique used to extract oil and gas from deep 

underground formations. This process involves injecting a high-pressure fluid mixture into the rock layer, 

creating fractures through which hydrocarbons can flow more freely to the production well. A crucial aspect 

of hydraulic fracturing is fracture conductivity, which refers to the ability of the created fractures to allow 

the flow of hydrocarbons. High fracture conductivity is essential for maintaining efficient hydrocarbon 

production. It depends on various factors, including the proppant type and size, the closure stress, and the 

properties of the fracturing fluid. Optimizing these factors ensures that the fractures remain open and 

conductive over the lifespan of the well (Montgomery, 2013; Holditch, 2006; Sharma et al., 2014). 

Determining fracture conductivity in situ is a very challenging task and conducting lab measurements using 

Hassler core technique on shale are expensive and time consuming. The Hassler core experiment is a 

laboratory technique that simulates in-situ conditions to measure the permeability and conductivity of 

fractures in core samples. This method involves placing a core sample within a Hassler sleeve, applying 

confining pressure, and injecting fluid to simulate the hydraulic fracturing process. Researchers measure 

the resultant fracture conductivity, which is a key parameter influencing the efficiency of hydrocarbon 

extraction from shale formations. (Wu et al., 2017, Wu et al., 2019). 

Machine learning is being used to advance scientific computing in a variety of fields, such as fluid 

mechanics, (Raissi et al., 2019, Zhang et al., 2020, Wang el al., 2017) solid mechanics, (Haghighat et al., 

2020, Zheng et al., 2022, Arora et al., 2022) materials science etc (Kim et al., 2021). Machine learning 

techniques can also be applied to predict the fracture conductivity of new shale formations based on models 

built using data collected from experiments.  

Good experimental data is key to building a well-performing prediction model. In order to build a model to 

predict fracture conductivity, the following information about various shale samples needs to be recorded 

while conducting experiments: Poisson’s ratio, Young’s Modulus, Temperature, Closure pressure, Proppant 

particle size, and Sand concentration. The wider the range of the above-mentioned parameters, the better 

the model will be. 

There are various machine learning techniques that can be used to build the above model. In this paper we 

will discuss about multivariate regression. 



 

Multivariate Regression 

To build a robust multivariate regression model for predicting fracture conductivity, several mathematical 

steps and techniques should be adopted: 

1. Data Representation and Feature Matrix Construction: Begin by organizing the collected data 

into a matrix Xwhere each row represents an individual shale sample, and each column represents 

a feature (e.g., Poisson’s ratio, Young’s Modulus, Temperature, Closure pressure, Proppant particle 

size, Sand concentration). Let y be the vector of observed fracture conductivity values. 

Mathematically, this can be represented as: 

 

where n is the number of samples and p is the number of features. 

2. Model Formulation: The multivariate regression model assumes a linear relationship 
between the dependent variable y and the independent variables X. The model can be 
expressed as: 

 

3. Parameter Estimation: The coefficients β can be estimated using the Ordinary Least 
Squares (OLS) method, which minimizes the sum of the squared residuals. The OLS 
estimator is given by: 

 

4. Regularization (if necessary): To prevent overfitting, especially with high-dimensional data, 
regularization techniques such as Ridge Regression (L2 regularization) or Lasso Regression 
(L1 regularization) can be applied. Ridge regression minimizes: 

 

and Lasso regression minimizes: 



 

where λ is the regularization parameter. 

 

5. Model Validation and Performance Evaluation: After fitting the model, its performance 
should be evaluated using metrics such as the coefficient of determination (R²), mean 
squared error (MSE), and root mean squared error (RMSE). Cross-validation techniques, such 
as k-fold cross-validation, can provide a more robust assessment of model performance. 
Mathematically: 

 

 

 

6. Model Interpretation and Application: Once the model is validated, interpret the 

coefficients to understand the relationship between the features and fracture conductivity. 

Apply the model to predict fracture conductivity for new shale formations by inputting 

their corresponding feature values into the regression equation. 

By following these mathematical steps, a comprehensive and accurate multivariate regression 

model can be developed, providing valuable insights for predicting the fracture conductivity of 

shale formations. 
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