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ABSTRACT4

Probabilistic Seismic Hazard Analysis (PSHA) relies on two widely utilized approaches with high computational demands:5

(a) Riemann sum and (b) conventional Monte Carlo (MC) integration. The first requires sufficiently fine slices across mag-6

nitude, distance, and ground motion, and the second requires extensive synthetic earthquake catalogs to compute seismic7

hazards accurately. These approaches are notably resource-intensive for low-probability seismic hazards, e.g., up to 108 MC8

samples for a hazardwith 10−4 probability to achieve coefficient of variation (COV) of 1%.Here,we present a novel framework9

to compute hazard and deaggregation with unprecedented computational efficiency. We formulate Adaptive Importance10

Sampling (AIS) PSHA to approximate optimal important sampling (IS) distributions and dramatically reduce the size of syn-11

thetic earthquake catalogs (i.e., number of MC samples) to estimate hazards. We evaluate the effectiveness and reliability of12

our proposed method using comprehensive test problems from the Pacific Earthquake Engineering Research Center (PEER)13

for PSHA benchmarks, encompassing various seismic source types, including areal, fault, and combined ones. Our findings14

indicate that this novel approach significantly outpaces Riemann sum and traditional MCmethods with computations up to15

>105 and 7.8×103 times faster, respectively, while maintaining an standard deviation of the estimate below 2%. Moreover, we16

show theoretically that optimal IS distributions are equivalent to hazard deaggregation distributions. Empirically, we show17

our approximated optimal IS and the deaggregation distributions are closely alike, e.g., with a Kolmogorov–Smirnovstatistic18

between 0.017 and 0.113. We developed our methodology to have broad applicability in PSHA practices, especially in cases19

requiring extensive computational resources to navigate numerous logic tree scenarios addressing epistemic uncertainty.20
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KEY POINTS

• We introduce an adaptive importance sampling algorithm for Probabilistic Seismic Hazard Analysis (PSHA).

• The proposed algorithm is up to 103 and 105 times more efficient than conventional Monte Carlo and Riemann sum.

• The algorithm also facilitates the straightforward implementation of hazard deaggregation.

Supplemental Material

INTRODUCTION21

Probabilistic Seismic Hazard Analysis (PSHA) has become a foundational method for determining seismic design levels and22

conducting regional seismic risk analyses since its first inception (Cornell, 1968; U. S. Nuclear Regulatory Commission, 2007;23

McGuire, 2008; ASCE, 2022). The development of PSHAwas driven by the necessity for a probabilistic framework to quantify24

seismic hazards, acknowledging the unpredictable nature of earthquake location,magnitudes, and groundmotion intensities25

(Esteva, 1967; Cornell, 1968). In PSHA, earthquake location,magnitude, and groundmotions are treated as randomvariables,26

facilitating the computation of annual exceedance probabilities at various ground motion intensities. Integrating hazard27

with fragility curves further enables to determine the annual probabilities of structural failures, thereby underscoring the28

methodology’s critical role in risk assessment (Kennedy et al., 1980; Ceferino et al., 2020; Silva et al., 2020; Baker et al., 2021;29

Papadopoulos and Bazzurro, 2021; Arora and Ceferino, 2023).30

Since we cannot solve PSHA analytically due to the complexity in seismic source and ground motion models, numerous31

researchers have developed computer softwares for PSHA computation (Cornell, 1968; McGuire, 1976; Field et al., 2003;32

Ordaz et al., 2013; Pagani et al., 2014). According to the PSHA computer code verification project (Thomas et al., 2010;33

Hale et al., 2018), existing software primarily employs Riemann summation for numerical integration of PSHA, which par-34

titions the earthquake magnitude, location, and ground motion random variable into fine grids to approximate the actual35

integration. The Riemann summation offers robust PSHA integration with sufficiently dense grids. However, this method36

generally incurs a significant computational load exponentially increasingwith the number of grids and dimensions inmulti-37

dimensional integrations (Philippe and Robert, 2001). Furthermore, the results are highly sensitive to the chosen grid design38

(e.g., the initial point of the grid, grid spacing), leading to significant deviations from one software to another, especially for39

low exceedance probabilities (Thomas et al., 2010; Hale et al., 2018).40

Alternatively, other softwares adopted Monte-Carlo (MC) integration for PSHA (Assatourians and Atkinson, 2013, 2019).41

MC integration calculates exceedance probabilities by generating synthetic earthquake catalogs based on the seismic source42

and groundmotionmodels to evaluate the recurrence of various groundmotion intensities (Musson, 2000). MC integration’s43

primary advantage lies in its straightforward concept compared to Riemann summation, without the need to divide the44

integration range into small slices (Musson, 2000; Dick et al., 2013). Nevertheless, MC framework requires a substantially-45
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long synthetic catalog to accurately estimate hazard from rare events, making the computation costly, especially for large46

ground motions with low exceedance probabilities, e.g., 𝑝 < 10−4 /yr (Kroese et al., 2014).47

Importance Sampling (IS) can offer a solution to this rare event simulation (Tokdar and Kass, 2010). IS was initially intro-48

duced in statistical physics (Hammersley andMorton, 1954) to improve the computational efficiency of rare event simulation49

that would otherwise require a large sample size with conventional MC. IS relies on identifying an appropriate probability50

distribution (“IS distribution”) to explore low-probability spaces effectively. Researchers use the IS distribution to sample51

rare events with a higher likelihood than conventional MC and then correct their frequency through weights, significantly52

reducing the number of samples to compute low probabilities (Robert et al., 1999). However, finding such an appropriate dis-53

tribution can be challenging because there is no optimal sampling density that is universally applicable; rather, the proper54

selection of sampling density depends on the problem being solved. Thus, many numerical experiments are often conducted55

first through trial-and-error to identify IS distributions, which is still computationally expensive.56

In regional seismic risk analysis, numerous studies have been conducted to sample hazard-consistent earthquake ground57

motions (Crowley and Bommer, 2006; Kiremidjian et al., 2007; Jayaram and Baker, 2010; Han and Davidson, 2012; Manzour58

et al., 2016; Christou et al., 2018; Kavvada et al., 2022). Kiremidjian et al. (2007) first introduced IS distributions that samples59

large-magnitude earthquakeswith a high probability to reduce the computational burden of seismic hazard and risk analyses.60

Jayaram and Baker (2010) expanded the approach by defining IS distributions to sample high-intensity ground motions.61

However, Jayaram and Baker (2010) highlighted the computational challenges to identify an effective IS distribution and62

ended up using K-mean clustering to reduce the number of ground motion samples. Rahimi and Mahsuli (2019) applied63

system reliability methods to calculate PSHA. They selected the IS sampling density as the normal distribution centered at64

the "design point" derived from the first- and second-order reliability method.65

To find effective IS distributions, computational statisticians have developed a general framework to find them through66

iterative algorithms denominated “Adaptive Importance Sampling (AIS)” (Bugallo et al., 2017). AIS algorithms leverage the67

fact that the optimal density is proportional to the integrand of the problem to find the sampling density which minimizes68

the variance of the estimate. Various AIS algorithms have been introduced, e.g., cross-entropy based AIS, Vegas, Divonne,69

andMiser (Lepage, 1978; Friedman andWright, 1981; Rubinstein, 1997; Press and Farrar, 1990; Rubinstein andKroese, 2004;70

Bugallo et al., 2017). The application of AIS is widely adopted to solve the integration with high dimensions, such as in the71

field of statistical physics, finance, reliability engineering, and signal processing (Au and Beck, 2001; Kappen and Ruiz, 2016;72

Nieto and Ruiz, 2016; Bugallo et al., 2017). Although previous studies suggest the use of importance sampling (IS) for PSHA73

calculation (Jayaram and Baker, 2010; Rahimi and Mahsuli, 2019), no research has been published regarding the use of AIS74

for this purpose. AIS can provide a general methodology for identifying an appropriate IS distribution for seismic hazards,75

eliminating computationally expensive experiments in the regular IS approach, whose efficiency typically depends on the76

researcher’s experience in the field.77
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Many AIS algorithms have been published (Lepage, 1978; Friedman andWright, 1981; Rubinstein, 1997; Press and Farrar,78

1990; Rubinstein and Kroese, 2004; Bugallo et al., 2017). However, we study the VEGAS algorithm for PSHA to leverage its79

straightforward mathematical framework and fast convergence. Thus, this study introduces a novel computational method80

for PSHA curve calculation using Adaptive Importance Sampling (AIS) VEGAS algorithm (Lepage, 1978, 2021). This paper81

also shows that AIS facilitates hazard deaggregation, the relative contribution of each random variables to the overall hazard82

(Bazzurro and Cornell, 1999), because the optimal IS density resembles the contributions of each variable—magnitude,83

distance, and ground motion—to the hazard. Thus, our proposed framework also enhances the computational efficiency of84

deaggregation estimates, which otherwise would require additional memory resources and complexity in the computer code85

with traditional calculation methods. We explore three key aspects of the method: 1) the enhancement of computational86

efficiency that the AIS algorithm offers over traditional methods; 2) the accuracy of the estimates provided by this approach;87

and 3) the process of obtaining hazard deaggregation through AIS. We present the theoretical background of AIS PSHA and88

validate the method through numerical examples.89

MATHEMATICAL FORMULATION90

Probabilistic Seismic Hazard Analysis (PSHA)91

At a site of interest, the annual frequency of ground motion exceedance from a single source can be calculated as:92

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min

∫
𝑟max

𝑟min

∫
𝑚max

𝑚min

𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) 𝑑𝑚𝑑𝑟𝑑𝜀 (1)

, where 𝜆(𝑋 > 𝑎) is annual rate that ground motion, 𝑋, exceeds the target ground motion intensity, 𝑎, e.g., peak ground93

acceleration. 𝜈 is the annual rate of earthquake occurrence greater than𝑚min from the source,𝑚 is the earthquakemagnitude,94

𝑚min and𝑚max are minimum and maximummagnitudes considered for the source, 𝑟 is the source-to-site distance, 𝑟min and95

𝑟max are minimum and maximum source-site distances, 𝜀 is a standard normal random variable for generating earthquake96

ground motion, 𝜀min and 𝜀max are minimum and maximum 𝜀 (generally, 𝜀max ≥ 6 and 𝜀min ≤−6; Bommer and Abrahamson97

(2006)), 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) is joint probability density function (PDF) of 𝑚, 𝑟, and 𝜀, 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀) is indicator function that98

takes 1 when 𝑋 > 𝑎, otherwise, 0. The ground motion 𝑋 given 𝑀, 𝑅, and ℰ is generally calculated using ground motion99

models (Bozorgnia et al., 2014; Goulet et al., 2021). The models usually assume the log-normal distribution for the ground100

motion given explanatory variables such as 𝑀 and 𝑅. Naturally, these models provide the mean and standard deviation of101

logarithmic ground motion. Thus, the random ground motion is calculated as:102

log𝑋 = 𝜇(𝑀, 𝑅) + ℰ𝜎(𝑀, 𝑅) (2)

, where 𝜇 and 𝜎 are mean and standard deviation of logarithmic earthquake ground motion. By taking exponential on both103

sides of Eq. (2), the ground motion 𝑋 can be calculated as104
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𝑋 = 𝑒𝜇(𝑀,𝑅)+ℰ𝜎(𝑀,𝑅)

If we assume that the groundmotion random variable 𝜀 is independent with respect to the𝑚 and 𝑟 (McGuire, 1995), Eq. (1)105

can be modified as106

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min

∫
𝑟max

𝑟min

∫
𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝑒)𝑓ℰ(𝜀)𝑓𝑀,𝑅(𝑚, 𝑟) 𝑑𝑚𝑑𝑟𝑑𝜀

= 𝜈 ∫
𝜀max

𝜀min

∫
𝑅max

𝑅min

∫
𝑀max

𝑀min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝑒)𝑓ℰ(𝜀)𝑓𝑅|𝑀(𝑟|𝑚)𝑓𝑀(𝑚) 𝑑𝑚𝑑𝑟𝑑𝜀 (3)

, where𝑓𝑀(𝑚),𝑓𝑅|𝑀(𝑟|𝑚),𝑓ℰ(𝜀) are PDFof𝑚, 𝑟 given𝑚, and 𝜀. Under point source assumption, the distance 𝑟 andmagnitude107

𝑚 become independent random variables. Thus, the seismic hazard is given by108

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min

∫
𝑟max

𝑟min

∫
𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝜀)𝑓ℰ(𝜀)𝑓𝑅(𝑟)𝑓𝑀(𝑚) 𝑑𝑚𝑑𝑟𝑑𝜀 (4)

The total seismic hazard from multiple seismic sources (e.g., different faults) is the sum of each. Thus,109

Λ(𝑋 > 𝑎) =
𝑛∑

𝑖=1
𝜆𝑖(𝑋 > 𝑎) (5)

, where Λ(𝑋 > 𝑎) is the total annual frequency of exceedance of ground motion, 𝑎, 𝑖 is index for seismic sources, and 𝑛 is the110

total number of seismic sources. Under the assumption of Poisson process, the annual probability of exceedance, 𝜙(𝑋 > 𝑎),111

can be converted from annual frequency of exceedance (Λ; Eq. (5)) as112

𝜙(𝑋 > 𝑎) = 1 − 𝑒−Λ(𝑋>𝑎) (6)

Hazard deaggregation113

We can also deaggregate the total hazard (Eq. (6)) to better understand the earthquakes that contribute most to the hazard.114

Deaggregation is also used to develop the select seismic records (e.g., from the earthquakes that contributemost to the hazard)115

and conduct non-linear time-history analyses for the design of many critical buildings (Bazzurro and Cornell, 1999; U. S.116

Nuclear Regulatory Commission, 2007). Mathematically, deaggregation of the hazard is the joint probability distribution of117

the𝑚, 𝑟, and 𝜀 conditional on different levels of hazards𝑎 to quantify the contributions of each component. The deaggregation118

of PSHA can be formulated using Bayes’ theorem as119
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𝑃(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) =
𝑃(𝑋 > 𝑎 ∩𝑚, 𝑟, 𝜀)

𝑃(𝑋 > 𝑎)

=
𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀)

𝑃(𝑋 > 𝑎)

=
𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀)
∑
𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀)

=
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀)
∑
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀)

(7)

, where 𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀) is the probability of groundmotion𝑋 is greater than 𝑎 given𝑚, 𝑟, and 𝜀, 𝑃(𝑚, 𝑟, 𝜀) is joint probability120

of 𝑚, 𝑟, and 𝜀, and 𝑃(𝑋 > 𝑎) is the total probability that the ground motion is greater than 𝑎, which is is the summation of121

𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑃(𝑚, 𝑟, 𝜀) over all 𝑚, 𝑟, and 𝜀. Note that 𝑃(𝑋 > 𝑎|𝑚, 𝑟, 𝜀) can be expressed as an indicator function, 𝐼(𝑋 >122

𝑎|𝑚, 𝑟, 𝜀), because the probability of ground motion 𝑋 greater than 𝑎 can only be 1 or 0 given𝑚, 𝑟, and 𝜀 (see Eq. (2)).123

By replacing probability mass function, 𝑃(𝑚, 𝑟, 𝜀), with probability density function, 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀), and change the124

summation into integration, Eq. (7) can be expressed as:125

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) =
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

∭ 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)𝑑𝑚𝑑𝑟𝑑𝜀
(8)

By Eq. (1), the denominator of Eq. (8) equals 𝜆∕𝜈. Thus,126

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) = 𝜈 ⋅
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝜆
(9)

This equation shows that the contribution of specific 𝑚, 𝑟, and 𝜀 can be represented by the ratio of the partial sum of the127

given 𝑚, 𝑟, and 𝜀 to the total hazard. Note that 𝜆 and 𝜈 are constant. Thus, the hazard deaggregation, 𝑓(𝑚, 𝑟, 𝜀|𝑥 > 𝑎), is128

proportional to 𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝜀)𝑓(𝑚, 𝑟, 𝜀) :129

𝑓(𝑚, 𝑟, 𝜀|𝑥 > 𝑎) ∝ 𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝜀)𝑓(𝑚, 𝑟, 𝜀)

CURRENT NUMERICAL SOLUTIONS130

The Riemann summation This method computes PSHA curves by summing the areas of partitioned (𝑚, 𝑟, 𝜀) cuboids. The131

Riemann summation for Eq. (1) can be expressed as:132

𝜆(𝑋 > 𝑎) = 𝜈
𝑁𝜀∑

𝑘=1

𝑁𝑟∑

𝑗=1

𝑁𝑚∑

𝑖=1
𝐼(𝑥 > 𝑎|𝑚𝑖, 𝑟𝑗, 𝜀𝑘) 𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑗, 𝜀𝑘)∆𝑚∆𝑟∆𝜀 (10)
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TABLE 1
Comparison of time complexity of various PSHA algorithms

Algorithm 𝑁𝑚 𝑁𝑟 𝑁𝜀 𝑁𝑠 𝑁𝑎

Riemann sum 𝑁 𝑁 𝑁 - 1
Conventional MC 1 1 1 𝑁 1
IS MC 1 1 1 𝑁 1
VEGAS AIS (this study) 1 1 1 𝑁 𝑁

𝑁𝑚, the number of magnitude grids;𝑁𝑟, the number of distance grids;𝑁𝜀, the number of 𝜀 grids;𝑁𝑠, the number of (𝑚, 𝑟, 𝜀)
samples; 𝑁𝑎, the number of ground motion intensity of interest (e.g., 0.1 g)

, where ∆𝑚, ∆𝑟, and ∆𝜀 are grid step size for Riemann sum, 𝑁𝑚, 𝑁𝑟, and 𝑁𝜀 are the total number of grids, satisfying 𝑁𝑥∆𝑥133

= 𝑥max - 𝑥𝑚𝑖𝑛, where 𝑥 = {𝑚, 𝑟, 𝜀}. Note that 𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑗, 𝜀𝑘)∆𝑚∆𝑟∆𝜀 is equivalent to the probability at (𝑚, 𝑟, 𝜀) such that134

|𝑚−𝑚𝑖| < ∆𝑚∕2, |𝑟 − 𝑟𝑗| < ∆𝑟∕2, and |𝜀 − 𝜀𝑘| < ∆𝜀∕2. The accuracy of the Riemann summation depends on the grid size.135

Utilizing finer grids enhances the accuracy of the summation. However, the computation time is inversely proportional to the136

grid step size and thus proportional to the number of grids. For three-dimensional PSHA summation, the computation time137

scales with 𝑁𝑚 ×𝑁𝑟 ×𝑁𝜀 (Table 1). Notably, since the distance PDF (𝑓𝑅(𝑟)) cannot be analytically determined in practice,138

integration often extends over latitude (𝜙), longitude (𝜓), and depth (𝑧), increasing the dimensions from three (𝑚, 𝑟, 𝜀) to139

five (𝑚, 𝜙, 𝜓, 𝑧, 𝜀). Therefore, Riemann summation for seismic hazard becomes even more computationally intensive, a140

phenomenon known as "the curse of dimensionality" due to the exponential increase in computation time with the number141

of dimensions (Novak and Ritter, 1997).142
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Conventional Monte-Carlo (MC) Thismethod simulatesmany synthetic earthquake groundmotions and calculates PSHA143

by assessing the frequency with which ground motion intensities exceed a certain threshold. MC PSHA is computed as144

�̂�(𝑋 > 𝑎) = 𝜈
𝑁

𝑁∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

= 1
𝑇

𝑁∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖) (11)

, where 𝑋𝑖 denotes the simulated ground motions, and𝑁 is the total number of samples.𝑀𝑖, 𝑅𝑖, ℰ𝑖 are random samples from145

𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀), 𝑇 represents the equivalent catalog duration equal to 𝑁∕𝜈. MC PSHA is unbiased because the expectation of146

�̂�(𝑋 > 𝑎) is the same as 𝜆:147

𝐸[�̂�] = 𝐸
⎡
⎢
⎣

𝜈
𝑁

𝑁∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

⎤
⎥
⎦

= 𝜈
𝑁

𝑁∑

𝑖=1
𝐸 [𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)]

= 1
𝑁

𝑁∑

𝑖=1
𝜈 ∫ 𝐼(𝑋𝑖 > 𝑎|𝑚𝑖, 𝑟𝑖, 𝜀𝑖)𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑖, 𝜀𝑖)𝑑𝑚𝑖𝑑𝑟𝑖𝑑𝜀𝑖

= 1
𝑁

𝑁∑

𝑖=1
𝜆(𝑋 > 𝑎)

= 𝜆(𝑋 > 𝑎) (12)

The variance of �̂�, the variability of each MC estimates, can be obtained as follows (Appendix A):148

VAR[�̂�] = 𝜈𝜆− 𝜆2

𝑁 (13)

Note that VAR[�̂�] is always positive since 𝜈 ≥ 𝜆. Then, the standard deviation of the estimate, �̂�, can be obtained as:149

𝜎[�̂�] =
√

𝜈𝜆− 𝜆2
𝑁 (14)

, which provides the absolute uncertainty about MC PSHA estimates. However, we do not want to fully rely on 𝜎[�̂�] to150

compare different exceedance probabilities. For example, suppose we are interested in two different exceedance frequencies,151

𝜆1 = 10−1/yr and 𝜆2 = 10−2/yr when 𝜈 = 1/yr and 𝑁 = 100. Then, the variance (uncertainty) of the two MC estimates, �̂�1152

and �̂�2, are 𝜎1 = 3 × 10−2 and 𝜎2 ∼ 1 × 10−2, respectively (Eq. (14)). Here, someone might argue that uncertainty of �̂�1 MC153

estimate is larger than that of �̂�2 because 𝜎1 is greater than 𝜎2. However, the uncertainty of 𝜆1 should be considered smaller154

than that of 𝜆2 considering the target true value of each estimate. That is, 0.1 ± 0.03 (�̂�1) is better estimate than 0.01 ± 0.01155

(�̂�2). Instead, it is better to use the coefficient of variation, COV, the standard deviation normalized by its mean156
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𝐶𝑂𝑉 =
𝜎[�̂�]
𝐸[�̂�]

=
√

𝜈 − 𝜆
𝑁𝜆

(15)

Smaller COV indicates that the PSHA estimate is more accurate relative to its actual value, e.g., 5% COV means that the157

hazard estimates are within±5% of its true value with a 68% probability, assuming normally distributed MC estimates as per158

the central limit theorem. COV is inversely proportional to the square root of the number of MC samples (𝑁), indicating that159

increasing 𝑁 naturally improves the estimate’s accuracy.160

The target exceedance frequency, 𝜆, also affects theMC accuracy. The lower 𝜆 leads to poor accuracy with fixed𝑁 and 𝜈. It161

is intuitively reasonable that sufficiently long earthquake catalog is required to accurately estimate the event from long return162

period. It is also notable that the variance of MC estimate is proportional to the square root of earthquake occurrence rate,163

𝜈, indicating that MC PSHA is more challenging task in region with higher earthquake activity. This can also be explained164

intuitively. Regions with high seismic activity experience more earthquakes per year than less active areas, therefore, when165

calculating the groundmotion exceedance probability over the same period,more earthquakes need to be considered in these166

active regions.167

An advantage of MC PSHA is that the computational time is dependent on the number of samples 𝑁, circumventing the168

inherent dimensionality problem in Riemann summation (Table 1). In other words, the computation time of MC simulation169

is independent of the number of grids (𝑁𝑚, 𝑁𝑟, and 𝑁𝜀 in Eq. (10)). Therefore, we could utilize fine joint probability mass170

functions formore precise hazard estimationwithout an increase in computational burden. If closed-formprobability density171

functions are available, PSHA can be implementedwithout approximated discretization. Also, the computation time ofMC is172

independent of the number of groundmotions of interest,𝑁𝑎 (Table 1).We can utilize the generated synthetic groundmotion173

catalog to tally the exceedance events for all the ground motions of interest, though we still should repeat the computation174

along with the number of MC samples.175

Conventional MC faces extreme computational challenges for low probabilities because the number of samples required176

to achieve low COVs dramatically increases. We can compute the required number of samples by rearranging Eq. (15):177

𝑁 = 1
(𝐶𝑂𝑉)2

× 𝜈 − 𝜆
𝜆

(16)

For small 𝜆, i.e., 𝜈 >> 𝜆, the Eq. (16) can be approximated as :178

𝑁 ∼ 1
(𝐶𝑂𝑉)2

× 𝜈
𝜆

(17)
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To demonstrate conventional MC’s extreme computational demands, we can calculate 𝑁 for a target annual exceedance179

frequency, 𝜆, of 10−4 per year and a annual earthquake rate 𝜈 = 1/yr, which is typical values in PSHA practice (Coppersmith180

et al., 2014). From Eq. (17), we need 𝑁 ∼ 108 to achieve COV = 1%.181

Importance Sampling (IS) Integration182

IS is a generalization of MC theory. Consider a random variable 𝑥 that follows a probability function, 𝑓𝑋(𝑥). The expected183

value of a function 𝑢(𝑥), denoted as 𝑆, is defined by184

𝑆 = ∫ 𝑢(𝑥)𝑓𝑋(𝑥)𝑑𝑥 (18)

The MC estimate is185

�̂� = 1
𝑁

𝑁∑

𝑖=1
𝑢(𝑋𝑖) (19)

, where 𝑋𝑖 is sampled from 𝑓𝑋(𝑥).186

By introducing an arbitrary probability function, 𝑞𝑋(𝑥), Eq. (18) can be equivalently expressed as187

𝑆 = ∫ 𝑢(𝑥)
𝑓𝑋(𝑥)
𝑞𝑋(𝑥)

𝑞𝑋(𝑥)𝑑𝑥 (20)

We restrict the integration range in Eq. (20) where 𝑓𝑋(𝑥)≠ 0 because 𝑥 such that 𝑓𝑋(𝑥) = 0 does not contribute to the inte-188

gration. Then, 𝑞𝑋(𝑥) can be any distribution with nonzero density in the integration range. Eq. (20) provides important189

implications in MC estimation. We can get the solution to Eq. (18) by estimating the expected value of 𝑢(𝑥)𝑓𝑋(𝑥)∕𝑞𝑋(𝑥)190

where 𝑥 follows the distribution 𝑞𝑋(𝑥). This approach is highly useful in numerical integration, especially when sampling191

from 𝑓𝑋(𝑥) is challenging or the population of 𝑓𝑋(𝑥) is extremely low in the region of importance, e.g., the exceedance of192

PGA greater than 1 g is mostly contributed by the ground motion samples from large magnitude (𝑚) earthquakes occurred193

at close distance (𝑟) with large 𝜀, which all typically correspond to the low probability region.194

The IS MC estimate is:195

�̂� = 1
𝑁

𝑁∑

𝑖=1
𝑢(𝑋𝑖)

𝑓𝑋(𝑋𝑖)
𝑞𝑋(𝑋𝑖)

(21)

, where 𝑋𝑖s are sampled from 𝑞𝑋(𝑥), the proposed (or new) IS sampling density function. If 𝑞𝑋(𝑥) is equal to the original196

distribution, 𝑓𝑋(𝑥), Eq. (21) simplifies to the conventional Monte-Carlo (Eq. (19)). The ratio 𝑓𝑋(𝑥)∕𝑞𝑋(𝑥), known as the197

importance weight (𝑤𝑖), adjusts for the change in sampling distribution.198

IS PSHA Researchers have applied IS to PSHA using different sampling functions (Jayaram and Baker, 2010; Rahimi and199

Mahsuli, 2019). For IS PSHA, Eq. (1) can be reformulated by introducing a new sampling joint density function, 𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)200
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as follows201

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min

∫
𝑟max

𝑟min

∫
𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝑒)
𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)
𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) 𝑑𝑚𝑑𝑟𝑑𝜀 (22)

The IS MC estimator of equation (22) is202

�̂�(𝑋 > 𝑎) = 𝜈
𝑁

𝑁∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖)

𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, 𝐸𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, 𝐸𝑖)

The mean of IS estimator �̂� is also unbiased like conventional MC because203

𝐸𝑞[�̂�] =
𝜈
𝑁

𝑁∑

𝑖=1
𝐸𝑞 [𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

]

= 1
𝑁

𝑁∑

𝑖=1
𝜈 ∫ 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)

𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)
𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)𝑑𝑚𝑑𝑟𝑑𝜀

= 1
𝑁

𝑁∑

𝑖=1
𝜆

= 𝜆 (23)

Also, the variance of the IS PSHA estimates with respect to the true 𝜆 is given by204

VAR[�̂�] = 1
𝑁
⎛
⎜
⎝
𝜈2𝐸

⎡
⎢
⎣
(𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

)
2
⎤
⎥
⎦
− 𝜆2

⎞
⎟
⎠

(24)

Hence, the COV of IS PSHA estimate can be expressed as205

𝐶𝑂𝑉 =

√
√√√√√√

𝜈2𝐸 [(𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑓𝑀,𝑅,ℰ(𝑀𝑖 ,𝑅𝑖 ,ℰ𝑖)

𝑞𝑀,𝑅,ℰ(𝑀𝑖 ,𝑅𝑖 ,ℰ𝑖)
)
2

]− 𝜆2

𝑁𝜆2
(25)

Equivalency of optimal IS density and hazard deaggregation206

From Eq. (24), we can specifically choose a new sampling density 𝑞∗𝑀,𝑅,ℰ that makes VAR[�̂�]=0,207

𝑞∗𝑀,𝑅,ℰ = 𝜈
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖)𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, 𝐸𝑖)

𝜆
(26)

Using 𝑞∗𝑀,𝑅,ℰ, we could compute the true hazard, 𝜆, with only one MC sample because IS MC is unbiased (Eq. (23)) and208

the variance is zero. We call 𝑞∗ the optimal IS density for PSHA calculation.209
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We note that Eq. (26) is exactly the same as Eq. (9), indicating that the optimal density, 𝑞∗, is identical to the hazard210

deaggregation. That is, if we find 𝑞∗, we are able to not only dramatically enhance the computational efficiency of seismic211

hazard estimation but also obtain the hazard deaggregation distributions as a by-product.212

In fact, we can also see this profound relationship between the hazard and deaggregation estimates by rearranging Eq. (9):213

𝜆= 𝜈 ⋅
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎)

Because this identity holds for any values of (𝑚, 𝑟, 𝜀), we can obtain the hazard at ground motion level , 𝑎, with any (𝑚, 𝑟, 𝜀)214

triplet if we know 𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎). The term 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)∕𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) can be interpreted as the importance weight of215

IS, and 𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎), the hazard deaggregation, is the optimal density.216

In existing numerical methods, the deaggregation can be more computationally expensive than the hazard. In Riemann217

sum, we must save each sum element in memory and allocate those elements into appropriate deaggregation bins. Also, in218

conventionalMC, we should save the long synthetic groundmotion catalog with the corresponding (𝑚, 𝑟, 𝜀) triplet to allocate219

those into the proper bins. These operations necessitate significant computational memory and time. Therefore, the property220

that the optimal density resembles the hazard deaggregation can be considered a huge benefit for hazard analysts. IS MC221

with different densities other than 𝑞∗ could also improve the computational efficiency compared to the conventional MC;222

however, it cannot give any information on the hazard deaggregation (Rahimi andMahsuli, 2019; Jayaram and Baker, 2010).223

Though the use of optimal density is amajor benefit in computation of seismic hazard and hazard deaggregation, obtaining224

it is not trivial because 𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖) and 𝜆 in Eq. (26) are unknowns before calculation of PSHA. Thus, we propose a225

new PSHA computation method to find it.226

ADAPTIVE IMPORTANCE SAMPLING PSHA227

In “adaptive” importance sampling (AIS), we iteratively train the IS density to find the optimal one (𝑞∗) by exploring impor-228

tant regions to compute 𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖) and 𝜆 with a reduced number of MC samples. AIS must balance different factors229

in determining how many samples should be used to train optimal IS density. Fewer MC samples can make AIS fail as they230

will not allow us to explore the important regions effectively. On the other hand, many samples can impose large compu-231

tational demands, even larger than those from conventional MC. In AIS, we must also consider computational costs are232

proportional to the number of iterations for convergence. Thus, it is important to select appropriate algorithms that converge233

fast.234

VEGAS Formulation for PSHA VEGAS is a non-parametric adaptive importance sampling (AIS) algorithm that iteratively235

identifies the optimal proposal density, 𝑞∗ (Lepage, 1978, 2021). The algorithm has been developed and widely used in com-236
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putational physics (Kersevan and Richter-Was, 2013; Alwall et al., 2014), and is currently applied to chemistry, astrophysics,237

finance, and medical statistics (Campolieti and Makarov, 2007; Garberoglio and Harvey, 2011; Ray et al., 2011; Sanders,238

2014).239

The VEGAS algorithm is conceptually straightforward and is recognized for its rapid convergence, especially when the240

randomvariables involved are independent (Lepage, 1978, 2021). In PSHA, the variable 𝜀 is always considered an independent241

variable (Eq. (3)). Additionally, the variables𝑚 and 𝑟 are also treated as independent under point source assumption (Eq. (4)).242

Notice, however, that when the finite-fault rupture model, in which the rupture dimension changes with magnitude, is243

adopted,𝑚 and 𝑟 can be correlated, and the distribution of 𝑟 is conditional on the magnitude𝑚. Also, note that the estimate244

remains unbiased in this case, because its calculation is still within the IS framework (Eq. (23)).245

In three-dimensional integration, which is the case of PSHA, VEGAS employs 𝑁3 cuboids that are independently parti-246

tioned. The probability assigned to each cuboid and the total number of partitioned cuboids (𝑁3) are preserved across the247

iteration steps. However, the IS sampling density changes because the algorithm updates the cuboid’s size depending on248

its contribution to the integration. If a cuboid’s contribution is low, its size grows in the next step, lowering its probability249

density. Conversely, when a cuboid’s contribution is high, it shrinks in the following step, elevating the probability density.250

Ideally, when every cuboid’s contribution to the integration becomes identical, we find the proposed optimal density, 𝑞∗, and251

the algorithm is terminated. The framework to find optimal IS densities for PSHA using VEGAS algorithm is explained with252

a simple point seismic source example in the following paragraphs.253

First, we adopt an independently distributed joint probability function as IS density. Note that we could also include254

correlations in the IS density, but such approach would increase computational memory and time demands, e.g., the com-255

putational complexity increases exponentially with each added dimension, i.e., 𝑂(𝑁𝑑) (Lepage, 1978). In contrast, when we256

assume independence, the computational complexity grows linearly with the number of dimensions, i.e., 𝑂(𝑁𝑑), making257

multi-dimensional integration in PSHA exceptionally efficient. Thus,258

𝑞(𝑚, 𝑟, 𝜀) = 𝑞𝑀(𝑚)𝑞𝑅(𝑟)𝑞ℰ(𝜀) (27)

Then, the integration ranges for each variable—𝑚, 𝑟, and 𝜀—are divided into𝑁 grids with the same volume. This division259

is designed to generate cuboids of constant probability:260

𝑀 ∶𝑚𝑖−1 ≤𝑚<𝑚𝑖 (𝑖 = 0, 1, 2, .., 𝑁),∆𝑚𝑖 =𝑚𝑖 −𝑚𝑖−1

𝑅 ∶ 𝑟𝑗−1 ≤ 𝑟 < 𝑟𝑗 (𝑗 = 0, 1, 2, .., 𝑁),∆𝑟𝑗 = 𝑟𝑗 − 𝑟𝑗−1

ℰ ∶ 𝜀𝑘−1 ≤ 𝜀 < 𝜀𝑘 (𝑘 = 0, 1, 2, .., 𝑁),∆𝜀𝑘 = 𝜀𝑘 − 𝜀𝑘−1

(28)
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Figure 1. VEGAS iterations of IS density in our AIS PSHA framework. Example for PSHA at PGA = 0.5 g when the site is located
10 km away from a point seismic source (𝑚min = 5.0, 𝑚max = 8.0, 𝑏-value = 1.0, 𝜈 = 1.0/yr, GMM = Sadigh et al. (1997)). The total
number of MC samples is 2,000, and the number of grids per axis is 10, constituting total 100 rectangles (cuboids in actual three
dimensional PSHA integration). The vertical and horizontal black solid lines are boundaries of the 𝑚 and 𝜀 rectangles, and gray
dots are the MC samples. Starting from the initial same-size 𝑚 and 𝜀 rectangles, their sizes are adjusted depending on the the
contribution of each rectangle to the hazard. The final proposed structure of the rectangles gives a highly concentrated probability
density at 𝑚 ∼ 5 and 𝜀 ∼ 2. Note that the hazard estimates using initialized density, density after the first iteration, and the final
proposed density are 0.0417, 0.0413, and 0.0378, while the true solution is 0.0385

The number of grids, 𝑁, is chosen to be 50 as suggested by Lepage (1978) and because we consider this value makes grids261

sufficiently fine to capture the actual distribution of the optimal density 𝑞∗. The probability for each cuboid from Eq. (28) is262

set to 1∕𝑁3 to ensure that the initial IS density function is uniformly distributed across the entire domain. As a result, the263

initial probability density 𝑞(0) for a specific cuboid is264

𝑞(0)(𝑚𝑖−1 ≤𝑚<𝑚𝑖, 𝑟𝑗−1 ≤ 𝑟 < 𝑟𝑗, 𝜀𝑘−1 ≤ 𝜀 < 𝜀𝑘) = 𝑞(0)𝑀 (𝑚) 𝑞(0)𝑅 (𝑟) 𝑞(0)ℰ (𝜀)

= 1
𝑁∆𝑚𝑖

1
𝑁∆𝑟𝑗

1
𝑁∆𝜀𝑘

Figure 1 illustrates an example of initial partitioning when 𝑁=10. The gray dots in the figure shows an example of MC265

samples from this initial 𝑞0. Note that for easier visualization and understanding, Figure 1 illustrates an example in𝑚-𝜀, the266

two-dimensional space, and not the three-dimensional𝑚, 𝑟, and 𝜀 space.267

Weupdate 𝑞 usingMC samples to ultimatelymake it converge to 𝑞∗ (Eq. (26)). Asmentioned earlier, the size of each cuboid268

is subject to change while the probability of each cuboid remains constant, i.e., probability density changes. This adjustment269

is facilitated through a "subdivision-and-restoration" process (Lepage, 1978). In this process, 𝑖th grid is subdivided into 𝑛𝑖270

sub-grids, with 𝑛𝑖 being proportional to the 𝑖th grid’s contribution to the overall integration, and restored to the original271

number, 𝑁, by merging 𝑁subgrid∕𝑁 consecutive subgrids, where 𝑁subgrid is the total number of sub-grids. Thus, the number272
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of subdivisions at 𝑖th grid is273

𝑛𝑖 =𝑁subgrid ×
⎛
⎜
⎝

𝐻𝑖∆𝑚𝑖
∑

𝑖 𝐻𝑖∆𝑚𝑖

⎞
⎟
⎠
, (𝑖 = 1, 2, ..., 𝑁) (29)

274

𝑛𝑗 =𝑁subgrid ×
⎛
⎜
⎝

𝐻𝑗∆𝑟𝑗
∑

𝑗 𝐻𝑗∆𝑟𝑗

⎞
⎟
⎠
, (𝑗 = 1, 2, ..., 𝑁) (30)

275

𝑛𝑘 =𝑁subgrid ×
⎛
⎜
⎝

𝐻𝑘∆𝜀𝑘
∑

𝑘 𝐻𝑘∆𝜀𝑘

⎞
⎟
⎠
, (𝑘 = 1, 2, ..., 𝑁) (31)

𝑁subgrid should be sufficiently larger than𝑁 to iterate the IS density effectively, especially when the grids’ contributions to276

the hazard from the previous stage are highly heterogeneous. In this study, we chose𝑁subgrid to be 10,000, which is 200 times277

greater than 𝑁 (=50). The second term of Eq. (29)-Eq. (31) represents the portion of each grid’s contribution to the hazard.278

According to Lepage (1978),𝐻𝑖 in Eq. (29) is279

𝐻𝑖 =

√
√√√ ∑

𝑚𝑖−1<𝑀<𝑚𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑟(𝑅)𝑞𝜀(ℰ)

(32)

where280

𝐻(𝑀, 𝑅, ℰ; 𝑎) = 𝐼(𝑋 > 𝑎|𝑀, 𝑅, ℰ)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

Note that 𝐻(𝑀, 𝑅, ℰ; 𝑎) is the integrand of PSHA. Intuitively, 𝐻𝑖 can be considered as the marginalization of the overall281

contribution of the magnitude dimension within the 𝑖th grid. Note that the summation of𝐻2s in Eq. (32) is done over all the282

samples which fall within𝑚𝑖−1 and𝑚𝑖 and the division by 𝑞𝑟 𝑞𝜀 can be considered an adjustment for unevenly distributed 𝑟283

and 𝜀 samples to purely capture the magnitude contribution.284

Similarly,𝐻𝑗 and𝐻𝑘 in Eq. (30) and Eq. (31) can be calculated as285

𝐻𝑗 =

√
√√√ ∑

𝑟𝑖−1<𝑅<𝑟𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑚(𝑀)𝑞𝜀(ℰ)

286

𝐻𝑘 =

√
√√√ ∑

𝜀𝑖−1<ℰ<𝜀𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑟(𝑅)𝑞𝑚(𝑀)

In the early iterations, researchers have noticed numerical instabilities due to the relatively poor information on the inte-287

grand (Lepage, 1978, 2021). However, researchers have also found effective ways to mitigate it through smoothing (Eq. (33))288
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and damping (Eq. (34)).289

𝑑𝑖 ∶=
1

∑
𝑑𝑖
×

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(7𝑑𝑖 + 𝑑𝑖+1)∕8 if 𝑖 = 0

(𝑑𝑖−1 + 6𝑑𝑖 + 𝑑𝑖+1)∕8 if 𝑖 = 1, 2, ..., 𝑁 − 1

(𝑑𝑖−1 + 7𝑑𝑖)∕8 if 𝑖 =𝑁

(33)

, where 𝑑𝑖 is𝐻𝑖∆𝑥𝑖∕
∑

𝑖 𝐻𝑖∆𝑥𝑖, and 𝑥 are𝑚, 𝑟, or 𝜀 in Eq. (29)-(31).290

𝑑𝑖 ∶= (
1 − 𝑑𝑖
ln (1∕𝑑𝑖)

)
𝛼

(34)

, where 𝛼 is learning rate. We used 𝛼 as 1.0 as suggested by Lepage (2021). Through numerical experimenting, we observed291

this value allowed most of the PSHA integration to converge within three iterations (as described later) without causing any292

numerical instabilities.293

Finally, based on calculated 𝑛𝑖, 𝑛𝑗 and 𝑛𝑘 (Eq. (29)-Eq. (31)), the number of grid is restored to the original size, 𝑁, by294

merging 𝑁subgrid∕𝑁 consecutive subgrids. The restored grid is the updated density, 𝑞(1). Figure 1 illustrates this iteration.295

The sizes of the grids are shrunk at 5<𝑚< 6 and 𝜀 ∼ 2, indicating that the high contributions to the hazard on this range296

(Eq. (29)-Eq. (31)) in contrast to other less important regions, e.g., at𝑚> 6.5 and 𝜀 < 1. Note that the probability of each grid297

is preserved so that the number of MC samples inside each grid is almost the same regardless of the grid size.298

The iterative process explained above is repeated until no further improvement is observed in the variance of the hazard299

estimator (Eq. (24)). An example of the grid structure of the final proposed IS density is shown in Figure 1. The final proposed300

density exhibits features which is expected based on intuition. First, the low contribution of 𝜀 less than 0 is understandable.301

This is because the simulated ground motion intensity, using Sadigh et al. (1997), never exceeds the target ground motion of302

0.5 𝑔 at any magnitude, even at 𝑚= 8.0, when 𝜀 is less than 0.1. In addition, the strong contribution of 𝑚 ∼ 5 and 𝜀 ∼ 2.2 to303

the integration makes sense because the simulated ground motion intensity exceeds the target ground motion of 0.5 g when304

𝑚 and 𝜀 reach 5 and 2.2, respectively. The decreasing trend of contribution beyond𝑚 ∼ 5 and 𝜀 ∼ 2.2 can be interpreted as the305

exponential decay in the probability of𝑚 and 𝜀. This result for a simple PSHA example implies that the proposed algorithm306

can be utilized for more complex PSHA integration.307

NUMERICAL EXAMPLES308

We tested our proposed AIS PSHA on the comprehensive benchmark problem sets 1.11 and 2.1 from the PEER PSHA code309

verification project (Hale et al., 2018). For a thorough comparison, we performed numerical computations using four dif-310

ferent algorithms: Riemann sum, conventional Monte Carlo (MC), importance sampling (IS), and adaptive importance311

sampling (AIS) using the VEGAS algorithm. These computations were conducted across various seismic source settings:312
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Figure 2. Seimsic source geometry for the three comprehensive numerical examples to test our AIS PSHA framework.

Figure 3. Benchmark PSHA curves for numerical examples 1 (areal source), 2 (linear fault source), and 3 (combined sources)

1) an areal source (Area1), 2) a fault source (FaultA), and 3) a combination of an areal and two fault sources (Area1, FaultA,313

FaultB). These examples’ geometry and seismic activity parameters are detailed in Figure 2 and Table 2. Figure 3 presents314

the benchmark hazard curves for the examples. The ground motion model from Sadigh et al. (1997) was employed.315

For Areal source 1, a circular-shaped areal source with a 100 km radius is considered (Figure 2). The earthquake activity316

rate of the source, 𝜈(𝑀>𝑚min), is 0.0395/year with 𝑚min and 𝑚max of 5.0 and 6.5, respectively. The earthquake occurrence317

model is doubly-truncated exponential with Gutenberg-Richter 𝑏-value of 0.9. Seismogenic depth is 5 to 10 km from the318

surface, and a point source is assumed.319
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TABLE 2
Seismic source information for comprehensive numerical examples to test our AIS PSHA framework

Area 1 Fault A Fault B

Source Type Area Vertical Fault Vertical Fault
Source Geometry Circle (R=100 km) Line (L = 50 km) Line (L = 85 km)
Earthquake Occurrence Model Exponential Characteristic Characteristic
b-value 0.9 0.9 0.9
Mmin 5.0 5.0 5.0
Mmax 6.5 6.75 7.0
M𝑐ℎ𝑎𝑟 - 6.5 6.75
𝜈(𝑀>𝑀min) (yr−1) 0.0395 - -
slip rate (mm/yr) - 1 2
Seismogenic depth (km) 5-10 0-12 0-12
Rupture type Point Floating rectanglular rupture Floating rectanglular rupture

Faults A and B are vertical fault sources (strike = 90◦E, dip = 90◦) with lengths of 50 and 85 km, respectively. They extend320

from the surface to 12 km depth. The earthquake activity models are chosen to be characteristic (Youngs and Coppersmith,321

1985) with the 𝑏-value of 0.9, and𝑚min is set to be 5.0 for both fault sources. For Fault A, slip rate,𝑀max ,𝑀𝑐ℎ𝑎𝑟 are 1mm/year,322

6.75, and 6.5; and for fault B, they are 2 mm/year, 7.0, and 6.75. In fault sources, ruptures are assumed to be floating inside323

the fault with the rupture dimensions following324

log10(𝐴) = 𝑀 − 4 (35)

log10(𝑊) = 0.5𝑀 − 2.15 (36)

log10(𝐿) = 0.5𝑀 − 1.85 (37)

, where 𝐴 is rupture area in km2,𝑊 is rupture width in km, 𝐿 is rupture length in km, and𝑀 is earthquake magnitude. The325

probability of exceedance at eighteen ground motions (PGA), 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,326

0.7, 0.8, 0.9, and 1.0 g, are estimated.327

For Riemann summation, we followed the calculation procedure specified in the PEER PSHA code verification project328

(Hale et al., 2018). Thus, we used magnitude and source-to-site distance step sizes of 0.01 and 0.1 km, respectively. Note329

that the number of grids of the source-to-site distance distribution (∼ 950) is significantly less than that of source location330

probability, the uniformly distributed probability of event location across the seismic source region, with the spatial and331

depth grid spacing of 0.5 km and 1 km (𝜋×100
2

0.5×0.5
× 6 ≈ 750,000) suggested by Hale et al. (2018). This makes the Riemann sum332

computation ∼ 800 times more efficient. For the ground motion random variable (𝜀), the grid step size was set to 0.01, with333

minimum and maximum values of -6 and 6, respectively, beyond which the PSHA curve shows negligible change even at an334

annual exceedance probability of 10−8 (Bommer and Abrahamson, 2006).335

In the conventional MC approach, we generate a ground motion catalog based on the probability distributions of 𝑚 , 𝑟 ,336

and 𝜀. From this catalog, we calculate the annual exceedance frequency by counting the instances where the ground motion337
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exceeds the specified threshold, as outlined in Eq. (11). This frequency is then converted to an annual exceedance probability338

using Eq. (6).339

For IS, we adopt uniform IS densities across the entire integration range for magnitude, distance, and 𝜀 following Jayaram340

and Baker (2010). This choice ismade due to the absence of prior information regardingwhich integration range significantly341

influence the hazard calculation.342

For our AIS PSHA with the VEGAS algorithm, we set the initial number of grids for𝑚, 𝑟, and 𝜀 to 50 (Eq. (28)). The total343

number of subgrids,𝑁subgrid, is chosen to be 10,000. The learning rate, 𝛼, is fixed at 1.0. Algorithm 1 presents the pseudocode.344

From lines 1 to 5, the generation index 𝑡 is set to be zero, and the sampling density 𝑞 is set to be uniform. Themain algorithm345

loop is from lines 6 to 24. The loop is continued until there is no improvement in the coefficient of variation or there is no346

previous generation (line 6). At line 7, 𝑋𝑚, 𝑋𝑟, 𝑋𝜀 are sampled from the distribution 𝑞(𝑡). Then, the probability �̂� is estimated347

in lines 8-10, and its coefficient of variation is also calculated in line 11. From lines 12 to 23 the sampling function 𝑞(𝑡) is348

updated. The steps are repeated over𝑚, 𝑟, and 𝜀 (lines 12-15). From lines 16 to 20, the contribution of each grid is calculated,349

at line 21, it is smoothed and dampened, and 𝑞(𝑡) is updated by subdivision depending on 𝑑𝑖 and restore the number of grids to350

the original number,𝑁, in line 22. Updated 𝑞(𝑡+1) is obtained by multiplying 𝑞(𝑡+1)𝑚 , 𝑞(𝑡+1)𝑟 , and 𝑞(𝑡+1)𝜀 in line 23, and the while351

loop is ended by increase the generation index 𝑡. When main algorithm loop is terminated, it returns the hazard estimate �̂�352

and proposed optimal density 𝑞 in line 25.353

We assessed the accuracy of conventional MC, IS, and AIS probability estimates through the standard deviation of the354

relative error with respect to the benchmark curve, calculated using the following formula:355

𝜎 =

√
√√√√√ 1

𝑁

𝑁∑

𝑛=1
𝑒2𝑛 −

⎛
⎜
⎝

1
𝑁

𝑁∑

𝑛=1
𝑒𝑛
⎞
⎟
⎠

2

, where 𝑒𝑛 is the relative error of the 𝑛th MC estimate, and 𝑁 is the total number of MC exceedance probability estimates.356

Since MC, IS MC, and VEGAS AIS estimates are unbiased (Eq. (12), Eq. (23)), the sum of 𝑒𝑛 when 𝑁→∞ is theoretically357

zero. The relative error, 𝑒𝑛, is defined as:358

𝑒𝑛 =
𝑝𝑛 − 𝑝𝑟𝑒𝑓
𝑝𝑟𝑒𝑓

, where 𝑝𝑛 is the exceedance probability estimated at 𝑛th MC estimate, and 𝑝𝑟𝑒𝑓 is the benchmark probability.359

The analyses were conducted in a Python 3.11 on an Intel Core i7-13700 2100 MHz processor with 64GB RAM.360

Example 1 : Areal source361

Weconsider the circular area sourcewith the site at the circle’s center in Figure 2. For this example, we showdifferent compu-362

tational performances to conduct PSHA inFigure 4. Our numerical experiments show that computational times and standard363
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Algorithm 1 VEGAS adaptive importance sampling PSHA pseudocode
[Parameters and Functions]

𝑎 Ground motion intensity of interest (e.g., 𝑎 = 0.1 g)
𝑁 Number of grids (e.g., 𝑁 =50)
𝑁subgrid Number of sub-grids (e.g., 𝑁subgrid =10,000)
𝑁𝑠 Number of MC samples (e.g., 𝑁𝑠 = 1,000)

�⃗�𝑚 Magnitude sample vector (�⃗�𝑚,𝑖 = 𝑖th element of �⃗�𝑚)
�⃗�𝑟 Distance sample vector
�⃗�𝜀 Ground motion random variable sample vector
�⃗� [�⃗�𝑚; �⃗�𝑟; �⃗�𝜀]
𝐺(⋅) Ground Motion Model
𝐼(⋅) Indicator function
𝑓𝑋(⋅) Original sampling distribution
𝑞(𝑡)(⋅) Proposed sampling distribution at 𝑡th iteration step
�̂�(𝑡) Hazard estimate at 𝑡th iteration step
COV(𝑡) COV of the hazard estimate at 𝑡th iteration step
𝜖 pre-defined iteration stopping criteria (e.g. COV of 0.02)
𝑖 Index for partitioned grids (𝑖 = 1, 2,⋯ , 𝑁)
𝑗 Index for samples (𝑗 = 1, 2,⋯ , 𝑁𝑠)

[Algorithm]
1: 𝑡 = 0
2: 𝑞(𝑡)𝑚 = U([𝑚min,𝑚max])
3: 𝑞(𝑡)𝑟 = U([𝑟min, 𝑟max])
4: 𝑞(𝑡)𝜀 = U( [𝜀min, 𝜀max])
5: 𝑞(𝑡) = 𝑞(𝑡)𝑚 𝑞(𝑡)𝑟 𝑞(𝑡)𝜀

6: while COV(𝑡−1) < 𝜖 or t<2 :
7: �⃗� = {𝑋𝑚, 𝑋𝑟, 𝑋𝜀}𝑁𝑠 , (𝑋𝑚 ∼ 𝑞

(𝑡)
𝑚 , 𝑋𝑟 ∼ 𝑞𝑟, 𝑋𝜀 ∼ 𝑞

(𝑡)
𝜀 )

8: �⃗�(𝑡) = { 𝐼(𝐺(𝑥)> 𝑎|𝑥)𝑓𝑋(𝑥) | 𝑥 ∈ �⃗� }
9: 𝜆(𝑡) = �⃗�(𝑡)∕𝑞(𝑡)(�⃗�)
10: �̂�(𝑡) =

∑𝑁𝑠
1 𝜆(𝑡)𝑖 ∕𝑁𝑠

11: COV(𝑡) ← Eq. (25)
12: for 𝑢 in [𝑚, 𝑟, 𝜀] :
13: if 𝑢=𝑚 : (𝑣, 𝑤)← (𝑟, 𝜀)
14: if 𝑢= 𝑟 : (𝑣, 𝑤)← (𝜀, 𝑚)
15: if 𝑢= 𝜀 : (𝑣, 𝑤)← (𝑚, 𝑟)
16: for 𝑖 in {1, 2, ..., 𝑁} :
17: for 𝑗 in {1, 2, ..., 𝑁𝑠} :
18: if 𝑢𝑖−1 <𝑋𝑢,𝑗 < 𝑢𝑖 : 𝐻𝑖 ←𝐻𝑖 + (𝐻2

𝑗∕
(
𝑞𝑣(𝑋𝑣,𝑗) ⋅ 𝑞𝑤(𝑋𝑤,𝑗)

)

19: 𝐻𝑖 ←
√
𝐻𝑖

20: 𝑑𝑖 ← ( 𝐻𝑖∆𝑥𝑖
∑
𝑖 𝐻𝑖∆𝑥𝑖

)

21: 𝑑𝑖 ← smoothed, dampened 𝑑𝑖 (Eq. (33), (34))
22: 𝑞(𝑡+1)𝑢 ← subdivision and restoration (Eq. (29)-(31))
23: 𝑞(𝑡+1) ← 𝑞(𝑡+1)𝑚 𝑞(𝑡+1)𝑟 𝑞(𝑡+1)𝜀
24: 𝑡← 𝑡 + 1
25: return �̂�(𝑡−1), 𝑞(𝑡−1)
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deviations (“accuracy”) are linearly correlated in logarithmic scale, in agreement with the theory, because the required num-364

ber of MC samples (linearly proportional to the computational time) is inversely proportional to the square of the standard365

deviation (Eq. (16)).366

While the computation time and standard deviation vary depending on the target ground motion of interest, our results367

show our AIS PSHA generally outperforms the other numerical techniques. AIS PSHA becomes increasingly efficient for368

larger ground motions. At a low target ground motion of 0.05g, the computation time to achieve a 2 % standard deviation369

is 0.01 seconds for AIS, while it takes 0.05 and 0.09 seconds for conventional MC and IS estimates, respectively, indicating370

AIS is 4.8 and 8.5 times faster. However, computational efficiency becomes extreme in high-ground motions. At 1.0 g, the371

computation time to achieve 2 % standard deviation is estimated to be 0.02 seconds for AIS, while it takes 127 and 1.4 seconds372

for conventionalMC and IS estimates. In this case, AIS is 7,800 and 70 times faster than conventionalMC and IS, respectively.373

Also, note that for 2 % standard deviation case, AIS is > 105 faster than Riemann sum. We also note that AIS outperforms IS374

in all ground motion ranges by a factor of 8 to 70 to achieve a 2 % standard deviation. However, this is not always guaranteed375

because AIS takes 𝑡 times more computation time than IS with the same 𝑁 due to the 𝑡 iterations to find the optimal IS376

density. Thus, our findings imply AIS PSHA with the VEGAS algorithm can find (close to) optimal IS density quickly.377

It is also noteworthy that with fixed number of samples (i.e., constant computational burden), AIS’s estimation accuracy is378

quite similar across different target ground motions, while conventional MC’s accuracy decreases sharply for higher ground379

motions (Figure 5). In fact, if the hazard curve is exponential (Marzocchi and Jordan, 2017), we can show conventional MC380

decreases its efficiency also exponentially (Eq. (15)). For example, the error in the hazard curve for 1.0g will increase to 100%381

if it initially was 1 % for 0.001g with exceedance frequency of 0.9/year (when 𝜈 = 1/year). From our numerical experiments,382

we found errors grow from 0 to 5.60 % with 𝑁convMC = 107 MC samples for these ground motions. In contrast, for a similar383

computation time, we found AIS had errors ranging from 0.13 to 0.64 %, for this quite different groundmotion levels (Figure384

5).385

This finding is key for PSHA as the computational bottleneck is at the highest groundmotion intensity. Using conventional386

MC PSHA, the hazard analyst has no choice but to largely increase the number of samples to estimate hazard accurately387

at high ground motions even though such a large number would not be necessary for low ground motions. This makes388

the conventional MC highly inefficient, and consequently, the efficiency of the conventional MC for lower ground motions389

cannot be considered a real advantage for PSHA. AIS PSHA overcomes this problem by adopting different optimal densities390

at different ground motion intensities, making the computational burden to achieve the similar estimation error almost flat391

for any ground motion intensity, as shown in Figure S1. In terms of the accuracy of AIS PSHA, the PEER PSHA verification392

project suggests a strict acceptable error range of 5% for reliable PSHA computation codes. AIS PSHA achieves it with only393

N ∼ 10,000 per ground motion (Figure S1).394
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Another key advantage of our proposed AIS PSHA is the co-production of deaggregation curves at no extra computational395

cost. From Eq. (26), optimal IS densities are theoretically equivalent to hazard deaggregation distributions. We show AIS can396

find close-to-optimal IS densities and thus closely match hazard deaggregation curves. We found the benchmark marginal397

distributions of hazard deaggregation obtained from Riemann sum closely match the iterated IS density from AIS PSHA398

(Figure 6).Weused theKolmogorov-Smirnov (K-S)𝐷 statistic (Kolmogorov, 1933) to quantify their similarities. K-S𝐷 statistic399

measures themaximumdifference between two cumulative distribution functions (CDF). If two CDF are identical,𝐷 is zero,400

and its maximum possible value is one. 𝐷 close to zero indicates that two probability distributions are similar. We calculated401

𝐷 for 𝑚, 𝑟, and 𝜀 at all the ground motion intensities (Figure S2). We found the maximum 𝐷 values for 𝑚, 𝑟, 𝜀 were 0.032,402

0.113, and 0.092, respectively, and theminimumvalueswere 0.019, 0.026, and 0.017, indicating a strong resemblance between403

the two distributions.404

We also estimated the differences of mean values from proposed 𝑞∗ and Riemann sum hazard deaggregation (Figure S2).405

Note that the deaggregation distributions and optimal IS densities vary for different ground motion levels. Thus, their mean406

values also vary. We found the maximum relative differences were 2.5 %, 22.6 %, and 18.5 % for 𝑚, 𝑟, 𝜀, and the minimum407

differences were 1.7 %, 1.0 %, and 4.3 %, respectively. Also, the maximum absolute differences were 0.14, 3.9 km, and 0.17408

for 𝑚, 𝑟, 𝜀, and the minimum differences were 0.09, 0.7 km, and 0.0009. The maximum relative difference in distance (𝑟)409

appears for deaggregation distributions at 0.25 g, where the mean distance obtained from hazard deaggregation is 14.3 km410

and that from 𝑞∗ is 17.5 km. Given that we are typically interested in distance ranges on the order of tens of kilometers (e.g.,411

0-15 km, 15-25 km, 25-50 km, etc.) rather than a single value (U. S. Nuclear Regulatory Commission, 2007), this difference412

is not crucial in determining the controlling earthquake for critical infrastructures. In addition, IS densities still show small413

K-S 𝐷 statistics and their mode almost matches each other, as shown in Figure 6.414

Example 2 : Fault source415

We consider a 50 km-length vertical fault 25 km away from the site (Figure 2). We adopted a finite-dimension rupture model,416

which results in a distance distribution dependent on magnitude. We found this dependency can diminish the performance417

of VEGAS AIS because the VEGAS algorithm assumes the independently distributed random variables. For example, for a418

ground motion intensity of 0.05 g, AIS is slower than conventional MC (Figure 7), while AIS outperformed conventional419

MC at the same ground motion intensity when point source assumption was made, as seen earlier (Figure 4). However, as420

the ground motion intensity increases, the computational gap between the two methods becomes smaller rapidly and closes421

at 0.2g. For higher ground motions, AIS outperforms conventional MC. At 1.0 g, for a 5% standard deviation, AIS, IS, and422

conventional MC take 0.08, 3.7, and 166 seconds, respectively, i.e., AIS MC is 48 and 2,162 times faster.423

We also present the accuracy of AIS PSHA in comparison to the true hazard calculated by Riemann summation (Figure424

S3). We observed AIS PSHA estimates approximate the true hazard curve within an acceptable range (5 % error) when 𝑁425
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Figure 4. Areal Source Example: Standard deviation of the conventional MC (red), IS MC (blue), AIS MC (black) estimates as
functions of computation time at ground motion of 0.05 g, 0.2 g, 0.5 g, and 1.0 g. The computation time required for Riemann
summation is presented as green vertical dashed line. At low ground motion, conventional MC outperforms IS and AIS MC,
however, as the target ground motion increases, the performance of AIS make a dramatic improvement in terms of both accuracy
and computational cost.

is greater than ∼ 50,000. Also, note that though we assumed the independently distributed optimal density, AIS PSHA still426

gives an unbiased hazard estimate that will converge to the true hazard with a sufficiently large number of samples due to427

the nature of the importance sampling (Figure S3 (d)).428

We also compared hazard deaggregation and the iterated IS density (Figure 8) and showed they closely match each other429

even though the distance distribution depends on the magnitude in this case. It is also noteworthy the iterated IS density can430

even reproduce complex densitieswith discontinuities like the large jumpwithinmagnitude distribution (for𝑚=6.25) due to431

the use of a characteristic earthquake occurrence model. The K-S D statistic and mean difference of the two distributions are432

also presented in Figure S4. The maximum values of D in𝑚, 𝑟, and 𝜀 are 0.30, 0.68, and 0.13, respectively, and the minimum433

values are 0.02, 0.31, and 0.04. We found that the largest discrepancies occur in the magnitude distribution, but errors can be434

considered negligible as the mean magnitude difference is within 6 % error. We also note considerable discrepancies in the435

distance distribution shape (see K-S D statistics of Figure S4) as curves with concentrated probabilities in narrow ranges are436
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Figure 5. Standard deviation of MC estimates with the ground motion for conventional (red) MC (𝑁convMC = 107) and AIS (black)
with the similar computation time. The standard deviation of error exponentially increase with the ground motion in conventional
MC, while that of AIS remain constant.

harder to estimate for AIS (Figure 8). However, the mean distance is still within a 5 % error range. The 𝜀 is generally in good437

agreement across all ground motion intensities. We observe higher differences at lower ground motion because the mean 𝜀438

is close to zero. For example, the calculated mean 𝜀 at ground motion intensity of 0.01 g is 0.022 and 0.007, which is not a439

large difference in practice.440

The maximum relative differences in mean values were found to be 6.2 %, 5.3 %, and 129 % for𝑚, 𝑟, 𝜀, and the minimum441

differences were 0.006 %, 3.9 %, and 2.2 %, respectively. Note that the 129 % of 𝜀 case is corresponding the case where the442

mean 𝜀 is close to zero. The relative difference appears to be slightly higher than previous areal source example, however, the443

absolute difference is still remain to be significantly small, the maximum absolute differences were 0.36, 1.3 km, and 0.20 for444

𝑚, 𝑟, 𝜀, and the minimum differences were 0.0004, 1.0 km, and 0.07.445

Example 3 : Combined sources446

In PSHA,we often havemultiple seismic sources.We consider one areal and two fault sources around the site to represent this447

case. This application posits a different mathematical problem than the previous two examples because we must introduce448

an additional variable to formulate AIS.449

First, the probability of earthquake occurrence at 𝑖th seismic source can be defined as:450

𝑃(𝑆 = 𝑖) =
𝜈𝑖

∑𝑁𝑠
𝑖=𝑗 𝜈𝑗

, where 𝑁𝑠 is the number of seismic sources (𝑁𝑠 = 3 in this example), and 𝜈𝑖 is the annual earthquake occurrence rate of 𝑖th451

seismic source. Because the discrete random variables cannot be used in AIS, we define a continuous random variable and452

its corresponding probability density function as453
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Figure 6. Areal Source Example: The convergence of 𝑚, 𝑟, and 𝜀 iterated IS densities density (red) derived in AIS algorithm (N =
100,000) to marginal distributions of hazard deaggregation (black) at ground motion intensities of 0.001 g, 0.01 g, and 0.5 g.

𝑓𝑆(𝑠) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 𝑠 < 0

𝑃(𝑆 = 𝑖) if 𝑖 − 1 ≤ 𝑠 < 𝑖 (𝑖 = 1, 2, ..., 𝑁𝑠),

0 𝑁𝑠 ≤ 𝑠

(38)

𝑓𝑆(𝑠) is a piece-wise constant function where the heights are proportional to the corresponding sources’ earthquake454

occurrence rates. We introduce 𝑓𝑆(𝑠) into the PSHA integration and obtain455
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Figure 7. Fault Source Example: Standard deviation of the conventional MC (red), IS MC (blue), AIS MC (black) estimates as
functions of computation time at ground motion of 0.05 g, 0.2 g, 0.5 g, and 1.0 g.

Λ(𝑋 > 𝑎) =
⎛
⎜
⎝

𝑁𝑠𝑟𝑐∑

𝑖
𝜈𝑖
⎞
⎟
⎠
∫
𝑠
∫
𝜀
∫
𝑅
∫
𝑀
𝐼(𝑥 > 𝑎|𝑠, 𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀|𝑠)𝑓𝑆(𝑠)𝑑𝑚 𝑑𝑟 𝑑𝜀 𝑑𝑠 (39)

, which is the integral version of Eq. (1) and Eq. (5). Solving Eq. (39) posits computational challenges than the single source456

problems because 𝑓𝑆(𝑠) have the large jumps at 𝑖 = 1, 2,… , 𝑁𝑠 − 1. In addition, we introduce additional dependencies in the457

multi-source case because 𝑚 and 𝑟 depend on 𝑠, further diminishing the VEGAS algorithm’s effectiveness. Thus, we test458

two AIS PSHA approaches for this case: 1) full AIS approach utilizing the Eq. (39) and 2) partial AIS approach, which is the459

simple summation of single-source AIS PSHA curves.460

We compared the computational performance of MC, IS, and full and partial AIS (Figure 9). Like the previous examples,461

conventional MC is faster for low ground motions, e.g., 0.05 g, but not high ones. For example, to achieve the 𝜎 of 2 % at a462

ground motion of 0.8 g, conventional MC, IS, and full and partial AIS take 73.8, 10.0, 0.77, and 0.13 seconds, respectively,463

i.e., partial AIS is the most efficient algorithm, ∼ 583, 79, and 6 times faster than conventional MC, uniform IS, and full AIS,464

respectively.465
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Figure 8. Fault Source Example: The convergence of 𝑚, 𝑟, and 𝜀 iterated IS densities density (red) derived in AIS algorithm (N =
1,000,000) to marginal distributions of hazard deaggregation (black) at ground motion intensities of 0.1 g, 0.5 g, and 0.8 g.

As stated earlier, full AIS is less efficient than partial AIS because of the additional dependencies and jumps introduced466

by 𝑓𝑆(𝑠). Figures S5 and S6 present the accuracy of both AIS approaches with different sample sizes. The contrast between467

Figures S5 (c) S6 (c) shows that partial AIS has smaller error than full AIS even with fewer samples (150,000 < 500,000).468

We don’t show the comparison for the partial AIS on ground motions greater than 0.8 g because fault B reaches a numerical469

instability due to its low exceedance probability (< 10−12 /yr) (Figure S5).470
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Figure 9. Combined Sources Example: Standard deviation of the conventional MC (red), IS MC (blue), full AIS MC (black), and
partial AIS MC (gray) estimates as functions of computation time at ground motion of 0.05 g, 0.25 g, 0.4 g, and 0.8 g

CONCLUSION471

We proposed a novel computational framework for PSHA based on an implementation of the VEGAS algorithm. Through472

comprehensive testbeds, we investigated the computational performance of this new approach, covering widely adopted473

source types in PSHA practice: 1) areal source, 2) fault source, and 3) combined sources, including both areal and fault474

sources.475

Wecompared the proposedmethod to three existing computational frameworks: a) Riemann sum,whichhas exponentially476

increasing computational costs for finer grid sizes; b) conventional MC, which requires a substantially long catalog with477

synthetic earthquakes, particularly for large seismic intensities; and c) importance sampling (IS) with simple (uniform) IS478

distributions.479

Our findings indicate that AIS PSHAoutperforms all other computational frameworks. AIS PSHA can dramatically reduce480

computational times by factors up to> 105 compared to traditional Riemann summation. AIS PSHAwas also 103 faster than481
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the conventional MC while maintaining a 2% standard deviation of error. Additionally, AIS PSHA was up to 70 times faster482

than IS PSHA, demonstrating that the VEGAS algorithm can approximate optimal IS distributions quickly and well.483

We showed that AIS PSHA requires a similar computation time for any ground motion, making its application to larger484

ground motions with low probability substantially more efficient than conventional MC. In PSHA practice, the computa-485

tional demands are dominated by large ground motions that need substantially more samples than lower ground motions.486

In contrast, AIS PSHAonly requires a similarly lownumber of samples for all groundmotion levels because it finds optimized487

IS distributions for each.488

We also showed that AIS PSHA finds approximated deaggregation curves at no extra computational cost based on theoret-489

ical insights showing that optimal IS densities are equivalent to deaggregation distributions. We show empirically that the490

hazard deaggregation and iterated IS densities from AIS PSHA are fairly similar by comparing the statistical properties of491

the two distributions, e.g. K-S D statistics < 0.113 and mean values differences of <4.3 %.492

Our study indicated that our AIS PSHA implementation works extremely well for point sources, where the magnitude493

and distance are independent random variables. We also applied the algorithm to problem employing finite-rupture model,494

and it still outperformed the pre-existing algorithms up to by factors of >2,000. It appears to be less effective than point495

source example because it introduces a dependency between themagnitude and distance. Our implementation of the VEGAS496

algorithm uses independent random variables for the IS distribution, thus, making it less effective for the finite-rupture case.497

However, future implementations can also consider other versions of AIS algorithms where the variables are correlated;498

though computational demands for the AIS iteration would increase.499

In the case of combined seismic sources, we proposed two strategies: 1) incorporating the source random variable into the500

AIS PSHA framework and 2) simple summation of AIS PSHA curves for individual sources. Both strategies outperformed501

the traditional methods up to by a factor of ∼ 580. However, the second strategy was more efficient than the first one by a502

factor of 6. The first strategy added dependencies to the seismic hazard distribution, making the VEGAS less effective.503

In sum, AIS can be applied to any PSHA computation, leading us to expect widespread application of the method.504

Specifically, we consider our proposed AIS PSHA to be significantly beneficial for large-scale projects that involve numerous505

logic tree branches and have extreme computational demands.506

DATA AND RESOURCES507

The source code for computing PSHA using the framework explained in this paper is available at508

https://github.com/sehoung/ais_psha. Figures were created using Matplotlib (Hunter, 2007) and Microsoft PowerPoint509

(http://office.microsoft.com; last accessed June 2024).510
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APPENDIX A: VARIANCE OF MONTE-CARLO PSHA ESTIMATE633

The second moment of �̂�, 𝐸[�̂�2], can be expressed as:634

𝐸[�̂�2] = 𝐸
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Note that 𝐼(𝑋𝑖 > 𝑎) is denoted as 𝐼𝑖 for simplicity in the following derivation. The above equation expands as follows:635
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𝐸[�̂�2] = 𝜈2

𝑁2𝐸
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Here, 𝐼2𝑖 is the same as 𝐼𝑖 since 𝐼
2
𝑖 also takes 1 if and only if 𝑋𝑖 is greater than 𝑎. Also, the expectation operator can go inside636

the sum terms as it is a linear operator637
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Here, 𝜈𝐸[𝐼𝑖] is equal to 𝜆. Also, 𝐼𝑖 𝐼𝑗 takes 1 if and only if both 𝑋𝑖 and 𝑋𝑗 exceeds 𝑎. Given that the ground motion samples638

(𝑋𝑖 and 𝑋𝑗) are extracted independently, 𝜈2𝐸[𝐼𝑖𝐼𝑗] is identical to 𝜈𝐸[𝐼𝑖]𝜈𝐸[𝐼𝑗], which is 𝜆2:639

𝐸[�̂�2] = 𝜈
𝑁2

𝑁∑

𝑖
𝜆+ 1

𝑁2

𝑁2−𝑁∑

𝑖≠𝑗
𝜆2

= 𝜈
𝑁2𝑁𝜆+

1
𝑁2 (𝑁

2 −𝑁)𝜆2

= 𝜈𝜆− 𝜆2

𝑁 + 𝜆2

Hence,640

VAR[�̂�] = 𝐸[�̂�2] − 𝐸[�̂�]2

= 𝐸
[
�̂�2
]
− 𝜆2

= 𝜈𝜆− 𝜆2

𝑁 + 𝜆2 − 𝜆2

= 𝜈𝜆− 𝜆2

𝑁

Note that 𝐸[�̂�]2 is the same as 𝜆2 since �̂� is unbiased estimate.641
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𝐸[�̂�2] = 𝐸
⎡
⎢
⎢
⎣

⎛
⎜
⎝

𝜈
𝑁

𝑁∑

𝑖

𝐼(𝑋𝑖 > 𝑎)𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

= 𝜈2

𝑁2𝐸
⎡
⎢
⎢
⎣

⎛
⎜
⎝

𝑁∑

𝑖

𝐼𝑖𝑓𝑖
𝑞𝑖

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

Note that 𝐼(𝑋𝑖 > 𝑎), 𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖), and 𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖) are denoted as 𝐼𝑖, 𝑓𝑖, and 𝑞𝑖 for simplicity in the following643

derivation. As derived in appendix A, the above equation expands as follows:644

𝐸[�̂�2] = 𝜈2

𝑁2𝐸
⎡
⎢
⎣

𝑁∑

𝑖
(
𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

+
𝑁2−𝑁∑

𝑖≠𝑗
(
𝐼𝑖𝑓𝑖
𝑞𝑖

) (
𝐼𝑗𝑓𝑗
𝑞𝑗

)
⎤
⎥
⎦

= 𝜈2

𝑁2

𝑁∑

𝑖
𝐸 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]+
𝜈2

𝑁2

𝑁2−𝑁∑

𝑖≠𝑗
𝐸 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

) (
𝐼𝑗𝑓𝑗
𝑞𝑗

)]

= 𝜈2

𝑁
1
𝑁

𝑁∑

𝑖
𝐸 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]+
1
𝑁2

𝑁2−𝑁∑

𝑖≠𝑗
𝜈𝐸 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)] 𝜈𝐸 [(
𝐼𝑗𝑓𝑗
𝑞𝑗

)]

= 𝜈2

𝑁 𝐸 [𝐸 [(
𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]]+
1
𝑁2 (𝑁

2 −𝑁)𝜆2

= 𝜈2

𝑁 𝐸 [(
𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]−
1
𝑁𝜆2 + 𝜆2

Hence,645

VAR[�̂�] = 𝐸[�̂�2] − 𝐸[�̂�]2

= 𝜈2

𝑁 𝐸 [(
𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]−
1
𝑁𝜆2 + 𝜆2 − 𝜆2

= 1
𝑁 (𝜈2𝐸 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]− 𝜆2)
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