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ABSTRACT4

Probabilistic SeismicHazardAnalysis (PSHA) traditionally relies on two computationally intensive approaches: (a) Riemann5

Sum and (b) conventional Monte Carlo (MC) integration. The former requires fine slices across magnitude, distance, and6

ground motion, and the latter demands extensive synthetic earthquake catalogs. Both approaches become notably resource-7

intensive for low-probability seismic hazards, where achieving a COV of 1% for a 10−4 annual hazard probability may require8

108 MC samples. We introduce Adaptive Importance Sampling (AIS) PSHA, a novel framework to approximate optimal9

importance sampling (IS) distributions and dramatically reduce the number of MC samples to estimate hazards. We evalu-10

ate the efficiency and accuracy of our proposed framework using Pacific Earthquake Engineering Research Center (PEER)11

PSHA benchmarks that cover various seismic sources, including areal, vertical, and dipping faults, as well as combined12

types. Our approach computes seismic hazard up to 3.7×104 and 7.1×103 times faster than Riemann Sum and traditional13

MC methods, respectively, maintaining COVs below 1%. We also propose an enhanced approach with a “smart” AIS PSHA14

variant that leverages the sampling densities from similar ground motion intensities. This variant outperforms even “smart”15

implementations of Riemann Sum with enhanced grid discretizations by a factor of up to 130. Moreover, we demonstrate16

theoretically that optimal IS distributions are equivalent to hazard disaggregation distributions. Empirically, we show the17

approximated optimal IS and the disaggregation distributions are closely alike, e.g., with a Kolmogorov–Smirnov statistic18

between 0.017 and 0.113. This approach is broadly applicable, especially for PSHA cases requiring extensive logic trees and19

epistemic uncertainty.20
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KEY POINTS

• The Adaptive Importance Sampling (AIS) is introduced for fast PSHA computations.

• AIS PSHA is significantly faster than traditional numerical approaches and easily facilitates disaggregation.

• The approach is broadly applicable to PSHA involving extensive logic trees.

Supplemental Material

INTRODUCTION21

Probabilistic Seismic Hazard Analysis (PSHA) has become a foundational method for determining seismic design levels and22

conducting regional seismic risk analyses since its first inception (Cornell, 1968; U. S. Nuclear Regulatory Commission, 2007;23

McGuire, 2008; ASCE, 2022; Kennedy et al., 1980; Ceferino et al., 2020; Silva et al., 2020; Baker et al., 2021; Papadopoulos and24

Bazzurro, 2021; Arora and Ceferino, 2023). Since we cannot solve PSHA analytically due to the complexity in seismic source25

and groundmotionmodels, numerous researchers have developed computer software for PSHA computation (Cornell, 1968;26

McGuire, 1976; Kiremidjian et al., 1982; Field et al., 2003; Ordaz et al., 2013; Pagani et al., 2014). The existing software pri-27

marily employs Riemann Sum for numerical integration of PSHA (Thomas et al., 2010; Hale et al., 2018). The Riemann Sum28

offers robust PSHA integration with sufficiently dense grids. However, this method generally incurs a significant computa-29

tional load exponentially increasing with the number of grids and dimensions in multi-dimensional integrations (Philippe30

and Robert, 2001). Furthermore, the results are highly sensitive to the chosen grid design, especially for low exceedance31

probabilities (Thomas et al., 2010; Hale et al., 2018). Alternatively, other software adopted Monte-Carlo (MC) integration32

for PSHA (Assatourians and Atkinson, 2013, 2019). MC integration calculates exceedance probabilities by generating ran-33

dom synthetic earthquake catalogs (Musson, 2000). MC’s primary advantage lies in its straightforward concept compared to34

Riemann Sum (Musson, 2000; Dick et al., 2013). Nevertheless, MC framework requires a substantially-long synthetic catalog35

to accurately estimate hazards from rare events, especially for low exceedance probabilities, e.g., 𝑝 < 10−4 /yr (Kroese et al.,36

2014).37

Importance Sampling (IS) can offer a solution to this rare event simulation (Tokdar and Kass, 2010). IS was initially intro-38

duced in statistical physics (Hammersley andMorton, 1954) to improve the computational efficiency of rare event simulation.39

IS relies on identifying an appropriate probability distribution (“IS distribution”) to explore low-probability spaces effectively.40

Researchers use the IS distribution to sample rare events with a higher likelihood than conventional MC and then correct41

their frequency through weights, significantly reducing the number of samples to compute low probabilities (Robert et al.,42

1999). However, finding such an appropriate distribution can be challenging because the distribution differs for each problem43

being solved. Thus,many numerical experiments are often conducted first through trial-and-error to identify IS distributions,44

which is still computationally expensive.45
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In regional seismic risk analysis, numerous studies have been conducted to sample hazard-consistent earthquake ground46

motions (Crowley and Bommer, 2006; Kiremidjian et al., 2007; Jayaram and Baker, 2010; Han and Davidson, 2012; Manzour47

et al., 2016; Christou et al., 2018; Kavvada et al., 2022). Kiremidjian et al. (2007) first introduced IS distributions that sample48

large-magnitude earthquakeswith a high probability to reduce the computational burden of seismic hazard and risk analyses.49

Jayaram and Baker (2010) expanded the approach by defining IS distributions to sample high-intensity ground motions.50

However, Jayaram and Baker (2010) highlighted the computational challenges to identify an effective IS distribution and51

ended up using K-mean clustering to reduce the number of ground motion samples. Rahimi and Mahsuli (2019) applied52

the IS sampling density as the normal distribution centered at the “design point” derived from the first- and second-order53

reliability method to PSHA computation.54

To find effective IS distributions, computational statisticians have developed a general framework to find them through55

iterative algorithms denominated “Adaptive Importance Sampling (AIS)” (Bugallo et al., 2017). Various AIS algorithms56

have been introduced, e.g., cross-entropy based AIS, Vegas, Divonne, and Miser (Lepage, 1978; Friedman and Wright, 1981;57

Rubinstein, 1997; Press and Farrar, 1990; Rubinstein and Kroese, 2004; Bugallo et al., 2017). The application of AIS is widely58

adopted to solve the integration with high dimensions, such as in the field of statistical physics, finance, reliability engi-59

neering, and signal processing (Au and Beck, 2001; Kappen and Ruiz, 2016; Nieto and Ruiz, 2016; Bugallo et al., 2017).60

Although previous studies suggest the use of IS for PSHA calculation (Jayaram and Baker, 2010; Rahimi andMahsuli, 2019),61

no research has been published regarding the use of AIS for this purpose. AIS can provide a general methodology for identi-62

fying an appropriate IS distribution for seismic hazards, eliminating computationally expensive experiments in the regular63

IS approach, whose efficiency typically depends on the researcher’s experience in the field.64

Among various AIS algorithms (Lepage, 1978; Friedman and Wright, 1981; Rubinstein, 1997; Press and Farrar, 1990;65

Rubinstein and Kroese, 2004; Bugallo et al., 2017), in this study, we apply the VEGAS algorithm for PSHA to leverage its66

straightforward mathematical framework and fast convergence. Thus, this study introduces a novel computational method67

for PSHA curve calculation using the AIS VEGAS algorithm (Lepage, 1978, 2021). This paper also shows that AIS facilitates68

hazard disaggregation, the relative contribution of each random variable to the overall hazard (Bazzurro and Cornell, 1999).69

We explore three key aspects of the method: 1) the enhancement of computational efficiency and accuracy that the AIS70

algorithm offers over traditional methods; 2) the process of obtaining hazard disaggregation through AIS; and 3) the presen-71

tation of “smart” AIS to further improve the performance of the algorithm. We present the theoretical background of AIS72

PSHA and validate the method through numerical examples.73

MATHEMATICAL FORMULATION74

Probabilistic Seismic Hazard Analysis (PSHA)75

At a site of interest, the annual rate of ground motion exceedance from a single source can be calculated as:76
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𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min
∫

𝑟max

𝑟min
∫

𝑚max

𝑚min

𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) 𝑑𝑚𝑑𝑟𝑑𝜀 (1)

, where 𝜆(𝑋 > 𝑎) is the annual rate that ground motion, 𝑋, exceeds the target ground motion intensity, 𝑎, e.g., peak ground77

acceleration. 𝜈 is the annual rate of earthquake occurrence with magnitude greater than 𝑚min from the source, 𝑀 is the78

earthquake magnitude,𝑚min and𝑚max are minimum and maximummagnitudes considered for the source, 𝑅 is the source-79

to-site distance, 𝑟min and 𝑟max are minimum and maximum source-site distances, ℰ is a standard normal random variable80

for generating earthquake ground motion, 𝜀min and 𝜀max are ℰ’s minimum and maximum values for PSHA computations81

(generally, 𝜀max ≥ 6 and 𝜀min ≤−6; Bommer and Abrahamson (2006)), 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) is joint probability density function82

(PDF) of𝑀, 𝑅, and ℰ, 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀) is the indicator function that takes 1 when 𝑋 > 𝑎, otherwise, 0. The ground motion 𝑋83

given𝑀,𝑅, and ℰ is generally calculated using groundmotionmodels (Bozorgnia et al., 2014; Goulet et al., 2021). Themodels84

usually assume the log-normal distribution for the ground motion given explanatory variables such as𝑀 and 𝑅. Naturally,85

these models provide the mean and standard deviation of logarithmic ground motion. Thus, the random ground motion is86

calculated as:87

log𝑋 = 𝜇(𝑀, 𝑅) + ℰ𝜎(𝑀, 𝑅) (2)

, where 𝜇 and 𝜎 are the mean and standard deviation of logarithmic earthquake ground motion.88

If we assume that the ground motion random variable ℰ is independent with respect to the 𝑀 and 𝑅 (McGuire, 1995),89

Eq. (1) can be modified as90

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min
∫

𝑟max

𝑟min
∫

𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝜀)𝑓ℰ(𝜀)𝑓𝑅|𝑀(𝑟|𝑚)𝑓𝑀(𝑚) 𝑑𝑚𝑑𝑟𝑑𝜀 (3)

, where 𝑓𝑀(𝑚), 𝑓𝑅|𝑀(𝑟|𝑚), 𝑓ℰ(𝜀) are PDF of𝑀, 𝑅 given𝑀, and ℰ. Under the point source assumption, the distance 𝑅 and91

magnitude𝑀 become independent random variables. Thus, the seismic hazard is given by92

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min
∫

𝑟max

𝑟min
∫

𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝜀)𝑓ℰ(𝜀)𝑓𝑅(𝑟)𝑓𝑀(𝑚) 𝑑𝑚𝑑𝑟𝑑𝜀 (4)

The total seismic hazard frommultiple seismic sources (e.g., different faults) is the sumof each,Λ(𝑋 > 𝑎) =∑𝑛𝑠
𝑖=1 𝜆𝑖(𝑋 > 𝑎),93

where Λ(𝑋 > 𝑎) is the total annual rate of exceedance of ground motion, 𝑎, 𝑖 is index for seismic sources, and 𝑛𝑠 is the94

total number of seismic sources. Under the assumption of the Poisson process, the annual probability of exceedance can be95

converted from the annual rate of exceedance by 1 − 𝑒−Λ(𝑋>𝑎).96
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Hazard disaggregation97

We can also disaggregate the hazard to better understand the earthquakes that contribute most to the hazard. Disaggregation98

is also used to select the input seismic records and conduct non-linear time-history analyses for the design of many critical99

buildings (Bazzurro and Cornell, 1999; U. S. Nuclear Regulatory Commission, 2007). Mathematically, disaggregation of the100

hazard is the joint probability distribution of the 𝑀, 𝑅, and ℰ conditional on different levels of hazards 𝑎 to quantify the101

contributions of each component. The disaggregation of PSHA can be formulated using Bayes’ theorem as102

𝑃(𝑀, 𝑅, ℰ|𝑋 > 𝑎) = 𝑃(𝑋 > 𝑎 ∩𝑀, 𝑅, ℰ)
𝑃(𝑋 > 𝑎)

= 𝐼(𝑋 > 𝑎|𝑀, 𝑅, ℰ)𝑃(𝑀, 𝑅, ℰ)
∑

𝑀
∑

𝑅
∑

ℰ 𝐼(𝑋 > 𝑎|𝑀, 𝑅, ℰ)𝑃(𝑀, 𝑅, ℰ)
(5)

, where𝑃(𝑋 > 𝑎|𝑀, 𝑅, ℰ) is the probability of groundmotion𝑋 is greater than𝑎 given𝑀,𝑅, andℰ,𝑃(𝑀, 𝑅, ℰ) is joint probabil-103

ity of𝑀, 𝑅, and ℰ, and 𝑃(𝑋 > 𝑎) is the total probability that the ground motion is greater than 𝑎, which is∑𝑀
∑

𝑅
∑

ℰ 𝑃(𝑋 >104

𝑎|𝑀, 𝑅, ℰ)𝑃(𝑀, 𝑅, ℰ). Note that 𝑃(𝑋 > 𝑎|𝑀, 𝑅, ℰ) can be expressed as an indicator function, 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀), because the105

probability of ground motion 𝑋 greater than 𝑎 can only be 1 or 0 given𝑚, 𝑟, and 𝜀 (see Eq. (2)).106

By replacing probability mass function, 𝑃(𝑀, 𝑅, ℰ), with probability density function, 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀), and changing the107

summation into integration, Eq. (5) can be expressed as:108

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) =
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

∭ 𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)𝑑𝑚𝑑𝑟𝑑𝜀
(6)

By Eq. (1), the denominator of Eq. (6) equals 𝜆∕𝜈. Thus,109

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) = 𝜈 ⋅
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝜆 (7)

CURRENT NUMERICAL SOLUTIONS110

The Riemann Sum This method computes PSHA curves by summing the areas of partitioned (𝑚, 𝑟, 𝜀) cuboids. The111

Riemann Sum for Eq. (1) can be expressed as:112

𝜆(𝑋 > 𝑎) = 𝜈
𝑁𝜀∑

𝑘=1

𝑁𝑟∑

𝑗=1

𝑁𝑚∑

𝑖=1
𝐼(𝑥 > 𝑎|𝑚𝑖, 𝑟𝑗, 𝜀𝑘) 𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑗, 𝜀𝑘)∆𝑚∆𝑟∆𝜀 (8)

, where ∆𝑚, ∆𝑟, and ∆𝜀 are grid step size for Riemann Sum, 𝑁𝑚, 𝑁𝑟, and 𝑁𝜀 are the total number of grids, satisfying 𝑁𝑥∆𝑥113

= 𝑥max - 𝑥𝑚𝑖𝑛, where 𝑥 = {𝑚, 𝑟, 𝜀}. Note that 𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑗, 𝜀𝑘)∆𝑚∆𝑟∆𝜀 is equivalent to the probability at (𝑚, 𝑟, 𝜀) such that114

|𝑚−𝑚𝑖|< ∆𝑚∕2, |𝑟 − 𝑟𝑗|< ∆𝑟∕2, and |𝜀 − 𝜀𝑘|< ∆𝜀∕2. The accuracy of the Riemann Sum depends on the grid size. Utilizing115

finer grids enhances the accuracy of the summation. However, the computation time is inversely proportional to the grid step116
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TABLE 1
Comparison of time complexity of various PSHA algorithms

Algorithm 𝑁𝑚 𝑁𝑟 𝑁𝜀 𝑁𝑠 𝑁𝑎

Riemann Sum 𝑁 𝑁 𝑁 (1∗) - 1
Conventional MC 1 1 1 𝑁 1
IS MC 1 1 1 𝑁 1
VEGAS AIS (this study) 1 1 1 𝑁 𝑁 (<𝑁†)

𝑁𝑚, the number of magnitude grids;𝑁𝑟, the number of distance grids;𝑁𝜀, the number of 𝜀 grids;𝑁𝑠, the number of (𝑚, 𝑟, 𝜀)
samples; 𝑁𝑎, the number of ground motion intensity of interest (e.g., 0.1 g)
∗ when Eq. (26) is used
† when “smart” AIS is used
size and thus proportional to the number of grids. For three-dimensional PSHA summation, the computation time scaleswith117

𝑁𝑚 ×𝑁𝑟 ×𝑁𝜀 (Table 1). Notably, since the distance PDF (𝑓𝑅(𝑟)) cannot be analytically determined in practice, integration118

often extends over latitude (𝜙), longitude (𝜓), and depth (𝑧), increasing the dimensions from three (𝑚, 𝑟, 𝜀) to five (𝑚, 𝜙, 𝜓,119

𝑧, 𝜀). Therefore, the Riemann Sum for seismic hazard becomes evenmore computationally intensive, a phenomenon known120

as "the curse of dimensionality" due to the exponential increase in computation time with the number of dimensions (Novak121

and Ritter, 1997).122
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Conventional Monte-Carlo (MC) Thismethod simulatesmany synthetic earthquake groundmotions and calculates PSHA123

by assessing the frequency with which ground motion intensities exceed a certain threshold. MC PSHA is computed as124

�̂�(𝑋 > 𝑎) = 𝜈
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

= 1
𝑇

𝑁𝑠∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖) (9)

, where𝑋𝑖 denotes the simulated groundmotions, and𝑁𝑠 is the total number of samples.𝑀𝑖, 𝑅𝑖, ℰ𝑖 are random samples from125

𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀), 𝑇 represents the equivalent catalog duration equal to 𝑁𝑠∕𝜈. MC PSHA is unbiased, i.e., the expectation of126

�̂�(𝑋 > 𝑎) is the same as 𝜆, and the variance of �̂�, VAR[�̂�], is (𝜈𝜆− 𝜆2)∕𝑁𝑠 (see Appendix A for derivation). Note that VAR[�̂�]127

is always positive since 𝜈 ≥ 𝜆. The coefficient of variation, COV, a widely used metric to estimate relative uncertainty with128

respect to the mean, is:129

𝐶𝑂𝑉 =

√
VAR[�̂�]

𝐸[�̂�]
=
√

𝜈 − 𝜆
𝑁𝑠𝜆

(10)

COV is inversely proportional to the square root of the number of MC samples (𝑁𝑠), indicating that increasing 𝑁𝑠 naturally130

improves the estimate’s accuracy. The target exceedance rate, 𝜆, also affects the MC accuracy. The lower 𝜆 leads to poor131

accuracy with fixed𝑁𝑠 and 𝜈. Thus, a sufficiently long earthquake catalog is required to accurately estimate the event from a132

long return period. It is also notable that COV is increasing with earthquake occurrence rate, 𝜈, indicating that MC PSHA is133

a more challenging task in regions with higher earthquake activity. This can also be explained intuitively. Regions with high134

seismic activity experience more earthquakes per year than less active areas; therefore, when calculating the ground motion135

exceedance probability over the same period, more earthquakes need to be considered in these active regions.136

In MC PSHA, each realization of the ground motion can be leveraged to compute hazard estimates at different intensity137

levels. An advantage of MC PSHA is that the computational time is dependent on the number of samples𝑁𝑠, circumventing138

the inherent dimensionality problem in Riemann Sum (Table 1). In other words, the computation time of MC simulation139

is independent of the number of grids (𝑁𝑚, 𝑁𝑟, and 𝑁𝜀 in Eq. (8)). Therefore, we could utilize fine joint probability mass140

functions formore precise hazard estimationwithout an increase in computational burden. If closed-formprobability density141

functions are available, PSHA can be implemented without approximated discretization.142

Conventional MC faces extreme computational challenges for low probabilities because the number of samples required143

to achieve low COVs dramatically increases. We can compute the required number of samples by rearranging Eq. (10):144

𝑁𝑠 =
1

(𝐶𝑂𝑉)2
× 𝜈 − 𝜆

𝜆 (11)
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For small 𝜆, i.e., 𝜈 >> 𝜆, the Eq. (11) can be approximated as 𝑁𝑠 ∼
1

(𝐶𝑂𝑉)2
× 𝜈

𝜆
. To demonstrate conventional MC’s extreme145

computational demands, we can calculate 𝑁𝑠 for a target annual exceedance rate, 𝜆, of 10−4 per year and an annual earth-146

quake rate 𝜈 = 1/yr, which is typical values in PSHA practice (Coppersmith et al., 2014). From Eq. (11), we need 𝑁 ∼ 108 to147

achieve COV = 1%.148

Importance Sampling (IS) Integration149

IS is a generalization of MC theory. Consider a random variable 𝑋 that follows a probability density function, 𝑓𝑋(𝑥). The150

expected value of a function 𝑢(𝑥), denoted as 𝑆, is defined by151

𝑆 = ∫ 𝑢(𝑥)𝑓𝑋(𝑥)𝑑𝑥 (12)

The MC estimate is152

�̂� = 1
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝑢(𝑋𝑖) (13)

, where 𝑋𝑖 is sampled from 𝑓𝑋(𝑥).153

By introducing an arbitrary probability density function, 𝑞𝑋(𝑥), Eq. (12) can be equivalently expressed as154

𝑆 = ∫ 𝑢(𝑥)𝑓𝑋(𝑥)
𝑞𝑋(𝑥)

𝑞𝑋(𝑥)𝑑𝑥 (14)

We restrict the integration range in Eq. (14) where 𝑓𝑋(𝑥)≠ 0 because 𝑥 such that 𝑓𝑋(𝑥) = 0 does not contribute to the inte-155

gration. Then, 𝑞𝑋(𝑥) can be any distribution with nonzero density in the integration range. Eq. (14) provides important156

implications inMCestimation.We can get the solution toEq. (12) by estimating the expected value of𝑢(𝑥)𝑓𝑋(𝑥)∕𝑞𝑋(𝑥)where157

𝑥 follows the distribution 𝑞𝑋(𝑥). This approach is highly useful in numerical integration, especially when sampling from158

𝑓𝑋(𝑥) is challenging or the population of 𝑓𝑋(𝑥) is extremely low in the region of importance. For example, the exceedance159

rate of PGA greater than 1 g is mostly contributed by the ground motion samples from large magnitude (𝑀) earthquakes160

occurred at close distance (𝑅) with large ℰ, which all typically correspond to the low probability region.161

The IS MC estimate is:162

�̂� = 1
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝑢(𝑋𝑖)

𝑓𝑋(𝑋𝑖)
𝑞𝑋(𝑋𝑖)

(15)

, where 𝑋𝑖s are sampled from 𝑞𝑋(𝑥), the proposed (or new) IS sampling density function. If 𝑞𝑋(𝑥) is equal to the original163

distribution, 𝑓𝑋(𝑥), Eq. (15) simplifies to the conventional Monte-Carlo (Eq. (13)). The ratio 𝑓𝑋(𝑥)∕𝑞𝑋(𝑥), known as the164

importance weight (𝑤𝑖), adjusts for the change in sampling distribution.165
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IS PSHA Researchers have applied IS to PSHA using different sampling functions (Jayaram and Baker, 2010; Rahimi and166

Mahsuli, 2019). For IS PSHA, Eq. (1) can be reformulated by introducing a new sampling joint density function, 𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)167

as follows168

𝜆(𝑋 > 𝑎) = 𝜈 ∫
𝜀max

𝜀min
∫

𝑟max

𝑟min
∫

𝑚max

𝑚min

𝐼(𝑥 > 𝑎|𝑚, 𝑟, 𝑒)
𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)
𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) 𝑑𝑚𝑑𝑟𝑑𝜀 (16)

The IS MC estimator of equation (16) is169

�̂�(𝑋 > 𝑎) = 𝜈
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖)

𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, 𝐸𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, 𝐸𝑖)

Themean of IS estimator �̂� is also unbiased like conventional MC, i.e., 𝐸𝑞[�̂�] = 𝜆 (see Appendix B for derivation). Also, the170

variance of the IS PSHA estimates with respect to the true 𝜆 is given by171

VAR[�̂�] = 1
𝑁𝑠

⎛
⎜
⎝
𝜈2𝐸𝑞

⎡
⎢
⎣
(𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

)
2⎤
⎥
⎦
− 𝜆2

⎞
⎟
⎠

(17)

(see Appendix B for derivation). Hence, the COV of IS PSHA estimate can be expressed as172

𝐶𝑂𝑉 =

√
√√√√√√

𝜈2𝐸𝑞 [(𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑓𝑀,𝑅,ℰ(𝑀𝑖 ,𝑅𝑖 ,ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖 ,𝑅𝑖 ,ℰ𝑖)

)
2
]− 𝜆2

𝑁𝑠𝜆2
(18)

Equivalency of optimal IS density and hazard disaggregation173

From Eq. (17), we can specifically choose a new sampling density 𝑞∗𝑀,𝑅,ℰ that makes VAR[�̂�]=0,174

𝑞∗𝑀,𝑅,ℰ = 𝜈
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

𝜆 (19)

Using 𝑞∗𝑀,𝑅,ℰ, we could compute the true hazard, 𝜆, with only one MC sample because IS MC is unbiased and the variance175

is zero. We call 𝑞∗ the optimal IS density for PSHA calculation.176

We note that Eq. (19) is exactly the same as Eq. (7), indicating that the optimal density, 𝑞∗, is identical to the hazard177

disaggregation. That is, if we find 𝑞∗, we are able to not only dramatically enhance the computational efficiency of seismic178

hazard estimation but also obtain the hazard disaggregation distributions as a by-product.179

In fact, we can also see this profound relationship between the hazard and disaggregation estimates by rearranging Eq. (7):180

𝜆 ≡ 𝜈 ⋅
𝐼(𝑋 > 𝑎|𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)

𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎)
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Because this identity holds for any values of (𝑚, 𝑟, 𝜀), we can obtain the hazard at ground motion level, 𝑎, with any (𝑚, 𝑟, 𝜀)181

triplet if we know 𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎). The term 𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀)∕𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎) can be interpreted as the importance weight of182

IS, and 𝑓(𝑚, 𝑟, 𝜀|𝑋 > 𝑎), the hazard disaggregation, is the optimal density. Note that this identity also holds in the “equal”183

hazard case, where the indicator function 𝐼(𝑋 > 𝑎) becomes 𝐼(𝑋 = 𝑎) (or 𝐼(𝑎1 <𝑋 ≤ 𝑎2)).184

The disaggregation can be computationally expensive inmemory usage. In Riemann Sum,wemust save each sum element185

in memory and allocate those elements into appropriate disaggregation bins, though the elements are readily computed in186

the hazard computation process. Also, in conventionalMC,we should save the long synthetic groundmotion catalogwith the187

corresponding (𝑚, 𝑟, 𝜀) triplet to allocate those into the proper bins. These operations necessitate additional computational188

memory and time. Therefore, finding 𝑞∗ could bring significant benefits by simultaneously producing disaggregation and189

hazard curves. However, finding 𝑞∗ is not trivial in current implementations of PSHA because 𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖) and 𝜆 in190

Eq. (19) are unknowns. Thus, we propose a new PSHA computation method to find it.191

ADAPTIVE IMPORTANCE SAMPLING PSHA192

In “adaptive” importance sampling (AIS), we iteratively train the IS density to find the optimal one (𝑞∗) by exploring impor-193

tant regions to compute 𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, 𝐸𝑖) and 𝜆 with a reduced number of MC samples. Regardless of the algorithm used,194

AIS must balance different factors in determining how many samples (𝑁𝑠) should be used to train optimal IS density. If we195

use a small number of samples to update the sampling distribution, we will not explore the important regions effectively,196

making the number of iterations increase. On the other hand, many samples can reduce the number of iterations, however,197

it imposes large computational demands per iteration, making it computationally ineffective. Therefore, it is important to198

select appropriate algorithms that effectively find the important regions and converge fast.199

VEGAS Formulation for PSHA VEGAS is a non-parametric AIS algorithm that iteratively identifies the optimal proposal200

density, 𝑞∗ (Lepage, 1978, 2021). The algorithm has been developed and widely used in computational physics (Kersevan201

and Richter-Was, 2013; Alwall et al., 2014), and is currently applied to chemistry, astrophysics, finance, andmedical statistics202

(Campolieti and Makarov, 2007; Garberoglio and Harvey, 2011; Ray et al., 2011; Sanders, 2014).203

The VEGAS algorithm is conceptually straightforward and is recognized for its rapid convergence, especially when the204

random variables involved are independent (Lepage, 1978, 2021). In PSHA, the variable ℰ is always considered an indepen-205

dent variable (Eq. (3)). Additionally, the variables𝑀 and 𝑅 are also treated as independent under point source assumption206

(Eq. (4)). Notice, however, that when the finite-fault rupture model, in which the rupture dimension changes with magni-207

tude, is adopted,𝑀 and 𝑅 can be correlated, and the distribution of 𝑅 is conditional on the magnitude𝑀. Also, note that the208

estimate remains unbiased in this case, because its calculation is still within the IS framework.209
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In three-dimensional integration, which is the case of PSHA, VEGAS employs 𝑁3 cuboids that are independently parti-210

tioned. The probability assigned to each cuboid and the total number of partitioned cuboids (𝑁3) is preserved across the211

iteration steps. However, the IS sampling density changes because the algorithm updates the cuboid’s size depending on212

its contribution to the integration. If a cuboid’s contribution is low, its size grows in the next step, lowering its probability213

density. Conversely, when a cuboid’s contribution is high, it shrinks in the following step, elevating the probability density.214

Ideally, when every cuboid’s contribution to the integration becomes identical, we find the proposed optimal density, 𝑞∗, and215

the algorithm is terminated. The framework to find optimal IS densities for PSHA using the VEGAS algorithm is illustrated216

with a simple point seismic source example in the following paragraphs.217

First, we adopt an independently distributed joint probability function as IS density, significantly improving the efficiency218

of the iterative updating process in multi-dimensional PSHA integration. Thus, 𝑞𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀) = 𝑞𝑀(𝑚)𝑞𝑅(𝑟)𝑞ℰ(𝜀). Then, the219

integration ranges for each random variable—𝑀, 𝑅, and ℰ—are divided into𝑁 grids with the same volume. This division is220

designed to generate cuboids of constant probability:221

𝑀 ∶𝑚𝑖−1 ≤𝑀<𝑚𝑖 (𝑖 = 0, 1, 2, .., 𝑁),∆𝑚𝑖 =𝑚𝑖 −𝑚𝑖−1

𝑅 ∶ 𝑟𝑗−1 ≤ 𝑅 < 𝑟𝑗 (𝑗 = 0, 1, 2, .., 𝑁),∆𝑟𝑗 = 𝑟𝑗 − 𝑟𝑗−1

ℰ ∶ 𝜀𝑘−1 ≤ℰ < 𝜀𝑘 (𝑘 = 0, 1, 2, .., 𝑁),∆𝜀𝑘 = 𝜀𝑘 − 𝜀𝑘−1

(20)

The number of grids, 𝑁, is chosen to be 50 as suggested by Lepage (1978) and because we consider this value makes grids222

sufficiently fine to capture the actual distribution of the optimal density 𝑞∗. The probability for each cuboid from Eq. (20) is223

set to 1∕𝑁3 to ensure that the initial IS density function is uniformly distributed across the entire domain. As a result, the224

initial probability density 𝑞(0) for a specific cuboid is225

𝑞(0)(𝑚𝑖−1 ≤𝑀<𝑚𝑖, 𝑟𝑗−1 ≤ 𝑅 < 𝑟𝑗, 𝜀𝑘−1 ≤ℰ < 𝜀𝑘) = 𝑞(0)𝑀 (𝑀) 𝑞(0)𝑅 (𝑅) 𝑞(0)ℰ (ℰ)

= 1
𝑁∆𝑚𝑖

1
𝑁∆𝑟𝑗

1
𝑁∆𝜀𝑘

Figure 1 illustrates an example of initial partitioningwhen𝑁=10. The gray dots in the figure show an example ofMC samples226

from this initial 𝑞0. Note that for easier visualization and understanding, Figure 1 illustrates an example in 𝑚-𝜀, the two-227

dimensional space, and not the three-dimensional𝑚, 𝑟, and 𝜀 space.228

We update 𝑞 using MC samples (𝑀, 𝑅, ℰ) to ultimately make it converge to 𝑞∗ (Eq. (19)). As mentioned earlier, the size229

of each cuboid is subject to change while the probability of each cuboid remains constant, i.e., probability density changes.230

This adjustment is facilitated through a "subdivision-and-restoration" process (Lepage, 1978). In this process, each VEGAS231

grid is first subdivided into sub-grids given the total number of sub-grids (𝑁subgrid). Since𝑁subgrid should be sufficiently larger232

than 𝑁 to iterate the IS density effectively, we chose 𝑁subgrid to be 10,000, which is 200 times greater than 𝑁 (=50). At each233
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Figure 1. VEGAS iterations of IS density in our AIS PSHA framework. Example for PSHA at PGA = 0.5 g when the site is located
10 km away from a point seismic source (𝑚min = 5.0, 𝑚max = 8.0, 𝑏-value = 1.0, 𝜈 = 1.0/yr, Ground Motion Model (GMM) = Sadigh
et al. (1997)). The total number of MC samples is 2,000, and the number of grids per axis is 10, constituting a total of 100
rectangles (cuboids in actual three-dimensional PSHA integration). The vertical and horizontal black solid lines are boundaries of
the 𝑚 and 𝜀 rectangles, and gray dots are the MC samples. Starting from the initial same-size 𝑚 and 𝜀 rectangles, their sizes are
adjusted depending on the contribution of each rectangle to the hazard. The final proposed structure of the rectangles gives a
highly concentrated probability density at 𝑚 ∼ 5 and 𝜀 ∼ 2. Note that the hazard estimates using initialized density, density after the
first iteration, and the final proposed density are 0.0417, 0.0413, and 0.0378, while the true solution is 0.0385.

VEGAS grid, the number of sub-grids is proportional to each grid’s contribution to the overall integration, 𝑑𝑖:234

𝑑𝑖 =
𝐻𝑖∆𝑥𝑖

∑
𝑖 𝐻𝑖∆𝑥𝑖

(21)

,where𝐻𝑖 in𝑚 axis is (Lepage, 1978):235

𝐻𝑖,𝑚 =
√
√√√ ∑

𝑚𝑖−1<𝑀<𝑚𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑅(𝑅)𝑞ℰ(ℰ)

(22)

, where 𝐻(𝑀, 𝑅, ℰ; 𝑎) is the integrand of PSHA, 𝐼(𝑋 > 𝑎|𝑀, 𝑅, ℰ)𝑓𝑀,𝑅,ℰ(𝑀, 𝑅, ℰ). Intuitively, 𝐻𝑖 can be considered as the236

marginalization of the overall contribution of the magnitude dimension within the 𝑖th grid. Note that the summation of237

𝐻2s in Eq. (22) is done over all the samples which fall within 𝑚𝑖−1 and 𝑚𝑖 and the division by 𝑞𝑅 𝑞ℰ can be considered an238

adjustment for unevenly distributed 𝑅 and ℰ samples to purely capture the magnitude contribution.239

Similarly,𝐻𝑖 in 𝑟 and 𝜀 axes can be calculated as240

𝐻𝑖,𝑟 =
√
√√√ ∑

𝑟𝑖−1<𝑅<𝑟𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑀(𝑀)𝑞ℰ(ℰ)

241
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𝐻𝑖,𝜀 =
√
√√√ ∑

𝜀𝑖−1<ℰ<𝜀𝑖

𝐻2(𝑀, 𝑅, ℰ; 𝑎)
𝑞𝑅(𝑅)𝑞𝑀(𝑀)

After the sub-division of each VEGAS grid with the numbers proportional to 𝑑𝑖, the total number of grids is restored to the242

original number, 𝑁, by merging 𝑁subgrid∕𝑁 consecutive subgrids. The restored grid is the updated density, 𝑞(1). The iterative243

process described above is repeated until no further changes occur in 𝑑𝑖 (Eq. (17)).244

In the early iterations, researchers have noticed numerical instabilities due to the relatively poor information on the inte-245

grand (Lepage, 1978, 2021). However, researchers have also found effective ways to mitigate it through smoothing (Eq. (23))246

and damping (Eq. (24)). The smoothed and damped contributions at 𝑖th VEGAS grid, 𝑑𝑠 and 𝑑𝑑, are calculated as:247

𝑑𝑠 ∶=
1∑ 𝑑𝑖

×

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(7𝑑𝑖 + 𝑑𝑖+1)∕8 if 𝑖 = 0

(𝑑𝑖−1 + 6𝑑𝑖 + 𝑑𝑖+1)∕8 if 𝑖 = 1, 2, ..., 𝑁 − 1

(𝑑𝑖−1 + 7𝑑𝑖)∕8 if 𝑖 =𝑁

(23)

248

𝑑𝑑 ∶= (
1 − 𝑑𝑠
ln (1∕𝑑𝑠)

)
𝛼

(24)

, where 𝛼 is learning rate. We used 𝛼 as 1.0 as suggested by Lepage (2021). Through numerical experimenting, we observed249

this value allowed most of the PSHA integration to converge within three iterations without causing any numerical250

instabilities.251

This VEGAS iteration process is illustrated in Figure 1. The sizes of the grids are shrunk at 5<𝑚< 6 and 𝜀 ∼ 2, indicating252

that the high contributions to the hazard on this range (𝑑𝑖) in contrast to other less important regions, e.g., at 𝑚> 6.5 and253

𝜀 < 1. Note that the probability of each grid is preserved so that the number of MC samples inside each grid is almost the254

same regardless of the grid size. The final proposed density exhibits features that are expected based on intuition. First, the255

low contribution of 𝜀 less than 0 is understandable. This is because the simulated groundmotion intensity, using Sadigh et al.256

(1997), never exceeds the target groundmotion of 0.5 𝑔 at anymagnitude, even at𝑚= 8.0, when 𝜀 is less than 0.1. In addition,257

the strong contribution of 𝑚 ∼ 5 and 𝜀 ∼ 2.2 to the integration makes sense because the simulated ground motion intensity258

exceeds the target ground motion of 0.5 g when 𝑚 and 𝜀 reach 5 and 2.2, respectively. The decreasing trend of contribution259

beyond 𝑚 ∼ 5 and 𝜀 ∼ 2.2 can be interpreted as the exponential decay in the probability of 𝑚 and 𝜀. This result for a simple260

PSHA example implies that the proposed algorithm can be utilized for more complex PSHA integration.261

NUMERICAL EXAMPLES262

We tested our proposed AIS PSHA using five numerical examples. For examples 1 to 3, we utilized benchmark problem sets263

1.11 and 2.1 from the PEER PSHA code verification project (Hale et al., 2018) to validate the method against the verified264
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Figure 2. Seismic source geometry for the numerical examples to test our AIS PSHA framework.

benchmark PSHA curves (Figure 2 (a)-(c)). The examples encompass various seismic source types such as area, fault, and265

combined sources. In Example 4, dipping fault is introduced with widely used model parameters common in PSHA prac-266

tice (Figure 2 (d)). For these Examples, the computational efficiency of AIS PSHA is compared with pre-existing numerical267

solutions such as Riemann Sum, conventional MC, and IS with uniform sampling distribution (Jayaram and Baker, 2010).268

For the accurate Riemann Sum, we followed the procedure of Hale et al. (2018). Finally, in Example 5, we introduced an269

advanced version of AIS, termed “smart” AIS, and tested it against a “smart” Riemann Sum variant that uses a strategic grid270

spacing to solve problem set 1.10 of Hale et al. (2018) (Figure 2 (e)).271

For all the examples, the probability of exceedance at eighteen ground motions (PGA), 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3,272

0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, and 1.0 g, are estimated. Each example’s model parameters are detailed in Table S1,273

and their benchmark hazard curves are shown in Figure 3. The analyses were conducted in Python 3.11 on an Intel Core274

i7-13700 2100 MHz processor with 64GB RAM.275
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Figure 3. Benchmark PSHA curves for area source 1, linear fault source, combined sources, dipping source, and areal source 2.
The benchmark curves are obtained from either Hale et al. (2018) (for areal source 1, combined sources, and areal source 2) or
calculation by the authors (linear fault source and dipping source).

Example 1: Areal source276

We consider the circular area source with the site at the circle’s center (Figure 2). We solved the PSHA using Riemann277

Sum, conventional MC, uniform IS, and AIS, and show their performance (Figure 4; see Figure S2 for the results on the278

other ground motion levels). Our numerical experiments show that computational times and COV (“accuracy”) are linearly279

correlated in logarithmic scale, in agreement with the theory (Eq. (11)).280

While the computation time and COV vary depending on the target ground motion of interest, our results show our AIS281

PSHAgenerally outperforms the other numerical techniques. At a low target groundmotion of 0.05g, the computation time to282

achieve a 1%COV, i.e., 95% of the hazard estimates beingwithin 2% error range, is 0.04 seconds forAIS,while it takes 0.20 and283

0.39 seconds for conventionalMC and IS estimates, respectively, indicating AIS is 4.4 and 8.7 times faster. The computational284

efficiency becomes extreme at higher groundmotions. At 0.3 g, which corresponds to the exceedance probability of∼ 10−4/yr,285

the computation time to achieve 1 % COV is estimated to be 0.06 seconds for AIS, while it takes 7.14 and 1.81 seconds for286

conventional MC and IS estimates. In this case, AIS is 111 and 28 times faster than conventional MC and IS, respectively.287

At the extreme ground motion, 1.0 g, the computation time to achieve 1 % COV is estimated to be 0.09 seconds for AIS,288

while it takes 633 and 6.53 seconds for conventional MC and IS estimates. In this case, AIS is 7,128 and 73 times faster than289

conventional MC and IS, respectively. Also, for the 1 % COV case, AIS is ∼ 3.7 × 104 faster than Riemann Sum. We also note290

that AIS outperforms IS in all ground motion ranges by a factor of 12 to 73 to achieve a 1 % COV. However, this performance291

is not always guaranteed because AIS takes 𝑡 times more computational time than IS with the same𝑁 due to the 𝑡 iterations292
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to find the optimal IS density. Thus, our findings imply that AIS PSHAwith the VEGAS algorithm can find (close to) optimal293

IS density quickly.294

It is also noteworthy that with the fixed number of samples (i.e., constant computational burden), AIS’s estimation accu-295

racy is quite similar across different target ground motions, while conventional MC’s accuracy decreases sharply for higher296

ground motions (Figure 5). According to Eq. (10), COV of MC hazard estimates for the ground motion corresponding to297

10−6/year will increase to 10% if it initially was 1 % for the ground motion corresponding to 10−4/year. From our numerical298

experiments, we found errors grow from 0.54 to 5.60 % with𝑁𝑠 = 107 MC samples for these ground motions (0.3g and 1.0g).299

In contrast, for a similar computation time, we found AIS had errors ranging from 0.51 to 0.67 % for these quite different300

ground motion levels (Figure 5).301

This finding is key for PSHA as the computational bottleneck is at the highest groundmotion intensity. Using conventional302

MC PSHA, the hazard analyst has no choice but to largely increase the number of samples to estimate hazard accurately303

at high ground motions even though such a large number would not be necessary for low ground motions. This makes304

the conventional MC highly inefficient, and consequently, the efficiency of the conventional MC for lower ground motions305

cannot be considered a real advantage for PSHA. AIS PSHA overcomes this problem by adopting different optimal densities306

at different ground motion intensities, making the computational burden to achieve the similar estimation error almost flat307

for any ground motion intensity, as shown in Figure S3. We observed that that AIS PSHA achieves 2.5 % and 1.0 % COVwith308

𝑁𝑠 ∼ 10,000 and 50,000, respectively (Figure S3).309

Another key advantage of our proposed AIS PSHA is the co-production of disaggregation curves at no extra computational310

cost. FromEq. (19), optimal IS densities are theoretically equivalent to hazard disaggregation.We showed that the benchmark311

marginal distributions of hazard disaggregation obtained from Riemann Sum closely match the iterated IS density from AIS312

PSHA (Figure 6; see Figure S4 for the results on the other ground motion levels). We used the Kolmogorov-Smirnov (K-S)313

𝐷 statistic (Kolmogorov, 1933) to quantify their similarities. K-S 𝐷 statistic measures the maximum difference between two314

cumulative distribution functions (CDF):315

𝐷 =max
𝑥

|𝐹(𝑥) −𝑄(𝑥)|

, where 𝑥 is𝑚, 𝑟, or 𝜀,𝐹(𝑥) is themarginal CDF of disaggregation result,𝑄(𝑥) is the CDF of proposed IS density obtained from316

VEGAS. 𝐷 is larger for more dissimilar CDFs, with a maximum possible value of one. Conversely, if two CDFs are identical,317

𝐷 is zero. Thus, 𝐷 close to zero indicates that the two probability distributions are similar. For reference, examples of K-S 𝐷318

statistics are illustrated in Figure S1.319

We calculated 𝐷 for 𝑚, 𝑟, and 𝜀 at all the ground motion intensities (Figure S5). We found the maximum 𝐷 values for320

𝑚, 𝑟, 𝜀 were 0.032, 0.113, and 0.092, respectively, and the minimum values were 0.019, 0.026, and 0.017, indicating a strong321

resemblance between the two distributions.322
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We also estimated the differences between the disaggregation’s mean values from the proposed IS density and Riemann323

Sum (Figure S5). Note that the disaggregation distributions and proposed IS densities vary for different groundmotion levels.324

Thus, their mean values also vary. We found the maximum relative differences were 2.5 %, 22.6 %, and 18.5 % for𝑚, 𝑟, 𝜀, and325

the minimum differences were 1.7 %, 1.0 %, and 4.3 %, respectively. Also, the maximum absolute differences were 0.14, 3.9326

km, and 0.17 for 𝑚, 𝑟, 𝜀, and the minimum differences were 0.09, 0.7 km, and 0.0009. The maximum relative difference in327

distance (𝑟) appears for disaggregation distributions at 0.25 g, where the mean distance obtained from hazard disaggregation328

is 14.3 km and that from the proposed IS density is 17.5 km. Given that we are typically interested in distance ranges on329

the order of tens of kilometers (e.g., 0-15 km, 15-25 km, 25-50 km, etc.) rather than a single value (U. S. Nuclear Regulatory330

Commission, 2007), this difference is not crucial in determining the controlling earthquake for critical infrastructures. In331

addition, IS densities still show small K-S 𝐷 statistics and their mode almost matches each other, as shown in Figure 6.332

Example 2: Fault source333

We consider a 50 km-length vertical fault 25 km away from the site (Figure 2 (b)). We adopted a finite-dimension rupture334

model, which results in a distance distribution dependent on magnitude. We found this dependency diminishes the perfor-335

mance of VEGAS AIS because the VEGAS algorithm assumes the independently distributed random variables. For example,336

for a ground motion intensity of 0.05 g, AIS is slower than conventional MC (Figure S6), while AIS outperformed conven-337

tional MC at the same ground motion intensity when point source assumption was made, as seen earlier. However, as the338

ground motion intensity increases, the computational gap between the two methods becomes smaller rapidly and closes at339

0.2g. For higher ground motions, AIS outperforms conventional MC. At 0.3 g, corresponding to ∼ 10−4 exceedance prob-340

ability, for a 1% COV, AIS, IS, and conventional MC take 0.25, 71, and 0.43 seconds, respectively, i.e., AIS MC is 277 and341

1.7 times faster. At more extreme ground motion (1.0 g), AIS, IS, and conventional MC take 0.25, 96, and 4,294 seconds,342

respectively, i.e., AIS is 390 and 17,448 times faster (Figure 4; see Figure S6 for the results on the other groundmotion levels).343

We observed that AIS PSHA estimates approximate the true hazard curve at 2.5 % and 1.0 % COV when 𝑁𝑠 is ∼ 50,000 and344

300,000, respectively (Figure S7).345

We also compared hazard disaggregation and the iterated IS density (Figure 6; see Figure S8 for the results on the other346

ground motion levels) and showed they closely match each other even though the distance distribution depends on the347

magnitude in this case. It is also noteworthy that the iterated IS density can even reproduce complex densities with disconti-348

nuities like the large jump within magnitude distribution (for𝑚=6.25). The K-S D statistic and mean difference of the two349

distributions are also presented in Figure S9. The maximum values of D in 𝑚, 𝑟, and 𝜀 are 0.30, 0.68, and 0.13, respectively,350

and the minimum values are 0.02, 0.31, and 0.04. We found that the largest discrepancies occur in the magnitude distribu-351

tion, but errors can be considered negligible as the meanmagnitude difference is within 6 % error. We also note considerable352

discrepancies in the distance distribution shape (see K-S D statistics of Figure S9) as curves with concentrated probabilities353
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Figure 4. Example 1-4 (Area (Area1), Vertical fault (FaultA), Combined, and Dipping fault (FaultC) sources example): COV as a
function of computation time using various PSHA numerical solutions at ground motion intensities that correspond to 10−4/yr: 0.3g,
0.3g, 0.35g, and 0.45g for the area, fault, combined, dipping fault sources, respectively, and extreme ground motion intensities:
1.0g (∼10−6/yr), 1.0g (2.62×10−8/yr), 0.8g (3.11×10−6/yr), and 1.0g (2.51×10−6/yr) for area, vertical fault, combined, and dipping
fault sources, respectively. COV of 1% is denoted as dotted horizontal lines. As the target ground motion increases, the
performance of AIS makes a dramatic improvement in terms of both accuracy and computational cost.
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Figure 5. COV of MC estimates with the ground motion for conventional (red) MC (𝑁s, convMC = 107) and AIS (black) with the similar
computation time. The COV of error exponentially increases with the ground motion in conventional MC, while that of AIS remains
constant.

in narrow ranges are harder to estimate for AIS (Figure 6). However, the mean distance is still within a 5 % error range. The354

𝜀 is generally in good agreement across all ground motion intensities. We observe higher differences at lower ground motion355

because the mean 𝜀 is close to zero. For example, the calculated mean 𝜀 at ground motion intensity of 0.01 g is 0.022 and356

0.007, which is not a large difference in practice.357

The maximum relative differences in mean values were found to be 6.2 %, 5.3 %, and 129 % for𝑚, 𝑟, 𝜀, and the minimum358

differences were 0.006 %, 3.9 %, and 2.2 %, respectively. Note that the 129 % of 𝜀 case corresponds to the case where the mean359

𝜀 is close to zero. The relative difference appears to be slightly higher than the previous areal source example, however, the360

absolute difference still remains significantly small; the maximum absolute differences were 0.36, 1.3 km, and 0.20 for𝑚, 𝑟,361

𝜀, and the minimum differences were 0.0004, 1.0 km, and 0.07.362

Example 3: Combined sources363

In PSHA,we often havemultiple seismic sources.We consider one area and two fault sources around the site to represent this364

case. This application posits a different mathematical problem than the previous two examples because we must introduce365

an additional variable to formulate AIS.366

First, the probability of earthquake occurrence at 𝑖th seismic source can be defined as:367

𝑃(𝑆 = 𝑖) = 𝜈𝑖
∑𝑛𝑠

𝑗=1 𝜈𝑗

, where 𝑛𝑠 is the number of seismic sources (𝑛𝑠 = 3 in this example), and 𝜈𝑖 is the annual earthquake occurrence rate of 𝑖th368

seismic source. Because the discrete random variables cannot be used in AIS, we define a continuous random variable and369

its corresponding probability density function as370
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Figure 6. Example 1-4 (Area (Area1), Vertical fault (FaultA), Combined, and Dipping fault (FaultC) sources example): The
convergence of 𝑚, 𝑟, and 𝜀 iterated IS densities (red) derived in AIS algorithm to marginal distributions of hazard disaggregation
(black).

𝑓𝑆(𝑠) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 𝑠 < 0

𝑃(𝑆 = 𝑖) if 𝑖 − 1 ≤ 𝑠 < 𝑖 (𝑖 = 1, 2, ..., 𝑛𝑠),
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𝑓𝑆(𝑠) is a piece-wise constant function where the heights are proportional to the corresponding sources’ earthquake371

occurrence rates. We introduce 𝑓𝑆(𝑠) into the PSHA integration and obtain372

Λ(𝑋 > 𝑎) = (
𝑛𝑠∑

𝑖
𝜈𝑖) ∫

𝑠
∫
𝜀
∫
𝑟
∫
𝑚
𝐼(𝑥 > 𝑎|𝑠, 𝑚, 𝑟, 𝜀)𝑓𝑀,𝑅,ℰ(𝑚, 𝑟, 𝜀|𝑠)𝑓𝑆(𝑠)𝑑𝑚 𝑑𝑟 𝑑𝜀 𝑑𝑠. (25)

Solving Eq. (25) posits computational challenges than the single source problems because 𝑓𝑆(𝑠) have the large jumps at 𝑖 =373

1, 2,… , 𝑛𝑠 − 1, and additional dependencies of𝑚, 𝑟, and 𝑠 are introduced. This could further diminish the VEGAS algorithm’s374

effectiveness. Thus, we test two AIS PSHA approaches for this case: 1) full AIS approach utilizing the Eq. (25) and 2) partial375

AIS approach, which is the simple summation of single-source AIS PSHA curves.376

We compared the computational performance ofMC, IS, and full and partial AIS (Figure 4; see Figure S10 for the results on377

the other groundmotion levels). Like the previous examples, conventional MC is faster for low groundmotions, but not high378

ones. To achieve COV of 1 % at a groundmotion of 0.35 g, corresponding to∼ 1.2× 10−4 annual probability, conventionalMC,379

IS, and full and partial AIS take 8.33, 891, 10.4, and 0.43 seconds, respectively, i.e., partial AIS is the most efficient algorithm,380

∼ 19, 2,087, and 24 times faster than conventional MC, uniform IS, and full AIS, respectively. At more extreme 0.8 g case,381

conventional MC, IS, and full and partial AIS take 295, 49, 3.04, and 0.39 seconds, respectively; partial AIS is ∼ 756, 127, and382

8 times faster than conventional MC, uniform IS, and full AIS, respectively.383

Figures S11 and S12 present the accuracy of bothAIS approacheswith different sample sizes. The contrast between Figures384

S11 (c) S12 (c) shows that partial AIS has smaller error than full AIS even with fewer samples (𝑁𝑠 150,000 < 500,000). For385

partial AIS, it estimates the true hazard curve at 2.5 % and 1.0 % COVwhen𝑁𝑠 is∼ 150,000 and 300,000, respectively (Figure386

S12).387

The hazard disaggregation results, comparedwith the proposed IS density obtained from partial AIS PSHA, are also shown388

in Figure 6 (see Figure S13 for the results on the other groundmotion levels). Similar to the previous examples, the proposed389

IS density effectively captures the complex features of the disaggregation.390

Example 4: Dipping fault source391

We also tested our approach on a dipping fault passing beneath the site and GMM of Abrahamson et al. (2014). AIS also392

performs efficiently for this example (Figure 4; see Figure S14 for the results on the other ground motion levels). To achieve393

a 1% COV at 0.45 g-corresponding to an annual probability of 10−4-AIS is 1.9, 2.4, and 683 times faster than uniform-IS, MC,394

and the Riemann Sum, respectively. At 1.0 g, AIS reaches higher efficiency and runs 4, 50, and 633 times faster than uniform-395

IS, MC, and the Riemann Sum, respectively. A comparison between the proposed IS density and the hazard disaggregation396

is also illustrated in Figure 6. Results for the other ground motion levels are available in Figure S15. Both generally exhibit397

similar trends, however, some differences observed in this example suggest that obtaining the proposed IS density exactly the398

same as the optimal density is a challenging task when dealing with highly correlated (𝑚, 𝑟) distribution. Rather, we observe399
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a trade-off between the accuracy of 𝑚 and 𝜀 densities. As the magnitude (𝑚) IS density gives a higher contribution at large400

magnitudes than the actual disaggregation, the 𝜀 IS density slightly shifted to lower values than the actual disaggregation.401

Although differences are apparent in this example, it is important to note that we employed an extremely fine discretization402

for the comparison. This discrepancy may not be significant when using the coarser grids typically adopted for engineering403

applications (U. S. Nuclear Regulatory Commission, 2007; Petersen et al., 2024).404

Example 5: Smart Riemann Sum versus Smart AIS PSHA405

In the previous sections, we compared the efficiency and accuracy of various numerical solutions with AIS PSHA. Here, we406

extend this comparison by examining the performance of AIS PSHAagainst an advanced variant of Reimann sum, sometimes407

adopted by PSHA software packages to tackle computational burden (Ordaz et al., 2013). For this comparison, we use an408

enhanced version of AIS PSHA that leverages the information from similar ground motions to reduce computational times409

that otherwise would linearly increase with the number of ground motions of interest (𝑁𝑎).410

Smart Riemann Sum The smart Riemann Sum essentially follows the same approach as Eq. (8) but incorporates three411

primary modifications.412

First, the summation over the distance,
∑

𝑟, is replaced by a summation over rupture locations (latitude, longitude, and413

depth),
∑

𝜙
∑

𝜓
∑

𝑧, accounting for the variety of distance metrics used in modern GMMs, such as R𝑟𝑢𝑝, R𝐽𝐵, R𝑥, etc. Second,414

𝐼(⋅) is replaced by𝑃(𝑋 > 𝑎|𝑚, 𝜙, 𝜓, 𝑧), which represents the probability that simulated groundmotion exceeds the pre-defined415

threshold, 𝑎. 𝑃(⋅) can be computed using a pre-computed table of normal distribution CDF or rational Chebyshev approxi-416

mation algorithm (Cody, 1969), significantly reducing the computational burden compared to brute-force integration over 𝜀.417

The third modification involves the use of varying bin sizes in the spatial domain, or a smart-grid. Finer bins are used closer418

to the site, while coarser bins are used at greater distances owing to the reduction in hazard sensitivity to changes in rupture419

location at farther distances. A common strategy for this is logarithmic uniform spacing (Appendix C). Incorporating these420

three modifications results in a revised version of the Riemann Sum PSHA, as shown below:421

𝜆(𝑋 > 𝑎) = 𝜈
𝑁𝑧∑

𝑙=1

𝑁𝜓∑

𝑘=1

𝑁𝜙∑

𝑗=1

𝑁𝑚∑

𝑖=1
𝑃(𝑋 > 𝑎|𝑚𝑖, 𝜙𝑗, 𝜓𝑘, 𝑧𝑙) 𝑓𝑀,Φ,Ψ,𝑍(𝑚𝑖, 𝜙𝑗, 𝜓𝑘, 𝑧𝑙)∆𝑚∆𝜙𝑗(𝑟)∆𝜓𝑘(𝑟)∆𝑧 (26)

Smart AIS PSHA The AIS PSHA approach presented earlier uses a uniform distribution as the initial IS density. With the422

smart AIS PSHA, however, we compute the hazard sequentially from the lowest to the highest ground motion levels. Thus,423

we can utilize the iterated IS density obtained at a previous ground motion intensity as the initial IS density for the next424

(slightly higher) ground motion, e.g., approximated 𝑞∗ for the hazard rate at 0.2g as initial IS density for 0.3g. While this425

approach cannot be applied at the lowest ground motion intensity, it is worth noting that determining the optimal density426

at extremely low ground motion levels is a trivial problem as 𝐼(⋅)≡ 1 (Eq. (19)). This smart approach reduces the number427
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of iterations required to approximate the optimal density, further enhancing computational efficiency while maintaining its428

robustness.429

Numerical Example In this section, we compare the efficiency and accuracy of the smart Riemann Sum, (naive) AIS, and430

the smart AIS using PSHA test problem 1.10 from Hale et al. (2018) (Fig. 2 (e)). For this example, the low probability hazard431

is reported to be highly sensitive to the starting point of the Riemann-sum grids since the site only has the sources on one432

side.433

Like naive Riemann Sum, the efficiency of the smart Riemann Sum is dependent on the spatial grid spacing, with a trade-434

off between the computational efficiency and estimation accuracy. To estimate COV of the smart Riemann Sum at a given435

grid structure, we assess the variability of the hazard estimates with respect to the randomized locations within each grid436

cell, as the error metric for the smart Riemann Sum at a given grid structure.437

For spatial grid spacing of smart Riemann Sum, we conducted multiple sensitivity tests and determined that a magnitude438

bin size of 0.1 is sufficiently small. With this magnitude bin size, we evaluated the hazard computation time and COV for439

varying spatial log-uniform bin sizes (𝛿 in Appendix C) of 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, and 0.2.440

Our findings indicate that AIS outperforms the smart Riemann Sum, consistent with previous numerical examples, par-441

ticularly in estimating low-probability hazards (Figure 7; see Figure S16 for the results on the other ground motion levels442

). For example, at 1.0 g (∼ 10−6/year), achieving a COV of 1% requires computation times that are 43 and 130 times faster443

with naive AIS and smart AIS, respectively, compared to the smart Riemann Sum. At lower ground motions (e.g., 0.001 g),444

the Riemann Sum proves to be more efficient than AIS (Figure S16). It is important to note that the Riemann Sum uses the445

same grid spacing for all groundmotion intensities to eliminate the need for repeated groundmotion simulations. Therefore,446

to ensure hazard accuracy across all ground motion levels, it is fair to compare the Riemann Sum based on its worst-case447

performance, i.e., at 1.0 g.448

Here, we note that identifying the “optimal” grid settings for Riemann Sum necessitates many sensitivity analyses based449

on grid size, introducing an additional computational burden, and our comparison does not account for the time required for450

these analyses. On the other hand, AIS allows for error estimation using Eq. (18) to compute the error of AIS hazard without451

running the code repeatedly, which is also one of the benefits of using AIS.452

We also observed that the accuracy of the Riemann Sum saturates at different levels for various ground motion intensities453

(Figure 7). This residual error appears to be from coarse gridding at greater distances inherent in log-uniform spacing. While454

log-uniform spacing significantly enhances the efficiency of the Riemann Sum, it introduces irreducible errors that cannot455

be mitigated. In contrast, with AIS and smart AIS, increasing the number of samples, proportional to the computation time,456

leads to an exponential reduction in error.457
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Figure 7. COV of smart Riemann Sum (black), AIS (red), and smart AIS (blue) hazard estimates as functions of computation time
at ground motions of 0.3 g and 1.0 g, corresponding to ∼10−4/yr and 10−6/yr, respectively.

AIS PSHA: POTENTIAL IMPACT ON PRACTICAL APPLICATION458

We tested the AIS PSHA using various numerical examples; however, there are many more complex cases encountered in459

practice. In this section, we discuss how PSHA model complexity might affect the computational efficiency of AIS PSHA460

from two perspectives: (1) the propagation of epistemic uncertainty and (2) the use of more sophisticated seismic source and461

ground motion models.462

In practice, researchers typically set multiple models and parameters to propagate the epistemic uncertainty of seismic463

hazards by organizing these into a logic-tree structure. The total computation time required to obtain the mean hazard and464

its percentiles is the product of the time needed to compute an individual hazard curve and the number of logic-tree end465

branches. Thus, any reduction in computation time for a single PSHA curve using our proposed approach also proportionally466

reduces the total computation time for calculating the mean and percentiles. This paper also demonstrated how to incorpo-467

rate discrete probability distribution into the AIS framework in the combined sources example. This approach can similarly468

be applied to logic trees to model groups of branches simultaneously. However, readers should note that the full AIS strategy,469

which incorporates all elements into the VEGASAIS framework, may sometimes be less efficient than calculating individual470

hazard curves separately and summing them, the partial AIS strategy, due to the increased dependencies among variables.471

While we could modify the algorithm to account for variable dependencies at an additional computational cost, we consider472

this an exciting area for future research beyond the scope of this study.473

Furthermore,modern seismic sourcemodels are becomingmore complex as knowledge of seismogenic faults accumulates474

(e.g., UCERF3; Field et al. (2014)). These complex models may introduce additional dependencies among variables, which475

could reduce the efficiency of VEGAS AIS, as demonstrated in the floating rupture fault source examples (numerical exam-476

ples 2 and 4). However, the dependency of the distance distribution given magnitude decreases rapidly as the distance to the477

24 • www.bssaonline.org Volume 0 Number 0 Month Year



source grows, implying that𝑚 and 𝑟 can be treated as independent. In these cases, VEGAS AIS remains highly efficient. In478

fact, our examples represent worst-case scenarios in terms of AIS efficiency since the site is located close to the fault.479

Similarly, modern ground motion models (GMMs) can increase the computational burden of PSHA. Recent empirical480

GMMs incorporate numerous additional terms to capture physicalmechanisms not considered before (e.g., directivity effects,481

hanging-wall effects, depth to bedrock), increasing the number of coefficients by a factor of ∼10 (Bommer et al., 2010). In482

some recent PSHA projects, researchers have adopted physics-based ground motion simulations (Milner et al., 2021), fur-483

ther raising computational demands. AIS can mitigate the increased computational burden associated with complex ground484

motion models, as AIS requires fewer ground motion samples than traditional numerical methods. Moreover, the compu-485

tation time for updating the IS density—a unique feature of AIS—remains constant regardless of model complexity (Figure486

S17).487

CONCLUSION488

We proposed a novel computational framework for PSHA based on an implementation of the VEGAS algorithm. Through489

comprehensive testbeds, we investigated the computational performance of this new approach, covering widely adopted490

source types in PSHA practice, including area, vertical and dipping fault, and combined sources.491

We compared the proposed method to three existing computational frameworks: a) Riemann Sum, which has exponen-492

tially increasing computational costs for finer grid sizes; b) conventional MC, which requires a substantially long catalog493

with synthetic earthquakes, particularly for large seismic intensities; and c) importance sampling (IS) with simple (uniform)494

IS distributions.495

Our findings indicate that AIS PSHAoutperforms all other computational frameworks. AIS PSHA can dramatically reduce496

computational times by factors up to ∼ 3.7 × 104 compared to traditional Riemann Sum. AIS PSHA was also 7.1 × 103 faster497

than the conventional MC while maintaining a 1% COV. Additionally, AIS PSHA was up to 70 times faster than IS PSHA,498

demonstrating that the VEGAS algorithm can approximate optimal IS distributions quickly and well.499

We showed that AIS PSHA requires a similar computation time for any ground motion, making its application to larger500

ground motions with low probability substantially more efficient than conventional MC. In PSHA practice, the computa-501

tional demands are dominated by large ground motions that need substantially more samples than lower ground motions.502

In contrast, AIS PSHAonly requires a similarly lownumber of samples for all groundmotion levels because it finds optimized503

IS distributions for each.504

We also showed that AIS PSHA finds approximated disaggregation curves at no extra computational cost based on theo-505

retical insights showing that optimal IS densities are equivalent to disaggregation distributions. We showed empirically that506

the hazard disaggregation and iterated IS densities from AIS PSHA are fairly similar by comparing the statistical properties507

of the two distributions, e.g., K-S D statistics < 0.113 and mean values differences of <4.3 %.508
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Our study indicated that our AIS PSHA implementation works extremely well for point sources, where the magnitude509

and distance are independent random variables. We also applied the algorithm to problems employing the finite-rupture510

model, and it still outperformed the pre-existing algorithms up to by factors of >2,000. It appears to be less effective than511

the point source example because it introduces a dependency between the magnitude and distance. Our implementation of512

the VEGAS algorithm uses independent random variables for the IS distribution, thus making it less effective for the finite-513

rupture case. However, future implementations can also consider other versions of AIS algorithms where the variables are514

correlated; though computational demands for the AIS iteration would increase.515

In the case of combined seismic sources, we proposed two strategies: 1) incorporating the source random variable into the516

AIS PSHA framework and 2) simple summation of AIS PSHA curves for individual sources. Both strategies outperformed517

the traditional methods up to by a factor of ∼ 580. However, the second strategy was more efficient than the first one by a518

factor of 6. The first strategy added dependencies to the seismic hazard distribution, making the VEGAS less effective.519

Additionally, we demonstrated that the algorithm can be even more efficient through a “smart” AIS, which uses the ini-520

tial guess as the proposed IS density from adjacent ground motion intensity. Our findings indicate that this “smart” AIS521

demonstrates up to a 130-fold improvement in efficiency compared to the Riemann Sumwith optimized spatial grid spacing.522

In sum, AIS can be applied to any PSHA computation, leading us to expect widespread application of the method.523

Specifically, we consider our proposed AIS PSHA to be significantly beneficial for large-scale projects that involve numerous524

logic tree branches and have extreme computational demands.525

DATA AND RESOURCES526

The source code for computing PSHA using the framework explained in this paper is available at527

https://github.com/sehoung/ais_psha. Figures were created using Matplotlib (Hunter, 2007) and Microsoft PowerPoint528

(http://office.microsoft.com; last accessed June 2024). Supplemental Material for this article includes one Text, one529

Algorithm, one Table, and 17 Figures: Text S1 presents an explanation of the VEGAS AIS algorithm, Algorithm S1 shows530

the pseudocode of VEGAS AIS PSHA, Table S1 shows model parameters of the numerical examples, Figure S1 shows the531

examples of K-S 𝐷 statistics, Figures S2, S6, S10, S14, and S16 show COV as a function of computation time of various532

numerical solutions, Figures S3, S7, S11, and S12 show the box plot of AIS PSHA estimates, Figures S4, S8, S13, S15 show533

the convergence of iterated IS densities to the hazard disaggregation, Figures S5 and S9 present the K-S D statistic and mean534

difference between hazard disaggregation and the iterated IS density, and Figure S17 presents the contribution of each part535

of VEGAS AIS to the total computation time.536

26 • www.bssaonline.org Volume 0 Number 0 Month Year



DECLARATION OF COMPETING INTERESTS537

The authors have filed a patent application related to the method discussed in this paper. This application is relevant to the538

research presented and could represent a potential financial interest.539

ACKNOWLEDGMENTS540

The authors acknowledge the financial support provided by the Tandon School of Engineering at NewYorkUniversity and theDepartment541

of Civil and Environmental Engineering at the University of California, Berkeley. We extend our gratitude to Ziqi Wang of the Department542

of Civil and Environmental Engineering at UC Berkeley for his insights on the mathematical derivations presented in this study. We also543

thank the associate editor, Dr. Céline Beauval, and the anonymous reviewers for their constructive comments and suggestions on this544

article.545

REFERENCES546

Abrahamson, N. A., W. J. Silva, and R. Kamai (2014). Summary of the ask14 ground motion relation for active crustal regions. Earthquake547

Spectra 30(3), 1025–1055.548

Alwall, J., R. Frederix, S. Frixione, V. Hirschi, F.Maltoni, O.Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, andM. Zaro (2014). The automated549

computation of tree-level and next-to-leading order differential cross sections, and theirmatching to parton shower simulations. Journal550

of High Energy Physics 2014(7), 1–157.551

Arora, P. and L. Ceferino (2023). Probabilistic and machine learning methods for uncertainty quantification in power outage prediction552

due to extreme events. Natural Hazards and Earth System Sciences 23(5), 1665–1683.553

ASCE (2022). MinimumDesignLoads for Buildings andOther Structures. ASCE/SEI Standard 7-22.American Society ofCivil Engineering,554

Reston, Virginia.555

Assatourians, K. and G. M. Atkinson (2013). EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo556

simulation approach. Seismological Research Letters 84(3), 516–524.557

Assatourians, K. and G. M. Atkinson (2019). Implementation of a smoothed-seismicity algorithm in Monte Carlo PSHA software EQHAZ558

and implications for localization of hazard in the Western Canada sedimentary basin. Seismological Research Letters 90(3), 1407–1419.559

Au, S.-K. and J. L. Beck (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic engineering560

mechanics 16(4), 263–277.561

Baker, J., B. Bradley, and P. Stafford (2021). Seismic Hazard and Risk Analysis. Cambridge University Press.562

Bazzurro, P. and C. A. Cornell (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America 89(2), 501–520.563

Bommer, J. J. and N. A. Abrahamson (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard564

estimates? Bulletin of the Seismological Society of America 96(6), 1967–1977.565

Bommer, J. J., J. Douglas, F. Scherbaum, F. Cotton, H. Bungum, and D. Fah (2010). On the selection of ground-motion prediction equations566

for seismic hazard analysis. Seismological Research Letters 81(5), 783–793.567

Bozorgnia, Y., N. A. Abrahamson, L. A. Atik, T. D. Ancheta, G. M. Atkinson, J. W. Baker, A. Baltay, D. M. Boore, K. W. Campbell, B. S.-J.568

Chiou, et al. (2014). Nga-west2 research project. Earthquake Spectra 30(3), 973–987.569

Volume 0 Number 0 Month Year www.bssaonline.org • 27



Bugallo, M. F., V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M. Djuric (2017). Adaptive Importance Sampling: The past, the present,570

and the future. IEEE Signal Processing Magazine 34(4), 60–79.571

Campolieti, G. and R. Makarov (2007). Pricing path-dependent options on state dependent volatility models with a bessel bridge.572

International Journal of Theoretical and Applied Finance 10(1), 51–88.573

Ceferino, L., J. Mitrani-Reiser, A. Kiremidjian, G. Deierlein, and C. Bambarén (2020). Effective plans for hospital system response to574

earthquake emergencies. Nature Communications 11(1), 4325.575

Christou, V., P. Bocchini, M. J. Miranda, and A. Karamlou (2018). Effective sampling of spatially correlated intensity maps using haz-576

ard quantization: Application to seismic events. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil577

Engineering 4(1), 04017035.578

Cody, W. J. (1969). Rational chebyshev approximations for the error function. Mathematics of computation 23(107), 631–637.579

Coppersmith, K., J. Bommer, K. Hanson, J. Unruh, R. Coppersmith, L. Wolf, R. Youngs, A. Rodriguez-Marek, L. Al Atik, G. Toro,580

et al. (2014). Hanford Sitewide Probabilistic Seismic Hazard Analysis. PNNL-23361 Pacific Northwest National Laboratory, Richland581

Washington.582

Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58(5), 1583–1606.583

Crowley, H. and J. J. Bommer (2006). Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bulletin of584

Earthquake Engineering 4, 249–273.585

Dick, J., F. Y. Kuo, and I. H. Sloan (2013). High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica 22, 133–288.586

Field, E. H., R. J. Arrowsmith, G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordan, C. Madden, et al.587

(2014). Uniform california earthquake rupture forecast, version 3 (ucerf3)—the time-independent model. Bulletin of the Seismological588

Society of America 104(3), 1122–1180.589

Field, E.H., T.H. Jordan, andC.A.Cornell (2003). OpenSHA:Adeveloping community-modeling environment for seismic hazard analysis.590

Seismological Research Letters 74(4), 406–419.591

Friedman, J. H. and M. H. Wright (1981). A nested partitioning procedure for numerical multiple integration. ACM Transactions on592

Mathematical Software (TOMS) 7(1), 76–92.593

Garberoglio, G. and A. H. Harvey (2011). Path-integral calculation of the third virial coefficient of quantum gases at low temperatures.594

The Journal of chemical physics 134(13), 134106.595

Goulet, C. A., Y. Bozorgnia, N. Kuehn, L. Al Atik, R. R. Youngs, R. W. Graves, and G. M. Atkinson (2021). Nga-east ground-motion596

characterization model part i: Summary of products and model development. Earthquake Spectra 37(1), 1231–1282.597

Hale, C., N. Abrahamson, and Y. Bozorgnia (2018). Probabilistic Seismic Hazard Analysis Code Verification, PEER report 2018/03, Pacific598

Earthquake Engineering Research Center, Berkeley, CA.599

Hammersley, J.M. andK.W.Morton (1954). PoorMan’sMonteCarlo. Journal of theRoyal Statistical Society: Series B (Methodological) 16(1),600

23–38.601

Han, Y. and R. A. Davidson (2012). Probabilistic seismic hazard analysis for spatially distributed infrastructure. Earthquake Engineering602

& Structural Dynamics 41(15), 2141–2158.603

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science & engineering 9(03), 90–95.604

28 • www.bssaonline.org Volume 0 Number 0 Month Year



Jayaram, N. and J. W. Baker (2010). Efficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessment.605

Earthquake Engineering & Structural Dynamics 39(10), 1109–1131.606

Kappen, H. J. andH. C. Ruiz (2016). Adaptive importance sampling for control and inference. Journal of Statistical Physics 162, 1244–1266.607

Kavvada, I., S. Moura, A. Horvath, and N. Abrahamson (2022). Probabilistic seismic hazard analysis for spatially distributed infrastructure608

considering the correlation of spectral acceleration across spectral periods. Earthquake Spectra 38(2), 1148–1175.609

Kennedy, R. P., C. A. Cornell, R. D. Campbell, S. Kaplan, and H. F. Perla (1980). Probabilistic seismic safety study of an existing nuclear610

power plant. Nuclear Engineering and Design 59(2), 315–338.611

Kersevan, B. P. and E. Richter-Was (2013). The monte carlo event generator acermc versions 2.0 to 3.8 with interfaces to pythia 6.4, herwig612

6.5 and ariadne 4.1. Computer Physics Communications 184(3), 919–985.613

Kiremidjian, A. S., H. C. Shah, and P. L. Sutch (1982). Seismic hazard and uncertainty analysis of honduras. International Journal of Soil614

Dynamics and Earthquake Engineering 1(2), 83–94.615

Kiremidjian, A. S., E. Stergiou, and R. Lee (2007). Issues in seismic risk assessment of transportation networks. Geotechnical, Geological616

and Earthquake Engineering 6, 461–480.617

Kolmogorov, A. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att 4, 89–91.618

Kroese, D. P., T. Brereton, T. Taimre, and Z. I. Botev (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary619

Reviews: Computational Statistics 6(6), 386–392.620

Lepage, G. (1978). A new algorithm for adaptive multidimensional integration. Journal of Computational Physics 27(2), 192–203.621

Lepage, G. P. (2021). Adaptive multidimensional integration: vegas enhanced. Journal of Computational Physics 439, 110386.622

Manzour, H., R. A. Davidson, N. Horspool, and L. K. Nozick (2016). Seismic hazard and loss analysis for spatially distributed infrastructure623

in Christchurch, New Zealand. Earthquake Spectra 32(2), 697–712.624

McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis. USGS Open-File Report 76-67.625

McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bulletin of the Seismological Society626

of America 85(5), 1275–1284.627

McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering and Structural Dynamics 37(3), 329–628

338.629

Milner, K. R., B. E. Shaw, C. A. Goulet, K. B. Richards-Dinger, S. Callaghan, T. H. Jordan, J. H. Dieterich, and E. H. Field (2021).630

Toward physics-based nonergodic psha: A prototype fully deterministic seismic hazard model for southern california. Bulletin of the631

Seismological Society of America 111(2), 898–915.632

Musson, R. M. W. (2000). The use of Monte Carlo simulations for seismic hazard assessment in the UK. Annals of Geophysics 43(1), 1–9.633

Nieto, M. R. and E. Ruiz (2016). Frontiers in var forecasting and backtesting. International Journal of Forecasting 32(2), 475–501.634

Novak, E. and K. Ritter (1997). The curse of dimension and a universal method for numerical integration. InMultivariate approximation635

and splines, pp. 177–187. Springer.636

Ordaz,M., F. Martinelli, V. D’Amico, and C.Meletti (2013). CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment.637

Seismological Research Letters 84(3), 495–504.638

Volume 0 Number 0 Month Year www.bssaonline.org • 29



Ordaz, M., F. Martinelli, V. D’Amico, and C. Meletti (2013). Crisis2008: A flexible tool to perform probabilistic seismic hazard assessment.639

Seismological Research Letters 84(3), 495–504.640

Pagani, M., D. Monelli, G. Weatherill, L. Danciu, H. Crowley, V. Silva, P. Henshaw, L. Butler, M. Nastasi, L. Panzeri, M. Simionato, and641

D. Vigano (2014). Openquake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research642

Letters 85(3), 692–702.643

Papadopoulos, A. N. and P. Bazzurro (2021). Exploring probabilistic seismic risk assessment accounting for seismicity clustering and644

damage accumulation: Part II. Risk analysis. Earthquake Spectra 37(1), 386–408.645

Petersen, M. D., A. M. Shumway, P. M. Powers, E. H. Field, M. P. Moschetti, K. S. Jaiswal, K. R. Milner, S. Rezaeian, A. D. Frankel, A. L.646

Llenos, et al. (2024). The 2023 us 50-state national seismic hazard model: Overview and implications. Earthquake Spectra 40(1), 5–88.647

Philippe, A. and C. P. Robert (2001). Riemann sums for MCMC estimation and convergence monitoring. Statistics and Computing 11(2),648

103–115.649

Press,W.H. andG. R. Farrar (1990). Recursive stratified sampling formultidimensionalmonte carlo integration. Computers in Physics 4(2),650

190–195.651

Rahimi, H. and M. Mahsuli (2019). Structural reliability approach to analysis of probabilistic seismic hazard and its sensitivities. Bulletin652

of Earthquake Engineering 17(3), 1331–1359.653

Ray, J., Y.Marzouk, andH.Najm (2011). A bayesian approach for estimating bioterror attacks frompatient data. Statistics inMedicine 30(2),654

101–126.655

Robert, C. P., G. Casella, and G. Casella (1999). Monte Carlo statistical methods, Volume 2. Springer.656

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European Journal of Operational Research 99(1),657

89–112.658

Rubinstein, R. Y. and D. P. Kroese (2004). The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo659

simulation, and machine learning. Springer.660

Sadigh, K., C. Y. Chang, J. A. Egan, F. Makdisi, and R. R. Youngs (1997). Attenuation relationships for shallow crustal earthquakes based661

on California strong motion data. Seismological Research Letters 68(1), 180–189.662

Sanders, J. L. (2014). Probabilistic model for constraining the galactic potential using tidal streams. Monthly Notices of the Royal663

Astronomical Society 443(1), 423–431.664

Silva, V., D. Amo-Oduro, A. Calderon, C. Costa, J. Dabbeek, V. Despotaki, L.Martins,M. Pagani, A. Rao,M. Simionato, D. Viganò, C. Yepes-665

Estrada, A. Acevedo, H. Crowley, N. Horspool, K. Jaiswal, M. Journeay, and M. Pittore (2020). Development of a global seismic risk666

model. Earthquake Spectra 36, 372–394.667

Thomas, P., I. Wong, and N. A. Abrahamson (2010). Verification of probabilistic seismic hazard analysis computer programs. PEER Report668

2010/106, Pacific Earthquake Engineering Research Center, Berkeley.669

Tokdar, S. T. and R. E. Kass (2010). Importance sampling: A review. Wiley Interdisciplinary Reviews: Computational Statistics 2(1), 54–60.670

U. S. Nuclear Regulatory Commission (2007). A Performance Based Approach to Define Site Specific Ground Motion. Regulatory Guide671

1.208, USNRC.672

30 • www.bssaonline.org Volume 0 Number 0 Month Year



LIST OF FIGURE CAPTIONS673

• Figure 1. VEGAS iterations of IS density in our AIS PSHA framework. Example for PSHA at PGA = 0.5 g when the site674

is located 10 km away from a point seismic source (𝑚min = 5.0, 𝑚max = 8.0, 𝑏-value = 1.0, 𝜈 = 1.0/yr, Ground Motion675

Model (GMM) = Sadigh et al. (1997)). The total number of MC samples is 2,000, and the number of grids per axis is 10,676

constituting a total of 100 rectangles (cuboids in actual three-dimensional PSHA integration). The vertical and horizontal677

black solid lines are boundaries of the 𝑚 and 𝜀 rectangles, and gray dots are the MC samples. Starting from the initial678

same-size𝑚 and 𝜀 rectangles, their sizes are adjusted depending on the contribution of each rectangle to the hazard. The679

final proposed structure of the rectangles gives a highly concentrated probability density at 𝑚 ∼ 5 and 𝜀 ∼ 2. Note that680

the hazard estimates using initialized density, density after the first iteration, and the final proposed density are 0.0417,681

0.0413, and 0.0378, while the true solution is 0.0385.682

• Figure 2. Seismic source geometry for the numerical examples to test our AIS PSHA framework.683

• Figure 3. Benchmark PSHA curves for area source 1, linear fault source, combined sources, dipping source, and areal684

source 2. The benchmark curves are obtained from either Hale et al. (2018) (for areal source 1, combined sources, and685

areal source 2) or calculation by the authors (linear fault source and dipping source).686

• Figure 4. Example 1-4 (Area (Area1), Vertical fault (FaultA), Combined, and Dipping fault (FaultC) sources example):687

COV as a function of computation time using various PSHA numerical solutions at ground motion intensities that cor-688

respond to 10−4/yr: 0.3g, 0.3g, 0.35g, and 0.45g for the area, fault, combined, dipping fault sources, respectively, and689

extreme groundmotion intensities: 1.0g (∼10−6/yr), 1.0g (2.62×10−8/yr), 0.8g (3.11×10−6/yr), and 1.0g (2.51×10−6/yr) for690

area, vertical fault, combined, and dipping fault sources, respectively. COV of 1% is denoted as dotted horizontal lines. As691

the target ground motion increases, the performance of AIS makes a dramatic improvement in terms of both accuracy692

and computational cost.693

• Figure 5. COV of MC estimates with the ground motion for conventional (red) MC (𝑁s, convMC = 107) and AIS (black)694

with the similar computation time. The COV of error exponentially increases with the ground motion in conventional695

MC, while that of AIS remains constant.696

• Figure 6. Example 1-4 (Area (Area1), Vertical fault (FaultA), Combined, and Dipping fault (FaultC) sources example):697

The convergence of 𝑚, 𝑟, and 𝜀 iterated IS densities (red) derived in AIS algorithm to marginal distributions of hazard698

disaggregation (black).699

• Figure 7. COV of smart Riemann Sum (black), AIS (red), and smart AIS (blue) hazard estimates as functions of700

computation time at ground motions of 0.3 g and 1.0 g, corresponding to ∼10−4/yr and 10−6/yr, respectively.701
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APPENDIX A: MEAN AND VARIANCE OF MONTE-CARLO PSHA ESTIMATE713

The mean of MC hazard estimates, �̂�, 𝐸[�̂�], can be derived as follows:714

𝐸[�̂�] = 𝐸
⎡
⎢
⎣

𝜈
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)

⎤
⎥
⎦

= 𝜈
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝐸 [𝐼(𝑋𝑖 > 𝑎|𝑀𝑖, 𝑅𝑖, ℰ𝑖)]

= 1
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝜈∭ 𝐼(𝑋𝑖 > 𝑎|𝑚𝑖, 𝑟𝑖, 𝜀𝑖)𝑓𝑀,𝑅,ℰ(𝑚𝑖, 𝑟𝑖, 𝜀𝑖)𝑑𝑚𝑖𝑑𝑟𝑖𝑑𝜀𝑖

= 1
𝑁𝑠

𝑁𝑠∑

𝑖=1
𝜆(𝑋 > 𝑎)

= 𝜆(𝑋 > 𝑎)

The second moment of �̂�, 𝐸[�̂�2], can be expressed as:715

𝐸[�̂�2] = 𝐸
⎡
⎢
⎢
⎣

⎛
⎜
⎝

𝜈
𝑁𝑠

𝑁𝑠∑

𝑖
𝐼(𝑋𝑖 > 𝑎)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

= 𝜈2

𝑁2
𝑠
𝐸
⎡
⎢
⎢
⎣

⎛
⎜
⎝

𝑁𝑠∑

𝑖
𝐼𝑖
⎞
⎟
⎠

2⎤
⎥
⎥
⎦

, where 𝐼(𝑋𝑖 > 𝑎) is denoted as 𝐼𝑖 for simplicity in the following derivation. The above equation expands as follows:716

𝐸[�̂�2] = 𝜈2

𝑁2
𝑠
𝐸
[
(𝐼1 + 𝐼2 +⋯+ 𝐼𝑁𝑠 )

2]

= 𝜈2

𝑁𝑠
2𝐸[𝐼

2
1 + 𝐼

2
2 +⋯+ 𝐼2𝑁𝑠 + 𝐼1𝐼2 + 𝐼1𝐼3 + 𝐼1𝐼4 +⋯+ 𝐼1𝐼𝑁𝑠

+ 𝐼2𝐼1 + 𝐼2𝐼3 + 𝐼2𝐼4 +⋯+ 𝐼2𝐼𝑁𝑠

+ 𝐼3𝐼1 + 𝐼3𝐼2 + 𝐼3𝐼4 +⋯+ 𝐼3𝐼𝑁𝑠

⋮

+ 𝐼𝑁𝑠 𝐼1 + 𝐼𝑁𝑠 𝐼2 + 𝐼𝑁𝑠 𝐼3 +⋯+ 𝐼𝑁𝑠 𝐼𝑁𝑠−1]

= 𝜈2

𝑁𝑠
2𝐸

⎡
⎢
⎢
⎣

𝑁𝑠∑

𝑖
𝐼2𝑖 +

𝑁𝑠2−𝑁𝑠∑

𝑖≠𝑗
𝐼𝑖𝐼𝑗

⎤
⎥
⎥
⎦

Here, 𝐼2𝑖 is the same as 𝐼𝑖 since 𝐼
2
𝑖 also takes one if and only if𝑋𝑖 is greater than 𝑎. Also, the expectation operator can go inside717

the sum terms as it is a linear operator:718

𝐸[�̂�2] = 𝜈
𝑁𝑠

2

𝑁𝑠∑

𝑖
𝜈𝐸[𝐼𝑖] +

1
𝑁𝑠

2

𝑁𝑠2−𝑁𝑠∑

𝑖≠𝑗
𝜈2𝐸[𝐼𝑖𝐼𝑗]
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Here, 𝜈𝐸[𝐼𝑖] is equal to 𝜆. Also, 𝐼𝑖 𝐼𝑗 takes one if and only if both 𝑋𝑖 and 𝑋𝑗 exceed 𝑎. Given that the ground motion samples719

(𝑋𝑖 and 𝑋𝑗) are extracted independently, 𝜈2𝐸[𝐼𝑖𝐼𝑗] is identical to 𝜈𝐸[𝐼𝑖]𝜈𝐸[𝐼𝑗], which is 𝜆2:720

𝐸[�̂�2] = 𝜈
𝑁𝑠

2

𝑁𝑠∑

𝑖
𝜆+ 1

𝑁𝑠
2

𝑁𝑠2−𝑁𝑠∑

𝑖≠𝑗
𝜆2

= 𝜈𝜆− 𝜆2
𝑁𝑠

+ 𝜆2

Hence,721

VAR[�̂�] = 𝐸[�̂�2] − 𝐸[�̂�]2

= 𝐸
[
�̂�2
]
− 𝜆2

= 𝜈𝜆− 𝜆2
𝑁𝑠

APPENDIX B: MEAN AND VARIANCE OF IMPORTANCE SAMPLING PSHA ESTIMATE722

The mean of IS hazard estimate, �̂�, 𝐸𝑞[�̂�2], can be derived as follows:723

𝐸𝑞[�̂�] =
𝜈
𝑁𝑠

𝑁𝑠∑

𝑖=1
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𝜆

= 𝜆 (27)

Also, the second moment of �̂�, 𝐸𝑞[�̂�2], can be expressed as:724
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⎛
⎜
⎝

𝜈
𝑁𝑠

𝑁𝑠∑

𝑖

𝐼(𝑋𝑖 > 𝑎)𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)
𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

= 𝜈2

𝑁2
𝑠
𝐸𝑞

⎡
⎢
⎢
⎣

⎛
⎜
⎝

𝑁𝑠∑

𝑖

𝐼𝑖𝑓𝑖
𝑞𝑖

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

Note that 𝐼(𝑋𝑖 > 𝑎), 𝑓𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖), and 𝑞𝑀,𝑅,ℰ(𝑀𝑖, 𝑅𝑖, ℰ𝑖) are denoted as 𝐼𝑖, 𝑓𝑖, and 𝑞𝑖 for simplicity in the following725

derivation. As derived in Appendix A, the above equation expands as follows:726
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TABLE S1 :𝐸𝑞[�̂�2] =
𝜈2

𝑁2
𝑠
𝐸𝑞

⎡
⎢
⎢
⎣

𝑁𝑠∑

𝑖
( 𝐼𝑖𝑓𝑖𝑞𝑖

)
2

+
𝑁2
𝑠−𝑁𝑠∑

𝑖≠𝑗
( 𝐼𝑖𝑓𝑖𝑞𝑖

) (
𝐼𝑗𝑓𝑗
𝑞𝑗

)
⎤
⎥
⎥
⎦

= 𝜈2

𝑁2
𝑠

𝑁𝑠∑

𝑖
𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]+ 𝜈2

𝑁2
𝑠

𝑁2
𝑠−𝑁𝑠∑

𝑖≠𝑗
𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

) (
𝐼𝑗𝑓𝑗
𝑞𝑗

)]

= 𝜈2
𝑁𝑠

1
𝑁𝑠

𝑁𝑠∑

𝑖
𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]+ 1
𝑁2
𝑠

𝑁2
𝑠−𝑁𝑠∑

𝑖≠𝑗
𝜈𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)] 𝜈𝐸 [(
𝐼𝑗𝑓𝑗
𝑞𝑗

)]

= 𝜈2
𝑁𝑠
𝐸𝑞 [𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]]+ 1
𝑁2
𝑠
(𝑁2

𝑠 −𝑁𝑠)𝜆2

= 𝜈2
𝑁𝑠
𝐸𝑞 [(

𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]− 1
𝑁𝑠
𝜆2 + 𝜆2

Hence,727

VAR[�̂�] = 𝐸𝑞[�̂�2] − 𝐸𝑞[�̂�]2

= 1
𝑁𝑠

(𝜈2𝐸𝑞 [(
𝐼𝑖𝑓𝑖
𝑞𝑖

)
2

]− 𝜆2)

APPENDIX C: LOG-UNIFORM SPACING OF SPATIAL GRID728

By adopting log-uniform spacing in the spatial domain, the ith grid size, i, can be calculated as:729

∆𝑖 = 10𝛿⋅𝑖(10𝛿 − 1)

, where 𝑖 is a positive integer increase with the distance from the site, is a constant representing the spacing interval in730

logarithmic scale (e.g., 0.1). Note that simply adopting ∆𝑖 as 10𝛿⋅𝑖 cannot capture the finer grid spacing at a distance less than731

one distance unit. The difference between 𝑘th and (𝑘 + 1)th power of 10 allows us to generate a sufficiently fine grid at those732

distances. The grid spacing at source location 𝑋, 𝑟 km away from the site location, ∆(𝑋; 𝑟), is as follows:733

∆(𝑋; 𝑟) = ∆𝑖, such that 𝐹𝑖−1 ≤ 𝑟 < 𝐹𝑖

, where 𝐹𝑖 is the cumulative sum of the grids:734

𝐹𝑖 =
𝑖∑

𝑘=1
∆𝑘, i = 1, 2, 3, 4, ...

, where 𝐹0 = 0.735
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