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[Text S1: Explanation on algorithm S1] From lines 1 to 5, the generation index t is set to be zero, and

the sampling density q is set to be uniform. The main algorithm loop is from lines 6 to 24. The loop is

continued until there is no improvement in the coefficient of variation or there is no previous generation (line

6). At line 7, Xm, Xr, Xε are sampled from the distribution q(t). Then, the probability λ̂ is estimated in

lines 8-10, and its coefficient of variation is also calculated in line 11. From lines 12 to 23, the sampling

function q(t) is updated. The steps are repeated over m, r, and ε (lines 12-15). From lines 16 to 20, the

contribution of each grid is calculated, at line 21, it is smoothed and dampened, and q(t) is updated by

subdivision depending on di and restore the number of grids to the original number, N , in line 22. Updated

q(t+1) is obtained by multiplying q
(t+1)
m , q

(t+1)
r , and q

(t+1)
ε in line 23, and the while loop is ended by increasing

the generation index t. When the main algorithm loop is terminated, it returns the hazard estimate λ̂ and

proposed optimal density q in line 25.
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Algorithm S1 VEGAS adaptive importance sampling PSHA pseudocode

[Parameters and Functions]
a Ground motion intensity of interest (e.g., a = 0.1 g)
N Number of grids (e.g., N =50)
Nsubgrid Number of sub-grids (e.g., Nsubgrid =10,000)
Ns Number of MC samples (e.g., Ns = 1,000)

X⃗m Magnitude sample vector (X⃗m,i = ith element of X⃗m)

X⃗r Distance sample vector

X⃗ε Ground motion random variable sample vector

X⃗ [X⃗m; X⃗r; X⃗ε]
G(·) Ground Motion Model
I(·) Indicator function
fX(·) Original sampling distribution
q(t)(·) Proposed sampling distribution at tth iteration step

λ̂(t) Hazard estimate at tth iteration step
COV(t) COV of the hazard estimate at tth iteration step
ϵ pre-defined iteration stopping criteria (e.g. 10%)
i Index for partitioned grids (i = 1, 2, · · · , N)
j Index for samples (j = 1, 2, · · · , Ns)

[Algorithm]
1: t = 0

2: q
(t)
m = U([mmin, mmax]) (U(a,b) = uniform distribution from a to b)

3: q
(t)
r = U([rmin, rmax])

4: q
(t)
ε = U( [εmin, εmax])

5: q(t) = q
(t)
m q

(t)
r q

(t)
ε

6: while |
∑

d
(t)
i −

∑
d
(t−1)
i |/

∑
d
(t−1)
i < ϵ and t > 1:

7: X⃗ = {Xm, Xr, Xε}Ns , (Xm ∼ q
(t)
m , Xr ∼ q

(t)
r , Xε ∼ q

(t)
ε )

8: H⃗(t) = { I(G(x) > a|x)fX(x) | x ∈ X⃗ }
9: λ⃗(t) = H⃗(t)/q(t)(X⃗)

10: λ̂(t) =
∑Ns

1 λ
(t)
i /Ns

11: COV(t) ← Eq. (20)
12: for u in [m, r, ε] :
13: if u = m : (v, w) ← (r, ε)
14: if u = r : (v, w) ← (ε,m)
15: if u = ε : (v, w) ← (m, r)
16: for i in {1, 2, ..., N} :
17: for j in {1, 2, ..., Ns} :
18: if ui−1 < Xu,j < ui : Hi ← Hi + (H2

j / (qv(Xv,j) · qw(Xw,j))

19: Hi ←
√
Hi

20: di ←
(

Hi∆xi∑
i Hi∆xi

)
21: di ← dd (Eq. (23) and (24))

22: q
(t+1)
u ← Subdivision and Restoration

23: q(t+1) ← q
(t+1)
m q

(t+1)
r q

(t+1)
ε

24: t← t+ 1

25: return λ̂(t−1), q(t−1)
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Table S1: Seismic source information for comprehensive numerical examples

Area1 FaultA FaultB FaultC Area2

Source Type Area Vertical Fault Vertical Fault Dipping Fault Area

Source Geometry Circle (R=100 km) Line (L = 50 km) Line (L = 85 km) Line (L = 100 km) Circle (R=100km)

EQ Occurrence Model Exponential Characteristic Characteristic Exponential Exponential

b-value 0.9 0.9 0.9 0.9 0.9

Mmin 5.0 5.0 5.0 5.0 5.0

Mmax 6.5 6.75 7.0 6.5 6.5

Mchar - 6.5 6.75 - -

ν(M > Mmin) (yr
−1) 0.0395 - - 0.0395 0.0395

slip rate (mm/yr) - 1 2 - -

Seismogenic depth (km) 5-10 0-12 0-12 0-15 5

Rupture type Point Floating rupture Floating rupture Floating rupture Point

Magnitude Scaling - log10(A) = M − 4 log10(A) = M − 4 WC94∗

(L/W = 2) (L/W = 2)

GMM Sea97∗ Sea97 Sea97 ASK14∗ Sea97

∗ WC94: Wells and Coppersmith (1994); Sea97: Sadigh et al. (1997); ASK14: Abrahamson et al. (2014)
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Figure S1. K-S D statistics examples. (left) Probability density functions of the reference (N (0, 1), black) and

three distributions to compare: Red - Normal distribution, N (0.1, 1.2); Green - Uniform distribution U(−3, 3);

Blue - Exponential distribution, Exp(λ = 0.5). (right) The corresponding cumulative distribution functions (CDF)

and K-S D statistics. The maximum differences between the example distribution CDFs (dotted lines) and the

reference CDF (black dotted line) are shown as vertical solid lines with their D values. The corresponding K-S D

statistics for the normal, uniform, and exponential distributions are 0.07, 0.19, and 0.48, respectively.
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Figure S2. Areal Source Example: COV of the conventional MC (gray), IS (orange), and AIS (red) estimates

as functions of computation time at ground motion of 0.05 g, 0.2 g, 0.5 g, and 1.0 g. The computation time

required for Riemann summation is presented as black vertical dashed lines. At low ground motion, conventional

MC outperforms IS and AIS, however, as the target ground motion increases, the performance of AIS makes a

dramatic improvement in terms of both accuracy and computational cost.
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Figure S3. Areal Source Example: Box plot showing the distribution of AIS MC estimates with different numbers

of samples. Each box is generated using the statistics of a hundred MC estimates. The x-axis is the ground motion,

and the y-axis is the error to the benchmark PSHA curve, the relative difference with respect to the “true hazard”

computed using the Riemann sum. The boxes represent the first and third quartile boundaries, and the whiskers

indicate the 1.5 times interquartile ranges. The red dotted horizontal lines indicate the 5% error ranges.
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Figure S4. Areal Source Example: The convergence of m, r, and ε iterated IS densities density (red) derived

in AIS algorithm (N = 100,000) to marginal distributions of hazard disaggregation (black) at ground motion

intensities of 0.001 g, 0.01 g, and 0.5 g.
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Figure S5. Areal Source Example: Kolmogorov–Smirnov D statistic and Mean difference between the hazard

disaggregation and the proposed optimal density.
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Figure S6. Fault Source Example: COV of the conventional MC (gray), IS (orange), AIS (red) estimates as

functions of computation time at ground motions of 0.05 g, 0.2 g, 0.5 g, and 1.0 g.
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Figure S7. Fault Source Example: Box plot showing the distribution of AIS estimates with different numbers of

samples.
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Figure S8. Fault Source Example: The convergence of m, r, and ε iterated IS densities (red) derived in AIS

algorithm (N = 1,000,000) to marginal distributions of hazard disaggregation (black) at ground motion intensities

of 0.1 g, 0.5 g, and 0.8 g.
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Figure S9. Fault Source Example: Kolmogorov–Smirnov D statistic and the mean differences between the hazard

disaggregation and the proposed IS density.
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Figure S10. Combined Sources Example: COV of the conventional MC (gray), IS (orange), full AIS (red), and

partial AIS (green) estimates as functions of computation time at the ground motion of 0.05 g, 0.25 g, 0.4 g, and

0.8 g
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Figure S11. Combined Sources Example: Box plot showing the distribution of Full AIS MC estimates with

different numbers of samples.
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Figure S12. Combined Sources Example: Box plot showing the distribution of Partial AIS MC estimates with

different numbers of samples. Ground motions greater than 0.8 g are not shown because the hazard from fault B

reaches a numerical instability due to its low exceedance probability (< 10−12 /yr).
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Figure S13. Combined Sources Example: The convergence of m, r, and ε iterated IS densities (red) derived

in AIS algorithm (Ns = 1,000,000) to marginal distributions of hazard disaggregation (black) at ground motion

intensities of 0.05 g, 0.2 g, and 0.8 g.
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Figure S14. Dipping Source Example: COV of the conventional MC (gray), IS (orange), AIS (red) estimates as

functions of computation time at the ground motion of 0.05 g, 0.1 g, 0.45 g, and 1.0 g.
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Figure S15. Dipping Source Example: The convergence of m, r, and ε iterated IS densities(red) derived in AIS

algorithm to marginal distributions of hazard disaggregation (black) at ground motion intensities of 0.05 g, 0.3

g, and 1.0 g.
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Figure S16. Smart AIS versus Smart Riemann Summation: COV of the smart Riemann Sum (black), naive AIS

(red), and smart AIS (blue) estimates as functions of computation time at ground motion of 0.001 g, 0.05 g, 0.3

g, and 1.0 g
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Figure S17. The contribution of each part of VEGAS AIS PSHA algorithm to the total computation time

as a function of the computational complexity of ground motion simulation. The areal source example is used

with Ns=100. “Light” is an as-is case, and for Moderate and Heavy cases, the ground motion simulation part

is redundantly repeated 10 and 100 times. The black dotted line indicates the boundary between the “hazard

computation” and “update propose density” parts. Sample: random sampling; H: computation of the PSHA

integrand each sample, λ: computation of hazard; d: Computation of contribution of each VEGAS grid; Subdiv

& Resto: Updating VEGAS grid by subdivision and restoration process. The first three parts correspond to the

hazard computation part, which is also present in traditional Riemann and MC methods, and the latter two

parts correspond to the updating proposed density part, which is a unique characteristic present in VEGAS AIS

PSHA algorithm. As the complexity of the GM simulation increases, the updating portion decreases because the

computational burden of the updating process is not a function of the complexity of the ground motion model,

but is a function of the number of samples and VEGAS grids(N).
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