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Abstract: Hydraulic fracturing extracts oil and gas from deep underground, with fracture conductivity 

being crucial for efficient production. Traditional lab techniques for measuring conductivity are costly and 

time-consuming. This paper explores using machine learning, specifically support vector regression, to 

predict fracture conductivity based on experimental data like Poisson’s ratio and proppant size. Optimizing 

these models can enhance hydraulic fracturing efficiency in shale formations. 

 

Hydraulic fracturing, often referred to as fracking, is a technique used to extract oil and gas from deep 

underground formations. This process involves injecting a high-pressure fluid mixture into the rock layer, 

creating fractures through which hydrocarbons can flow more freely to the production well. A crucial aspect 

of hydraulic fracturing is fracture conductivity, which refers to the ability of the created fractures to allow 

the flow of hydrocarbons. High fracture conductivity is essential for maintaining efficient hydrocarbon 

production. It depends on various factors, including the proppant type and size, the closure stress, and the 

properties of the fracturing fluid. Optimizing these factors ensures that the fractures remain open and 

conductive over the lifespan of the well (Montgomery, 2013; Holditch, 2006; Sharma et al., 2014). 

Determining fracture conductivity in situ is a very challenging task and conducting lab measurements using 

Hassler core technique on shale are expensive and time consuming. The Hassler core experiment is a 

laboratory technique that simulates in-situ conditions to measure the permeability and conductivity of 

fractures in core samples. This method involves placing a core sample within a Hassler sleeve, applying 

confining pressure, and injecting fluid to simulate the hydraulic fracturing process. Researchers measure 

the resultant fracture conductivity, which is a key parameter influencing the efficiency of hydrocarbon 

extraction from shale formations. (Wu et al., 2017, Wu et al., 2019). 

Machine learning is being used to advance scientific computing in a variety of fields, such as fluid 

mechanics, (Raissi et al., 2019, Zhang et al., 2020, Wang el al., 2017) solid mechanics, (Haghighat et al., 

2020, Zheng et al., 2022, Arora et al., 2022) materials science etc (Kim et al., 2021). Machine learning 

techniques can also be applied to predict the fracture conductivity of new shale formations based on models 

built using data collected from experiments.  

Good experimental data is key to building a well-performing prediction model. In order to build a model to 

predict fracture conductivity, the following information about various shale samples needs to be recorded 

while conducting experiments: Poisson’s ratio, Young’s Modulus, Temperature, Closure pressure, Proppant 

particle size, and Sand concentration. The wider the range of the above-mentioned parameters, the better 

the model will be. 

There are various machine learning techniques that can be used to build the above model. In this paper we 

will discuss about support vector regression. 



Support Vector Regression 

To build a support vector regression (SVR) model for predicting fracture conductivity, we start with the 

same essential step of collecting comprehensive and high-quality experimental data. This involves 

conducting a series of controlled experiments on various shale samples and meticulously recording relevant 

parameters such as Poisson’s ratio, Young’s Modulus, Temperature, Closure pressure, Proppant particle 

size, and Sand concentration. Ensuring a wide range of values for these parameters enhances the robustness 

and generalizability of the model, allowing it to make accurate predictions across different shale formations. 

Data Preprocessing 

Once the data collection phase is complete, we need to preprocess the data. This includes handling any 

missing values, normalizing or standardizing the data to ensure that all parameters are on a comparable 

scale, and possibly performing feature selection to identify the most significant predictors of fracture 

conductivity. Preprocessing is crucial as it directly impacts the performance of the SVR model, helping to 

eliminate biases and improving the overall quality of the dataset. For instance, normalization can be 

performed as follows: 

 

where xi is an original feature value, min(x) is the minimum value of the feature, and max(x) is the 

maximum value of the feature. 

Model Formulation and Training 

Support Vector Regression (SVR) operates by finding a function that deviates from the actual observed 

values by a value no greater than a predefined margin, while simultaneously being as flat as possible. The 

SVR model can be expressed mathematically as: 

 

where ⟨w,x⟩ represents the dot product between the weight vector w and the input vector x, and b is a bias 

term. 

To find the optimal w and b, we solve the following optimization problem: 

 

Kernel Trick 

In many practical scenarios, the relationship between the input features and the target variable is nonlinear. 

To address this, SVR uses the kernel trick, which allows it to operate in a high-dimensional feature space 

without explicitly computing the coordinates of the data in that space. Common kernels include linear, 



polynomial, and radial basis function (RBF) kernels. The kernel function K(xi,xj) maps the input features 

into a higher-dimensional space where a linear separation is possible: 

 

Model Evaluation and Validation 

After training the SVR model, we evaluate its performance using metrics such as the coefficient of 

determination (R²), mean squared error (MSE), and root mean squared error (RMSE). Additionally, cross-
validation techniques, such as k-fold cross-validation, are used to ensure the model's reliability and to avoid 

overfitting. For example, in k-fold cross-validation, the data is divided into k subsets, and the model is 

trained k times, each time using a different subset as the validation set and the remaining k-1 subsets as the 

training set. The performance metrics are then averaged to obtain a more robust estimate of the model's 

performance. 

Interpretation and Visualization 

Interpreting the results involves examining the coefficients of the SVR model and the support vectors. The 

support vectors are the data points that lie within the margin of tolerance and are crucial in defining the 

decision boundary. Visualizing the SVR model can help in understanding its behavior and the impact of 
different features. For instance, plotting the predicted versus actual values of fracture conductivity can 

highlight how well the model generalizes to unseen data. 

Below is a sample plot showing the predicted versus actual values of fracture conductivity: 

 

 

Conclusion 

By following these steps, a comprehensive and accurate SVR model can be developed, providing valuable 

insights for predicting the fracture conductivity of shale formations. The combination of good experimental 



data, thorough preprocessing, appropriate model selection, and rigorous validation ensures the model's 

reliability and applicability in real-world scenarios. 

 

References 

Montgomery, C. T. (2013). "Fracturing Fluids." In Hydraulic Fracturing (pp. 67-98). Elsevier. 

 

Holditch, S. A. (2006). "Tight gas sands." Journal of Petroleum Technology, 58(06), 86-93. 
 

Sharma M. M et al. (2014). "Proppant Selection and Its Effect on Fracture Conductivity and Production." 

SPE Hydraulic Fracturing Technology Conference. 

Wu W, Kakkar P, Zhou J. et al. 2017. An Experimental Investigation of the Conductivity of Unpropped 

Fractures in Shales. Presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, 

The Woodlands, Texas, 24-26 January. SPE-184858-MS. https://doi.org/10.2118/184858-MS. 

Wu W, Zhou J, Kakkar P et al. An experimental study on conductivity of unpropped fractures in preserved 

shales. SPE Production & Operations, 2018, 34(2): 280–296 

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems involving nonlinear partial differential equations. 

Journal of Computational Physics, 378: 686–707, 2019. DOI: https://doi.org/10.1016/j.jcp.2018.10.045. 

T. Zhang, B. Dey, P. Kakkar, A Dasgupta, and A. Chakraborty. Frequency-compensated pinns for fluid-

dynamic design problems. arXiv preprint arXiv:2011.01456, 2020. DOI: 

https://doi.org/10.48550/arXiv.2011.01456. 

J. Wang, J. Wu, and H. Xiao. Physics-informed machine learning approach for reconstructing reynolds 

stress modeling discrepancies based on dns data. Physical Review Fluids, 2(3):034603, 2017. DOI: 

https://doi.org/10.1103/PhysRevFluids.2.034603. 

E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes. A deep learning framework for solution 

and discovery in solid mechanics: linear elasticity. arXiv preprint arXiv:2003.02751, 2020. 

B. Zheng, T. Li, H. Qi, L. Gao, X. Liu, and L. Yuan. Physics-informed machine learning model for 

computational fracture 41 of quasi-brittle materials without labelled data. International Journal of 

Mechanical Sciences, 223:107282, 2022. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107282. 

R. Arora, P. Kakkar, B. Dey, and A. Chakraborty. Physics-informed neural networks for modeling rate-

and temperature dependent plasticity. arXiv preprint arXiv:2201.08363, 2022. DOI: 

https://doi.org/10.48550/arXiv.2201.08363 

Y. Kim, C. Yang, K. Park, G. X. Gu, and R. Seunghwa. Deep learning framework for material design 

space exploration using active transfer learning and data augmentation. npj Computational Materials, 

7:140, 2021. DOI: https://doi.org/10.1038/s41524-021-00609-2 

E. Meyer. Fracture Conductivity Prediction Based on Machine Learning in Shale – Part I, 2024 DOI: 
https://doi.org/10.31224/3757 

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.48550/arXiv.2011.01456
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1016/j.ijmecsci.2022.107282
https://doi.org/10.48550/arXiv.2201.08363
https://doi.org/10.1038/s41524-021-00609-2
https://doi.org/10.31224/3757

