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Abstract

Blood flow studies within the left ventricle have proven to be promising for future
clinical decision-making. However, accurate segmentation of heart valves, particularly
the mitral valve, is still challenging. The MV has a significant impact on local flow
phenomena within the ventricle and assumptions on its anatomy and location introduce
uncertainties that are not yet fully understood. The overall aim of this study is to quan-
tify the impact of uncertainty in defining MV anatomy and location on local and global
clinical outcomes, such as kinetic energy, energy loss, transventricular pressure gradient
and locally resolved wall shear stresses. We use a combination of computational fluid
dynamics moving mesh simulations of cardiac blood flow, reduced order modeling (ROM)
and variance-based global sensitivity analysis (GSA). We uncover a non-linear relation-
ship between geometrical uncertainties and flow biomarkers with mitral valve size and
angle as the most important parameters. Uncertainty quantification of echocardiography
measurements reveals a standard deviation between 5-30% for the different output mark-
ers. We further outline the importance of robust ROM and GSA as model choice can
drastically influence the results. Our entire pipeline is summarized in the open source
tool SASQUATCH - a framework for sensitivity analysis and uncertainty quantification
in cardiac hemodynamics.

Keywords: Cardiac blood flow; Computational fluid dynamics; Reduced order model-
ing; Global sensitivity analysis; Uncertainty quantification

1 Introduction

The blood flow within the ventricle is tightly related to cardiac function and knowl-
edge about the hemodynamics can be used as a marker of ventricular health [20]. More
specifically, markers derived from the blood flow structures such as vortex dynamics,
energy dissipation and pressure gradients have the potential to serve as parameters to
support clinical decision making [5, 15]. Computational cardiac models created from non-
invasive imaging data can provide this information on a patient-specific basis. Recent ad-
vances in cardiovascular imaging, such as time-resolved magnetic resonance imaging (4D
MRI) and real-time three-dimensional echocardiography (RT3DE), gave rise to a large



amount of Computational Fluid Dynamics (CFD) models of ventricular hemodynamics
[25, 6, 18, 14, 4, 2] focusing on the intriguing role of the intraventricular flow features and
their relation to the cardiac physiology. An important aspect of all computational models
is the uncertainty of the model predictions and uncertainty quantification (UQ) is a key
aspect to ensure model credibility [24]. There are various sources of uncertainties which
can be for instance stem from variation in the experimental data, errors in the model-
ing processes or uncertainties introduced by the computational algorithms. An extensive
overview of UQ with important terminology is presented by Roy and Oberkampf [22].

In many models, the movement of the ventricular walls and the geometry of the valves
is extracted from the imaging data and simulation models are performed using these in-
puts. In particular, the atrioventricular valves, in the case of left ventricular blood flow,
the mitral valve (MV), are extremely difficult to model due to the complexity of their
anatomy and movement. The location of the mitral annulus, the size of the MV and
its angularity are all known to influence cardiac hemodynamics [26] and its geometry
has thus a critical importance in all cardiac hemodynamics models. Particularly during
pediatric and neonatal applications, such as blood flow simulations in congenital heart
diseases (CHDs) [17], the influence of the imaging modality on the model output can be
critical due to the small geometries at hand. Furthermore, in the neonatal and pediatric
context, echocardiography, more specifically real-time three-dimensional echocardiogra-
phy (RT3DE), is often used. RT3DE is fast, reproducible and non-invasive, however it
can reach its limits during analysis of small anatomical structures. Computational models
using RT3DE exist in the pediatric, neonatal and fetal context [17, 29]. Thus, quantifying
the influence of geometrical uncertainties on fluid dynamics markers is important to fur-
ther improve the modeling and patient-specific planning in fetal, neonatal and pediatric
cardiology.

The general approach of UQ consists of Monte Carlo simulations of variations of the
input parameters, within specified limits, and the statistical analysis of the resulting
output variations. Further on, global sensitivity analysis (GSA) is performed to obtain an
overarching view on model behavior [27]. This requires many model evaluations, which
poses an unfeasible computational burden in the context of CFD simulations. For this
reason, surrogate models are employed here for approximation. Until now, the relationship
between the geometrical assessment of the MV dimensions and the occurring ventricular
hemodynamics has not been analyzed in a systematic way. In our work, we investigate
the influence of the MV geometry on cardiac hemodynamics and quantify the uncertainty
of widely used flow-based markers of cardiac function. We do so through a combination
of RT3DE-based CFD simulations of cardiac blood flow, surrogate modeling, and global
sensitivity analysis.

2 Methods

An overview of the approach is shown in Figure 1. At first, CFD simulations of an
already established ventricular hemodynamics model using the moving methodology are
performed. The four geometrical mitral valve parameters yq, z4, @, and Ry, are varied to
create n=80 CFD results for the studied parameter range. In the second step, markers
from the flow data are extracted. These include spatially and temporally averaged markers
Eloss, Exin, and TV PG as well as the spatially resolved WSS. This step also includes
analysis of the calculated data to check for outliers and errors in the dataset. In the
third step, different reduced order models (ROMs) that create the relationship between
the geometrical input parameters and the flow derived outputs are evaluated and the best
performing ROM is chosen. This ROM is then selected to perform a global sensitivity



analysis (GSA) together with uncertainity quantification (UQ) on the influence of the
mitral valve geometrical parameters on ventricular hemodynamics.

CFD Simulations
80 simulations with varying: yq, z4, @, R,
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Figure 1: Flowchart of approach.

2.1 Data generation

Intraventricular blood flow was determined from moving mesh simulations based on three-
dimensional real-time echocardiography recordings. A neonatal subject with an ESV of
7.2 ml, an EDV of 17.1 ml, and a heart rate of 116 bpm was selected. In brief, seg-
mented ventricular deformations were extracted from the clinical data and movement of
the computational mesh was imposed according to these deformation. For more details
on the algorithms, please see our previous work in [10]. In addition to the study cited
above, a left atrium and a aortic root were scaled to the aortic and mitral valve (MV)
respectively and added to the ventricle. At last, the mitral and aortic valves were modeled
as porous media as explained in [28]. An unstructured mesh with approx. 2 mio elements
was chosen and laminar simulations with a Newtonian blood model p = 1056.4[kg/m?]
and n = 3.6mPas was set. A pressure-based solver and 5 cardiac cycles with 240 time
steps per cycle were chosen. Both inlet and outlet have constant pressure profiles. All
simulations were performed with ANSYS Fluent 2021R2 (Ansys Inc. Gettysburg, USA).
The creation of simulation setups has been automated to minimise user input and dras-
tically reduce preparation time. A reference setup with all scripts for automation can be
found at https://doi.org/10.5281/zenodo.12519189.

An in-house automated pipeline was used to extract the patient-specific ventricular
geometry and perturb them along Table 1. It streamlines and enhances the quality of
the pre-processing, which includes attaching anatomical parts such as the aorta, atrium,
valves to the patient specific ventricle. The reconstruction pipeline can be found on Github
at https://github.com/DanielVerhuls/Ventricle-reconstruction-pipeline.

Left side of Figure 2 shows the cross-section of the ventricle with four geometrical
parameters yq, 24, &, R, which describe the size and location of the MV. y4 and z4
describe the displacement of the MV with respect to the ventricular apex. « is the angle
of the MV in the anterio-posterior plane and influences the propagation of the mitral jet.
At last, Ry is half the MV "long axis”, which can be seen on the right of Figure 2. The
short axis of MV is scaled accordingly so that the initial ratio to Ry remains unchanged.
A geometrical uncertainty of +2mm was assumed according to [30]. This resulted in the
variations as outlined in Table 1. Hypercube sampling was used to create n=80 training
simulations that covered the parameter space from Table 1.



Parameter Minimum Maximum Variation absolute

Yd -7Tmm -3mm 133.33%
2d 49mm 53mm 8.16%
« -10° +10° -

Ry, 2.6mm 4.6mm 76.92%

Table 1: Input perturbation bounds derived from the geometric uncertainty.
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Figure 2: Velocity field of left ventricle with annotations geometrical parameters
used as inputs for the surrogate models in a). Top view showing the shape of the
MV with the MV long axis in b).

2.2 Data preprocessing

Based on the last cycle of the CFD data, the following four markers were determined
- Energy loss (Ej,ss), kinetic energy (Fj;y), transventricular pressure gradient (T'V PQ)
and wall shear stress (WSS).

Energy loss and kinetic energy describe the pumping efficiency of the heart. In the
physiological state, a stable vortex is formed during diastolic filling that is then ejected
during systole [20]. Cardiac pathologies can lead to abnormal vortex shapes connected
to high energy losses and low kinetic energies as has been shown for adult and pediatric
subjects in vivo [8, 17, 23]. Both are defined as

Eloss = /Q odV (1)

2

where p defines the dynamic viscosity, ® the energy dissipation, p the fluid density
and € the fluid space.

B =3 [ v 2)
Q



The transventricular (or intraventricular) pressure gradient TVPG is another impor-
tant parameter to assess the functional capacity of the heart and has been applied in the
detection of ventricular impairment [19, 7]:

TVPG = Papem - Pbasal (3)

where Ppgsqr is the pressure near the inflow (87.5% of ventricular height) and P,pe, the
pressure at the apex (15% of ventricle height).

At last, the time-averaged wall shear stress (WSS) was determined at the ventricular
wall. The WSS describes the interaction between the blood and the endothelial cells and
has been identified as a driving marker in many processes of vascular pathophysiology
such as tissue remodeling or atherosclerosis [9]. To consider the various zones of the
ventricular wall and their different WSS measurements, the left ventricle was divided into
17 segments as suggested by the American Heart Association [16] and projected onto a
2D plane as shown in Figure 3.
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Figure 3: 17 segments representation of the left ventricle in 3D and 2D adapted
from [16].

Before surrogate modeling was performed, pairwise correlation and histograms were
used to assess the quality of the data and scan for outliers and errors.

2.3 Surrogate modeling

In this work, five different ROMs were tested regarding their prediction quality and effi-
ciency. In general, the relationship

with §8; € R being function specific parameters of ¢, input parameter x = (21, za, ..., )
and output parameter y = (y1,¥2, ..., Ym) was used to find the best performing model.
In our case © = (ya, 2d, @, Rr,) and y = (WSS, Ejpss, Ekin, TV PG, wss1, ..., wss17), which
gives n = 4 and m = 21. W SS; is the local wall shear stress for each segment, while WSS
is the average of all segments.



Linear Regression Model A generalized linear model (LR) was trained according
the following equation and the (; were identified:

g(x) = Bo+ Y _ Bixs (5)

=1

Gaussian Process A Gaussian process (GP) was used to describe the relationship
between input and output:

g(x) = p" (2)B + Z(x) (6)

The polynomial basis function is given by p(z) = (pi(x),...,pm(x)). Again 3; are the
model parameters, and Z(z) is a Gaussian process, also known as kernel function.

Matérn kernels, that are a generalization of radial basis functions, have been used
according to the equation below:

bo1,23) = e (o) Kl L2 G

with a modified Bessel function K, (+) [1] and the gamma function I'(-). The parameter v
controls the smoothness of the learned function and was set as v = 0.5 [13]. The length
scale of the kernel was set according to the parameter bounds.

Non Intrusive Polynomial Chaos Expansion The general idea of Non Intru-
sive Polynomial Chaos Expansion (NIPCE) is to represent the output as a polynomial
expansion orthogonal to a probability distribution. For multivariate expansions, the ten-
sor product of univariate expansions is usually used. The formula for NIPCE is given
by:

9@ = 3 wla(@)lol =) o ®

0<|a|<p

where @ = {a1,...an}a; > 0 is the multidimensional index notation vector. w, is the
coefficient vector weighting the respective basis function ¥, which is itself a multivariate
polynomial vector. The parameter p represents the maximum polynomial degree of the
expansion. It is chosen depending on the complexity of the function, the data set, and its
size. Hosder et al. suggests using

(npol + ndzm)' (9)

p=2 ;
Npol:Ndim:

with an oversampling parameter > 2 where n,,; is the number of polynomials in the chaos
expansion and ng;., is the order of input dimensions [12].

With a number of simulations of ng;,, = 80 and a number of input parameters of
Ngim = 4, a reasonable choice according to equation 9, is an order of 2 or 3 [3]. Both
orders have been tested. For the generation of its expansion, a uniform distribution with
all input parameter bounds was chosen.

k-Nearest Neighbors and Random Forest At last, two other surrogate models,
that are not typically used in the context of sensitivity analysis and UQ were used as a
benchmark. k-Nearest Neighbors (KN) predicts the output by aggregating the k nearest
neighbors of already learned input-output pairs. Random Forests (RF) fits decision tree
regressors to random subsets of the data, which together form a random forest.



2.4 Training, Testing and Evaluation of ROMs

Training and testing were performed using k-fold cross validation with £ = 10 random,
equally sized splits. R? and MAPE were used to evaluate the accuracy of the models
according to the equations

n

1
MSE == > Wiactual = Yipredicted)’s (10)
=1
MSE
2 _
R2—1_ e (11)
1 |y I — Yi,predicted|
MAPE — = i,actua u,predicte 12
o > maz (€, Yi actual) 12

i=1
with n being the number of samples and y the output values and € > 0 is arbitrarily small
to avoid undefined results for max(y; predicted) = 0, 0 is the standard deviation.

2.5 Global sensitivity analysis

Variance-based global sensitivity analysis (GSA) through the computation of Sobol indices
was performed. The first order indices are given by
Szl _ VL _ le [Eacﬂ(ylxl)}
V(y) V(y)
They are restricted to the contribution of a single input parameter, second order to the
combination of two, and so on. It holds:

d d
DOSE+Y SH+ .8t 4=1 (14)
=1

1<j

(13)

Total order indices include the full contribution of each input variable and combine direct
and indirect interaction effects [21] and are calculated with the formula given by Homma
and Saltelli [11]:

V(y)
The larger S, the greater the influence of each input on the output. The best performing
ROM was used to generate 2% x (2145, + 2) = 5120 samples as input data for the GSA,
which yields converged Total order indices St.

(15)

2.6 Implementation of SASQUATCH

The methods presented above were implemented in Python and are made freely avail-
able through https://github.com/nikithiel/SASQUATCH. The package SASQUATCH,
which stands for Sensitivity Analysis and Uncertainty QU AnTification in Cardiac Hemo-
dynamics provides a variety of tools to perform global sensitivity analysis and uncertainty
quantification using existing simulation data. It consists of three parts. The data analysis
part checks for outliers and errors in the simulation data and helps to understand the
relationships between the input-output pairs using histograms and correlation plots. The
surrogate modeling part allows to implement and benchmark reduced order models such
as the ones presented in the manuscript. Other ROMs can be easily added. At last, global
sensitivity analysis through Sobol indices can be executed, the results visualized and the
input uncertainties can be propagated through the models. SASQUATCH uses Sklearn,
Chaospy, Pandas, and SALib. Supported input file formats are the Ansys Fluent output
.out, .xlsz, or .csv.



3 Results
3.1 Analysis of CFD data

The Spearman pairwise correlation for the input and output data is shown in Figure
4. No outliers can be observed and the data points are spread over the sampling space
as defined in Table 1. A high influence of Ry on all output markers can be observed.
Relationships between other input and output parameters are not observable. Histograms
of the individual outputs are presented in Supplementary Figure S1 for all 21 output
values.
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Figure 4: Scatterplot of input and output parameters.

More details about the maximum and minimum values, as well as the percentage
variation, is shown in Table 2. The values indicate a large variation for the output, ranging
from 177.75% for WSS to 486.63% for Ej,ss and a non-linear relationship between input
and output variations.



WSS [Pa] Eiss [J]  Ewin [J] TVPG [Pa]

Minimum 2.84 1.6e7®  8.27¢ 4 65.25
Maximum 7.9 8.49¢75 2.5le 3 279.07

Variation — 177.75%  431.26% 203.63% 327.69%

Table 2: Minimum, maximum, and variation in output distribution.

3.2 Performance evaluation of surrogate models

Figure 5 shows the R? score and MAPE for all ROM using k-fold cross validation. The
black bars indicate the standard deviation over all folds and output parameters. The best
R? score has NIPCE and GP with almost 0.7, then LR and RF with about 0.6 and lastly
ENN with 0.2. Model evaluation using MAPE shows similar results.

R? Score MAPE

S R U S 2 R TIPS
§oew$@ 0§G$V‘$

Figure 5: Mean of R? Scores and MAPE over all folds and output parameters.

The influence of ROM hyperparameters on the prediction quality has been evaluated
as well. More specifically, the R? scores of the NIPCE for different polynomial orders yield
the order 2 as the best performing one, as can be seen on the left side of Supplementary
Figure S2). Different smoothing parameters v of the kernel function in equation 7 have
been evaluated in Supplementary Figure S2 right side. The value of v = 0.5 was chosen
because it performs well and is much cheaper from a computational point of view, with
10z faster run times compared to the best performing smoothing factor v = 0.3.

A detailed insight on the ROM performance is shown with probability density functions
(PDF) for each output marker and three surrogate models NIPCE, GP, and LR in Figure
6. Skewed distributions are seen in all training data. This leads to poor performance of
LR at the outer bounds, for instance for TV PG or W 5S16. Other values, such as WSS,
or WSS, can be predicted quite well, even by LR. The GP model sometimes ”overshoots”
the density plots at the maxima, for instance for WSS and W SS1;. NIPCFE seems to
match the PDFs quite well, however deviations for PDFs can also be observed. NIPCE
is selected as the ROM for GSA and UQ, however GP could also be used as there is no
definite outperformance of one surrogate model against the other.
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Figure 6: Density plot of LR, NIPCFE, GP, and training data.
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3.3 Global sensitivity analysis and uncertainty quantification

GSA

The results of the GSA are presented in Figure ??7. The left side shows total order
sensitivity indices for all output values in a heatmap. The right side shows the total order
sensitivity indices for WSS using the 17-segment visualization of the ventricle. The entire
input parameter range, as shown in Table 1 has been used to produce these results

Eloss

Ekin

TVPG

WSS, ~-0.8
WSS,

WSS;

WSS,y

WSSs 0.6
IR =
WSS,

i ’
WSSq
WSS, 0.4
WSS,
nglz
WSS3
WSS, 0.2
WSS s
WSS6
WSSi7 . 0.0

Ya 24 a Ry

Figure 7: Total order sensitivities ST heatmap for all cardiac output metrics on
the left and locally resolved WSS using 17-segment visualization on the right.
Results obtained using NIPCE.
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The largest influence on all output metrics has the parameter Ry, the radius of the
mitral valve ”long axis”. The MV angle a has little influence on the spatially averaged
metrics and large influence on the WSS with large variations between the individual seg-
ments. For instance, W5S1; and W SS15, which are the inferolateral and anterolateral
segments in the middle region of the ventricle have St > 0.5 while the basal inferoseptal
and anteroseptal regions (W.SSy and W.SS3) are not sensitive to the angle. Interestingly,
the y orientation of the MV annular plane y; does not have a strong influence on any
results and only WSSy and W.SSs are influenced by z4. Similar behaviour has been ob-
served with the GP and LR models (results not shown).

In the next step, we wanted to investigate the influence of input parameter variation
range on the total order sensitivity indices. Thus, the GSA was performed with an
increasing level of variations between Omm and 1.26mm. The variation of the angle « was
determined from trigonometry as u, = arcsin(\/%) with u, being the uncertainty
of the angle and w,, the uncertainty of the measurement. The upper range of 1.26mm
was computed from the maximum angle variation of 10 deg. The results are presented in
Figure 8.
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The figure shows that for most of the output values and most of the variations, the
order of the total sensitivity indices stays the same with R being the most influential
parameter, followed by the angle a. However, in some cases trends and changes in the sen-
sitivities can be observed. For instance, W5S14 sensitivity to Ry, decreases with increasing
variation while the sensitivity towards « is increasing. For most of the investigated output
parameters, the sensitivities are independent of the input variation range. It has to be
emphasized, that the results in Figure 8 have been created using the NIPCE model. A
similar investigation with GP shows a more complex picture, see Supplementary Figure
S3. For several output parameters, spatially resolved as well as spatially averaged ones,
the sensitivity indices depend on the input variation range and a change in the order
(most sensitive to least sensitive input parameter) might even change.

UQ

In the last step, we wanted to quantify the influence of combined input parameter uncer-
tainties on the output markers. The entire input parameter range from Table 1 has been
used. The results in Table 3 are presented for WSS, Ejyss, Frin, and TV PG.

WSS [Pa] Ess [J] Egin [J] TV PG [Pal
Variation 201.2% 782.5%  195.4% 655%

Table 3: Variation in output parameters based on all possible input pa-
rameter uncertainties.

The results exhibit a huge variation with Fj,g going up close to 800%, TV PG up to
around 700%, Ey;, and WSS up to 200%. It has to be noted, that this analysis presents
the ”worst case scenario” that is probably not very common in reality as maximal errors
in the individual parameter measurements have to be made in such a way that they rein-
force their effect on the output markers.

For a more realistic quantification of uncertainty, we thus suggest to focus on the mean and
the standard deviation (SD) of the outputs considering input parameter variations. The
results are presented in Figure 9 and show the mean and SD with a solid line and bands,
respectively. On the x-axes, the input parameter variation is plotted to quantify the influ-
ence of lower input parameter variation (0.5 instead of 1 mm) on the output uncertainties.

The plot reads as follows: For a geometrical input uncertainty of 1.26 mm, the TV PG
has a standard deviation of 22% and an absolute range of 35 Pa. Reducing the input
uncertainty to 0.5 mm leads to a standard deviation of 9% and an absolute uncertainty
band of 15 Pa. Overall, different output parameters have different sensitivities to the
input variation with SD between 5-30% and we see a non-linear relationship between
input uncertainty and output uncertainty. For further evaluation of the individual values,
the data is presented in the Supplementary Tables S1 and S2.
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4 Discussion

Sensitivity analysis and uncertainty quantification are two important aspects to increase
the credibility of computational models. Within this work, we have used a combination
of patient-specific cardiac blood flow simulations, surrogate modeling and variance-based
sensitivity analysis to quantify the impact of mitral valve anatomy on clinical markers
derived from blood flow fields. We have varied 4 geometrical parameters yq4, 24, @ and Ry,
and extracted 21 markers (Egin, Eloss, TV PG and both averaged and locally resolved
WSS at ventricular regions) from 80 CFD simulations. Then, different ROM were trained
and assessed in order to perform GSA and UQ using this data.

The training simulations delivered a wide range of output parameters with skewed
distributions and variations between 200-400%. Capturing these distributions is possible
through surrogate models and NIPCE and GP, two widely used approaches, are able to
create the input-output relationship in a reliable manner with R? of around 0.7. Inves-
tigations of the individual output parameter distributions uncovered differences between
ROM and CFD ground truth data with increasing deviations at local maxima of the data.
Increasing the polynomial order of NIPCE might be able to better describe the training
data, however an increased polynomial order also requires a larger amount of simulations.
With the existing 80 simulations, the polynomial order of 2 outperformed other NIPCE
approaches. Other surrogate models such as artificial neural networks or support vector
machines might also be possible candidates for ROMs in this context. GSA using Sobol
indices has emphasized the importance of mitral valve radius Ry and the angle o on the
model outputs. With the radius being the most important parameter. Moreover, looking
at individual segments of the WSS in the well-known 17-segment model has shown that
the sensitivities are regionally dependent. This is not surprising, as W.SS' is caused by the
interaction between the ventricular wall and the mitral jet and its orientation depends on
the location and size of the MV. Interestingly, the position of the MV annulus (y4 and z4)
did not have strong influences on the results with some exceptions of the regional WSS.
This means, that exact measurement of the MV angularity and size is more important
than the annulus position. This in turn means that including the annular movement in
ventricular hemodynamics studies might not be that important, particularly when the
focus of the study is on the energy loss (Ej,ss) or kinetic energy (Ej;,). Similar total
order sensitivities have been obtained with the GP and LR models. This is a good finding,
as it makes the results more independent from the choice of the surrogate model.

The next important observation was the influence of the input parameter variation
on the total sensitivity indices. While NIPCE had mostly constant sensitivities through-
out the parameter variation range, the sensitivities derived from the GP changed with
increasing parameter variation (see Supplementary Figure S3). Moreover, the ranking of
most sensitive to least sensitive input parameters changed with different variation ranges.
As such, at least for our application presented herein, we see the NIPCE as a more robust
surrogate model than GP and want to further stress the importance to perform GSA not
only for one input parameter variation but for a range of variations.

At last, the geometrical uncertainties were propagated through the surrogate model.
Once again, an increasing range of input parameter variation was selected to quantify the
effect of more exact measurements on the output data. Taken together, standard devia-
tions between 5-30% have been observed for the largest variation of 1.26 mm and 10 deg.
These variations can be reduced with an increased precision in a non-linear manner. On
this front, it is interesting to mention that the mean value of some parameters (e.g. Fgin)
does not change over an increased input parameter variation (however the SD of the mean
values increases).
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Within this study we have focused on ventricular blood flow in one neonatal subject
with an end-diastolic volume of 17ml. Any geometrical variation in such as small anatomy
will have drastic effect on the outputs as is also evident from our results. An investigation
of adult ventricular blood flow would be of interest to see whether our findings are trans-
latable to other geometries. Although we would expect smaller absolute variations, there
is no reason to believe that the relations between the input parameters and the general
observations would change.

The ground truth CFD model itself has some limitations. At first, the mitral valve
was modeled as a porous medium which is an abstract representation of the real valve.
However, including an FSI for 80 simulations is computationally infeasible, particularly
considering instabilities of such simulations and difficulties in automated simulations. In
addition, the atrium and aortic root were not patient specific but taken from existing
data and scaled to our case. On this front, more realistic geometries could increase the
patient-specificity of the model.

To perform the calculations, we have used our recently developed interactive pipeline
developed using Python, which can be found on https://github.com/DanielVerhuls/
Ventricle-reconstruction-pipeline. It allowed us to automate all steps from geom-
etry pre-processing, setup creation, meshing and simulation and is a first proof of the
robustness of the abovementioned pipeline.

5 Conclusion

Taken together, within this study, we have performed a comprehensive sensitivity analysis
and quantification of geometrical uncertainties on ventricular hemodynamics in a patient-
specific model. The main findings are:

e Non-linear influence of geometrical parameters on common output metrics.

e Different surrogate models are possible with NIPCE and GP as most promising
candidates.

e MYV angle and radius have highest influence on hemodynamics biomarkers.

e GSA should be performed over a range of input parameter variation for more ro-
bustness.

e UQ of echocardiography measurements has a 5-30% of variation and reduction input
uncertainty can drastically improve those values.

The methods presented herein have been summarized in the freely available tool SASQUATCH
which can be applied to arbitrary input-output relationships for surrogate modeling, sen-
sitivity analysis and uncertainty quantification in cardiac hemodynamics simulations.
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Appendix

Additional results
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Fig. S1: Histograms of all output parameters.
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Fig. S2: Performance of NIPCE and GP with different configurations.
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Standard Deviation of Outputs

In Table S1 you can see the corresponding absolute standard deviation of variation in the
outputs.

Input range in mm

Output 0.33 0.56 0.79 1.02 1.25
WSS,  0.032 0.10 0.18 0.25 0.33 0.41
WSS, 0.049 0.16 0.27 0.39 0.50 0.62
WSS;  0.045 0.15 0.25 0.36 0.46 0.57
WSS,  0.022 0.074 0.13 0.18 0.23 0.29
WSSs  0.099 0.33 0.55 0.78 1.0 1.2
WSSe 0.10 0.33 0.56 0.79 1.0 1.2
WSS, 0.016 0.054 0.092 0.13 0.18 0.22
WSSg  0.043 0.14 0.24 0.34 0.44 0.55
WSSy 0.061 0.20 0.34 0.49 0.63 0.78

WSS 0.022 0.072 0.12 0.18 0.23 0.29

WSS, 0.056 0.19 0.32 0.45 0.59 0.76

WSS, 0.077 0.26 0.44 0.61 0.77 0.94

WSS;3  0.071 0.23 0.40 0.56 0.73 0.89

WSSy, 0.14 0.45 0.77 1.1 1.4 1.8

WSS;s  0.071 0.23 0.40 0.56 0.72 0.89

WSS16 0.17 0.56 0.94 1.3 1.7 2.1

WSS,7 0.11 0.37 0.62 0.88 1.1 1.4

WSS 0.060 0.20 0.34 0.48 0.63 0.77

TVPG 2.7 8.8 15 22 28 35

Elpss 86x1077 28x10% 49x%x107% 69x106% 9.0x10% 1.1x10°°
Erin 20x107° 6.7x107° 11x107* 1.6x107* 21x107* 26x107*

Table S1: SD of outputs for input variation in mm.
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Table S2 gives the same information as Table S1 but relative to each outputs mean.

Input range in mm
0.01 033 056 079 1.02 1.25

WSS; 096 3.17 539 764 990 12.20
WSS, 0.41 1.36 232 328 426 5.24
WSSs 0.36 1.19 2.02 286 3.71 4.56
WSS, 0.76 251 426 6.02 777  9.52
WSSs 228 7.47 1240 17.04 21.30 25.19
WSS 2.12 6.97 11.69 16.14 20.43 24.42
WSSz 0.77 254 435 6.22 815 10.16
WSSg 1.54 5.09 8.65 1224 15.87 19.54
WSSy 1.72 571 9.74 13.87 18.11 22.50
WSS9 0.79 2.63 451 646 850 10.62
WSS;; 220 7.24  12.00 16.42 20.69 24.95
WSS 2.82  9.29 1548 20.89 25.49 29.82
WSS 1.29 425  7.20 10.16 13.13 16.09
WSSy4 1.60 530 9.09 13.04 17.20 21.66
WSS;5 1.16  3.83  6.51 9.21 11.93 14.67
WSS 3.09 10.07 16.45 22.02 26.97 31.38
WSSz 1.85 6.11 10.37 14.63 18.89 23.15
WSS 140 460 779 1095 14.04 17.02
TVPG 156 519 896 1295 17.26 22.01
Eloss 269 885 1491 20.77 26.38 31.55
Eyin, 148 490 830 11.68 15.04 18.37

Output

Table S2: SD of outputs in percent for input variation in mm.
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