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Abstract

The ability to predict the yield of cultivated meat production facilities is valuable in providing cost of goods sold
predictions as part of techno-economic analyses and as a key performance metric in bio-manufacturing facility design and
optimisation activities ahead of capital investment and facility construction. Existing cultivated meat techno-economic
analyses either assume an achievable yield or predict it using model equations which are quick to solve but omit or
simplify key performance characteristics. There is, at present, no openly available modelling workflow that enables
yield prediction or optimisation for given bioreactor architecture, geometry and operational inputs. The present work
builds on existing yield prediction approaches through the use of computational fluid dynamics to provide more targeted
performance characterisation, coupled to a Bayesian optimisation workflow to optimise yield against bioreactor geometric
and operational input parameters and made openly available. Application to 20,000 litre and 42,000 litre stirred tank
reactors suggest bioreactor performance limited yield (not cell metabolism limited yield) could be higher than reported
in previous studies. Application to a previously considered 300,000 litre air lift reactor design suggests that yields used
in a recent techno-economic analysis are achievable, from a bioreactor performance perspective.

1 Introduction
Conventional meat production through animal agriculture has well documented sustainability and capacity challenges.
Global greenhouse gas (GHG) emissions from meat production contribute to 54% of all agriculture-based emissions
(OECD [2021]), which make up 17% of the global emissions (FAO [2021]), putting meat production at more than 9% of
global emissions. Beef has the highest footprint, with one kilogram of final product generating 99.5 kg of CO2 equivalent
green house gas omissions and requiring 25 kg of dry animal feed. 46% of the habitable land on Earth is used for
animal agriculture, of which 76% is used to provide only 37% of the global protein supply (Ritchie and Roser [2021]).
Providing food for a global population predicted to grow from 8.0 billion in November 2022 to 9.7 billion in 2050 and
almost 10.4 billion in the mid 2080’s (United Nations and Social Affairs [2022]) will require considerable conversion of
existing forest to animal agriculture. Alternative means of providing protein, either through plants or cultivating meat
cells separate to animals, offer the possibility of providing protein nutrition with a significantly reduced environmental
footprint and within the resources available to meet future demand. Cultivating meat, which involves growing cells in
media in bioreactors of progressively larger scales, is one of the alternative means of providing protein. One of the
primary challenges of cultivating meat is developing the capability to produce consumer products that compete effectively
on cost with conventionally farmed meat.

Constructing models of production yield and production facility capital and operating costs is therefore extremely valu-
able, both for the ability to predict costs ahead of facility development and to ascertain which aspects of the relevant cell
biology and industrial production may be the greatest cost limiting constraints. Such modelling presents both breadth
and depth challenges, requiring attention to the details of cell metabolism and growth, fluid and chemical dynamics of
bioreactor performance and bio-production facility design, construction and operation. A common approach to predict-
ing the cost of goods sold (COGS) for cultivated meat is techno-economic analysis (TEA) which is a high level system
modelling activity utilising process design and production facility performance and cost modelling. Such activities often
use laboratory and/or pilot scale performance data in combination with predicted improvements with scale. For cultivated
meat analyses a key output is the production yield from the bio-process, which is then combined with the capital and
operating costs of the production facility to generate a cost of goods sold.

Previous TEA’s for cultivated meat (Negulescu et al. [2023]; Humbird [2020]; Risner et al. [2020]; Vergeer et al. [2021];
Garrison et al. [2022]) have used a variety of tools and modelling approaches, and have significant differences of values
for model inputs, the cost of media being the most apparent, and wide variation in the predicted COGS. Tables 1 and 2
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Study Line Diameter Hydrated
Mass

Dry Mass
Fraction

Doubling
Time

Oxygen
Uptake

Rate

Respira-
tory

Quotient

Ammonia
Produc-
tion Rate

Lactate
Produc-
tion Rate

[µm] [pg] [hr]
[

mmol
gdryhr

] [
mmol
gdryhr

] [
mmol
gdryhr

]
Vergeer

et al.
[2021]

Unspecified
MSC

9.4 3084 0.23-0.3 21-35 - - - -

Risner
et al.

[2020]

Unspecified
MSC

- - - 8-24 Various - - -

Humbird
[2020,
2021]

CHO 17.7 3000 0.3 24 0.45 - 0.50 1.20 - 1.27 0.005 -
0.092

0.053 -
0.624

Negulescu
et al.

[2023]

Unspecified
MSC

17.7 3000 0.3 23 Referenced 1.20 - -

Table 1: Cell lines and characteristics considered in existing TEA models. MSC: Mesenchymal Stem Cell; CHO: Chinese
Hamster Ovary.

summarise the cell line and bioreactor characteristics, respectively, used in previous TEAs. From a bioreactor performance
characterisation perspective, the maximum achievable cell density is key due to it’s direct link to the COGS. Some studies
use a fixed value as input, others evaluate it as part of the modelling process. The TEA of Humbird, first in an open
access publication (Humbird [2020]) and subsequently summarised in a journal publication (Humbird [2021]) provides
the most detailed approach to determine the maximum achievable yield by modelling the mass transfer, mixing time and
induced hydrodynamic stress characteristics of stirred tank bioreactors from 1,000 to 250,000 litre volumes. The open
access publication is more thorough and referenced subsequently here. An overview of specific bioreactor performance
models employed in previous TEAs is shown in Table 3, highlighting the extent of model use by Humbird [2020]. A more
detailed review is provided in the sections below.
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Study Line Type Volume
(Working)

Doublings Starting
Cell

Density

Final Cell
Density

Oxygen
Uptake

Rate

Oxygen
Transfer

Rate

Yield

[m3] [ cells/ml] [cells/ml]
[mmol

L hr

] [mmol
L hr

]
gwet/L

Vergeer
et al.

[2021]

Unspecified
MSC

STR & PR 0.06
(0.05),

12.5 (10),
2.5 (2)

7−11 - 5×107 - -

Risner
et al.

[2020]

Unspecified
MSC

STR 20 3-10 - 1×107 −
2×108

Various Various

Humbird
[2021,
2020]

CHO STR 1-200 2 or 6 - Constrained Time
varying,
reaction

dependent

Modelled 46, 120
(fed-batch,
sparge de-
pendent),
195 (per-
fusion)

Negulescu
et al.

[2023]

Unspecified
MSC

STR &
ALR

42 & 211
(STR),

262 (ALR)

2.25 6.6×106 3.3×107 ≤ 10.3 Modelled 100

Table 2: Bioreactor characteristics and performance considered in existing TEA models. STR: Stirred Tank Reactor; PR:
Perfusion Reactor; ALR: Air Lift Reactor.

TEA O2 Transport CO2 Transport Mixing Time Hydrodynamic Stress

Risner et al. [2020] Y N N N

Humbird [2020] Y Y Y Y

Vergeer et al. [2021] N N N N

Garrison et al. [2022] N N N N

Negulescu et al. [2023] Y N N N

Table 3: Bioreactor performance characteristics modelled in previous techno-economic analyses.

1.1 Oxygen Mass Transfer
For cells to grow, the overall rate at which oxygen is transferred in to the media (the oxygen transfer rate, OTR) must
be equal to or greater than the rate at which it is consumed by the cells (the oxygen uptake rate, OUR). The oxygen
transfer rate (OTR) is often represented as the product of a bioreactor system level mass transfer coefficient, kLa, and a
gas concentration difference:

OTR = kLa(C∗
O2

−CO2) (1)

where CO2 is the dissolved oxygen concentration the media and C∗
O2

is the saturated concentration at the gas liquid
interface, which can be calculated using Henry’s law and the gas concentration. The concentrations are volume averages,
with no consideration for spatial variation. The system level mass transfer coefficient for stirred tank bioreactors is often
modelled using an equation of the form

kLa = A
(

P
V

)α

(us)
β (2)

where P is the impeller power, V the media volume, us the sparged gas superficial velocity and A, α, β are model
constants. Humbird [2020] uses values from a prior study (Xing et al. [2009]) of CHO cell growth in a 5,000 litre
stirred tank reactor (STR) giving A = 0.075,α = 0.47,β = 0.8, whereas Negulescu et al. [2023] use A = 0.002,α =
0.7,β = 0.2 for STRs and A = 0.32,α = 0,β = 0.7 for airlift reactors (ALRs). The difference in model constant values
is apparent.
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For the concentration difference (C∗
O2

−CO2) in equation 1, Humbird [2020] employs a log mean difference:

C∗
O2

−CO2 =

(
C∗

O2
−CO2

)
btm

−
(

C∗
O2

−CO2

)
top

ln

[(
C∗

O2
−CO2

)
btm(

C∗
O2

−CO2

)
top

] (3)

with terms at the top (top) and bottom (btm) of the media calculated from operational characteristics and steady state
mass flux balances. Negulescu et al. [2023] assume a maximum possible dissolved oxygen concentration in place of the
saturated concentration (6.7 mg/L) and a setpoint of 2.5mg/L for the dissolved concentration.

Risner et al. [2020] use a slightly different form for the oxygen transfer rate:

OTR = kA(C∗
O2

−CO2) (4)

where the volumetric mass transfer coefficient kLa is replaced with the coefficient k and the mean bubble area A, varied as
part of a broad sensitivity analysis.

1.2 Carbon Dioxide Mass Transfer
In addition to transferring oxygen from the gas to the media, the bioreactor must also remove the carbon dioxide produced
by the cells from the media to the gas. An analogous approach to that used for oxygen transfer could be applied to
evaluate the carbon dioxide removal rate, however model equations for the carbon dioxide mass transfer coefficient are
not as prevalent as for oxygen, and published measurements of dissolved carbon dioxide concentrations in production scale
bioreactors are rare. Given this lack of relevant data and models, Humbird [2020] considers the saturated concentration of
dissolved carbon dioxide at the top of the media based on the mole fraction of carbon dioxide being transferred in to the
headspace from a mass balance between the injected sparged gas and the gas consumption and production by cells. The
dissolved carbon dioxide concentration in the media that is in interfacial equilibrium with the headspace concentration
is

pCO2 = γCO2 pb (5)

where γCO2 is the mole fraction of carbon dioxide in the headspace and pb is the headspace back pressure. This dissolved
carbon dioxide concentration is then required to be below the limit of 100 milli-bar based on prior studies of concentrations
that limit growth in CHO cells (Gray et al. [1996]).

1.3 Mixing
In addition to providing sufficient oxygen to the cells, the bioreactor must also ensure that it is well distributed throughout
the media (on the assumption that the cells are also well distributed). Humbird [2020] addresses this requirement by
utilising a model equation for the mixing time of stirred tank reactors from Nienow [2014]:

tm ≈ 6T 2/3
(

P
V ρL

)−1/3(D
T

)−1/3(HL

T

)2.5

(6)

where ρL, D, HL and T are the media density, impeller diameter, liquid height and bioreactor diameter respectively. To
ensure well distributed dissolved oxygen Humbird [2020] requires that the mixing time be less than the mass transfer
time:

tm <
1

kLa
(7)

1.4 Induced Hydrodynamic Stress
The hydrodynamic environment inside a bioreactor has an impact on cell behaviour and may cause the cells to reduce the
rate at which they grow or to cause them to die. Existing characterisations of this imposed hydrodynamic stress include
shear stress, shear rate and the rate at which kinetic energy is dissipated to heat at the smallest scales of turbulent motion.
The energy dissipation rate has been characterised both as the average and maximum rates within the media, with the
maximum dissipation rate occurring in close proximity to the impeller (Chalmers [2015, 2021]; Nienow [2006]).

λk =

(
ν3

εmax

) 1
4

(8)
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Humbird [2020] follows a commonly used approach of converting the peak dissipation rate into a Kolmogorov length
scale, equation 8, which is then compared to the cell diameter to determine if the cell experiences any of the dissipated
energy; it is proposed that if the cell diameter is less than the Kolmogorov length scale then it does not experience any
energy dissipation as it is occurring at scales larger than the cell, and it’s growth is unaffected by the hydrodynamics.
This approach has both theoretical and practical drawbacks. From a theoretical perspective, Kolmogorov’s hypothesis
considers that the flow structure is determined by the average energy dissipation rate, not the peak, and the length scale
at which the energy dissipation peaks is an order of magnitude greater than the Kolmogorov length scale (Pope [2000]).
From a practical perspective, the peak energy dissipation rate used in the calculation is taken as a time averaged value,
whereas the cells moving through the media around the impeller will experience the instantaneous local energy dissipation
rates, not a time averaged value. Such drawbacks may be responsible for poor correlation between the Kolmogorov length
scale, the cell diameter and cell growth limitation or death (Chalmers [2021]).

Despite such challenges, consideration of the effects of hydrodynamic stress on cell behaviour is critical to predict yield.
Humbird [2020] uses a minimum viable Kolmogorov length scale of 20µm, equivalent to the considered CHO cell di-
ameter, to determine the limiting peak energy dissipation rate, and to subsequently determine the limiting average energy
dissipation rate through a relationship between the maximum, εmax and average, ε , energy dissipation rates for Rushton
turbines, εmax = 48ε , from Nienow [2009]. Such calculation results in limiting the impeller power so that the average
power per unit volume (P/V in equation 2) does not exceed 64 W/m3. By comparison, for 20,000 litre and 42,000 litre
STRs, Negulescu et al. [2023] use P/V = 500 W/m3, an order of magnitude higher. The limit in Humbird [2020] is
likely to be overly restrictive as a result of applying the relationship between average and maximum dissipated power
from a single impeller to STRs with two impellers. When the volume averaged power is taken as being provided by two
impellers, the limit becomes 128 W/m3.

The motion of bubbles through the media and bursting at the free surface also generates energy which is dissipated to
heat, and can be assessed in a similar way. Considering the energy dissipated from the relative motion of bubbles through
the media, the conditions can also be characterised in terms of an eddy dissipation. Such evaluation is complex and
experimental experience offers a simper consideration: Humbird [2020] uses a limit of a sparged gas superficial velocity
at the top of the vessel of us = 0.006 m/s, equivalent to a gas sparging rate of 0.1 vessel volumes per minute (vvm) in a
20,000 litre STR. Negulescu et al. [2023] use a limit of 0.1 vvm for all bioreactor volumes considered.

1.5 Opportunities for Bioreactor Performance Modelling
Prior TEAs have used assumed values for a range of performance aspects, with Humbird’s work providing the most
detailed technical modelling framework. This framework enabled a quick optimisation of bioreactor operating conditions
to be performed in Excel, providing predicted optimum maximum yields for STRs of a wide range of working volumes.
A drawback to this approach is the description of bioreactor performance with empirical equations from prior works at
specific working volumes. The constants used in Equation 2 are from work using a 5,000 litre STR, which are then applied
across a much wider range, 1,000 to 250,000 litres, with no consideration of other critical aspects of performance, such
as the size of the bubbles generated by the sparger.

It would be valuable to use a similar workflow to enable optimisation of both bioreactor operation and geometry, allow-
ing consideration of bespoke impeller geometries and bubble size distributions, which may provide scope for generating
higher maximum yields than expected from the more constrained approaches used so far. In this paper, workflows are
developed that enable such optimisation by using computational fluid dynamics (CFD) to provide performance character-
istics for bioreactor operational and geometric variation. Two bioreactor ”system level” models are used, one following
the approach of Humbird [2020] but with the use of CFD generated performance metrics, and the second a new approach
that aims to improve on some aspects of the performance modelling, while still using CFD generated performance metrics.
Figure 1 illustrates these workflows schematically.

In addition, CFD models have the ability to predict the levels and effects of spatial variability of dissolved oxygen and
nutrients on cell growth and hence maximum yield. A CFD modelling approach is used here to provide insight in to
the likelihood of spatial variability effecting the predicted maximum yield from the system level models, which assume
spatial homogeneity in order to enable simpler and more timely yield calculation.

These system level and CFD models are applied to the optimisation of 20,000 and 42,000 litre STRs in fed batch model as
considered by Humbird [2020] and Negulescu et al. [2023] respectively. The CFD model for assessing spatial variability
is applied to a 300,000 ALR as assessed previously in CFD by Li et al. [2020], and close to the volume of the ALR
considered by Negulescu et al. [2023].

The focus of these models is to provide insight in to the yield potential achievable through bioreactor design and operation.
To this end, yield limits associated with metabolite concentrations are not considered in the models, as these are indepen-
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Figure 1: Optimisation workflows developed in the present study. Bioreactor inputs (geometry, operating parameters)
and outputs (yield) in dark blue, models (CFD, bioreactor system and optimisation) in orange, bioreactor performance
characteristics in cyan and predicted optimum yield in purple. The additional gas hold up performance used in system
model B is highlighted with a dashed box.

dent of bioreactor mixing, mass transfer and induced stress performance. The bioreactor yield potential considered here
could subsequently be combined with the yield potential from improved cell response to metabolite concentrations that
may be achieved through cell line selection or metabolic engineering.

2 Methods & Materials

2.1 Bioreactor System Level Models
System level bioreactor models neglect spatial variability within the media, which allows them to predict performance
over the whole production duration, which is not possible with full three dimensional CFD models that capture spatial
variability due to the computational effort required. Two system level models are used, the first based on the approach of
Humbird [2020], the second a new approach which aims to improve the representation of carbon dioxide mass transfer by
making use of an additional bioreactor performance characteristic, gas hold up.

2.1.1 System Level Model A

The yield is evaluated from the number of cells in the media at the time when cell growth is limited by one of the
constraints. The number of cells over time is evaluated from:

N(t) = N0 e(µt) (9)

where N0 is the initial number of cells, µ the growth rate and t time. The mixing time, mass transfer, carbon dioxide
concentration and induced stress constraints are as follows.

The mixing constraint, where the mixing time must be less than the mass transfer time is implemented as in equation
7, with the mixing time, τm and oxygen mass transfer coefficient, kLa, evaluated from a CFD model. This constraint is
independent of the process duration, t, in equation 9.

The oxygen mass transfer constraint is implemented by limiting the process duration time, t, in equation 9, to times when
the total oxygen uptake rate of all cells is less than or equal to the rate at which oxygen is being transferred in to the media.
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This can be expressed as:
kLa(C∗

O2
−CO2)≥ qO2N(t) (10)

The mass transfer coefficient, kLa, is evaluated from a CFD model, the concentration difference, (C∗
O2

−CO2), is evaluated
from equation 3, and qO2 is the oxygen uptake rate per cell.

The carbon dioxide concentration constraint is implemented by limiting the process duration time to conditions when the
dissolved carbon dioxide concentration is less than or equal to a prescribed limit:

CCO2 ≤Clim
CO2

(11)

where CCO2 is evaluated from equation 5 and Clim
CO2

is taken to be 100 millibar as in Humbird [2020]. The mole fraction of
carbon dioxide in the headspace as required in equation 5 is evaluated as in Humbird [2020].

The impeller induced stress constraint is implemented by limiting the maximum time averaged turbulence energy dissi-
pation rate to be less than or equal to a prescribed limit:

εM ≤ εM
lim (12)

The time maximum time averaged turbulence energy dissipation rate is evaluated from a CFD model, and the limiting
value is prescribed as an input. The bubble motion and rupture stress limit is implemented as:

us ≤ ulim
s (13)

The superficial velocity, us, and it’s limit are evaluated as in Humbird [2020], with ulim
s = 0.006 m/s.

The oxygen uptake rate per cell is taken to be 0.48963 millimoles per hour per gram dry weight and the carbon dioxide
production rate is 0.593197 millimoles per hour per gram dry weight, corresponding to the values derived by Humbird
[2020] for the intermediate CHO metabolism. The intermediate metabolism is chosen here as a compromise between
the wild-type metabolism and the enhanced metabolism which was developed to take advantage of sparging gas with
90% oxygen. To be consistent with this intermediate metabolism, all CFD models are run with 21% oxygen gas. Figure 2
shows the results from system level model A when run with the wild-type and intermediate metabolisms, showing visually
identical results to Figure 2.7 from Humbird [2020] for the two doublings scenario.

2.1.2 System Level Model B

System level model A is limited by it’s approach to carbon dioxide; it does not consider CO2 mass transfer as rigorously
as it does for oxygen, and the concentration constraint is based on an equilibrium saturated concentration in the liquid at
the headspace free surface rather than a concentration in the whole liquid media volume. System level model B improves
these aspects by utilising a carbon dioxide mass transfer coefficient and the steady state bubble volume both evaluated
from a CFD model.

In model B, the volume average gas phase (bubbles) and liquid phase (media) concentrations of both oxygen and carbon
dioxide are described by coupled ordinary differential equations:

dCl

dt
= kLa(CgH −Cl)+qN (14)

dCg

dt
=−kLa(CgH −Cl)+Q(Cin

g −Cg)/V (15)

The equation for dissolved concentration in the liquid media (14) considers the transfer from the gas through the kLa(CgH−
Cl) term, where H is Henry’s coefficient for the species concerned, and the consumption by the cells through the qN term,
where q is the cell uptake or production rate and N the number of cells. The equation for the concentration in the gas
bubbles (15) considers the transfer to the liquid through the −kLa(CgH −Cl) term, and the increase in concentration due
to freshly sparged gas through the Q(Cin

g −Cg)/V term, where Q is the volumetric sparging rate, Cin
g the concentration in

the sparged inlet, and V the steady state volume of immersed gas bubbles.

Equations (14, 15) are solved using SciPy’s odeint function, taking mass transfer coefficients for oxygen and carbon
dioxide and a steady state immersed bubble gas volume from a CFD model, with all other parameters specified as direct
model inputs.
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8 (a) Lac/Glc=1.77, Gln/Glc=0.13

(b) Lac/Glc=0.94, Gln/Glc=0.047

Figure 2: Time evolution of cell density and metabolite concentrations from the present study for the wild-type (a) and
intermediate (b) CHO cell metabolisms from Humbird [2020].

The mixing constraint now considers that the mixing time must be shorter than both the oxygen and carbon dioxide mass
transfer times:

τm <
1

kLaO2
and τm <

1
kLaCO2

(16)

The mass transfer constraint now limits the production duration to times at which dissolved oxygen is present and dis-
solved carbon dioxide is lower than the prescribed limit:

CO2
l > 0 and CCO2

l <
(

CCO2
l

)lim
(17)

with the CO2 limit at 100 millibar as usd in model A.

The impeller induced stress constraint and oxygen uptake and carbon dioxide production rates are as used in model A.
Model B does not implement a bubble motion hydrodynamic stress constraint through limiting the superficial gas velocity
as in model A. The oxygen uptake and carbon dioxide production rates are as used in system level model A.

2.2 Lattice Boltzmann Computational Fluid Dynamics
Computational fluid dynamics simulations of bioreactors face a number of challenges, across turbulence modelling and
transport, bubble transport and mass transfer, and computational efficiency. Lattice Boltzmann approaches are well suited
to graphics processing unit (GPU) architectures, enabling similar computational efficiency on a small number of GPUs
to that found for finite volume approaches on high performance compute clusters comprised multiple many core central
processing units. The computational efficiency and physical accuracy benefits of the commercial lattice Bolztmann CFD
package M-Star in simulating bioreactors has been shown by Haringa [2022]. M-Star is used here to provide two simula-
tions: 1) the prediction of bioreactor performance characteristics such as mass transfer, hydrodynamics stress, gas holdup
and mixing time, and 2) the prediction of the effects of spatial variation in dissolved oxygen concentration on the achiev-
able yield through coupling with a simple metabolic model of dissolved oxygen concentration dependent oxygen uptake
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rate. M-Star is run on two NVLinked NVidia RTX A6000 GPU’s, providing 80 teraflops of single precision compute
capability and 96GB RAM.

M-Star uses the D3Q19 velocity vector set for discretisation of the velocities (M-Star). The equations are solved on
a fixed computational lattice, analogous to cubed finite volumes, with the spatial resolution defined as the number of
lattice elements used to discretise the x-direction extent of the bioreactor, equal to the diameter. Stationary boundaries are
grid aligned, with test simulations replicating previous results (Haringa [2022]) showing negligible effect on the outputs
of varying between grid aligned and wall interpolated boundaries. Moving bodies are represented using the immersed
boundary method (Zhu et al. [2011]). All walls are no-slip surfaces, with the top domain boundary taken to represent
the free surface between the liquid and gas and represented by a no-shear condition. Such an implementation does not
resolve the free surface, which enables use of larger timesteps to reduce the computational effort. The consequence
of this approach is that the mass transfer from the headspace gas in to the media is not captured. This interface mass
transfer is negligible compared to the mass transfer from sparged bubbles at sufficiently large bioreactor volumes (≥ 5,000
litres).

Turbulence is modelled using a Large Eddy Simulation approach, with the Smagorinsky subgrid scale model. All simula-
tions are performed with the same value of the Smagorinksy subgrid model constant, CLES = 0.1. Wall functions are not
considered, due to their effect being shown to be small in the context of comparison to experimental impeller discharge
profiles (Haringa [2022]).

In addition to solving for the turbulent motion of the liquid phase, the transport of an injected dye and dissolved gases
within the liquid media are modelled using the general scalar transport equation

∂Cs

∂ t
= ∇ · (Ds∇Cs)−∇ · (uCs) (18)

where Cs is the concentration, Ds the mass diffusivity of the species concerned and u is the velocity of the media.

The motion of gas bubbles injected from a sparger is captured by a Lagrangian approach. The bubbles are removed at
the no-shear boundary at the top of the media to represent the transmission to the headspace gas. In order to reduce the
computational effort required to model a large number of bubbles, a parcel approach is utilised in which the Lagrangian
dynamics of parcels, each representing a number of bubbles, is computed using Newton’s second law (Thomas et al.
[2022a]):

mpap = Fg,p +Fa,p +Fd,p (19)

where mp, ap are the parcel mass and acceleration, and Fg,p, Fa,p, Fd,p are the forces on the parcel from gravity, added
virtual mass and drag respectively. The parcels are two way coupled to the fluid using Newton’s third law, based on either
just the buoyancy force gα(ρg/ρ f −1) or all of the forces in equation 19. The use of the simpler buoyancy force coupling
offers a reduction in computational effort through the use of larger time steps.

The mass transfer of gases between the parcels and the media is modelled by

ṅ = kb
LAp(HCg −C) (20)

where ṅ is the mass flux from the parcel, kb
L is the bubble specific mass transfer coefficient and Ap is the parcel surface

area:
Ap = Npπd2

p (21)

where Np is the number of bubbles in the parcel and dp is the bubble diameter, which changes in response to the local
hydro-static pressure through

db = db,PH

(
PH

PH +ρLghb

)(1/3)

(22)

where db,PH is the diameter at the headspace pressure PH , ρL the media density, g gravitational acceleration and hb the
depth of the bubble below the head space free surface. The effects of coalescence and break up of bubbles and bubble
parcels can be captured through consideration of a critical coalescence Reynolds number and the ratio of local energy
dissipation rate to bubble surface energy (Thomas et al. [2022b]). Coalescence and splitting is ignored in the present study,
in alignment with previous studies where the presence of surfactant and anti-foaming agents suppresses such behaviour
(Li et al. [2020]).

The bubble specific mass transfer coefficient, kb
L, can be represented by an empirical equation, or one derived from a

theoretical analysis. Previous studies with M-Star shows that using a constant value can provide accurate predictions with
reduced computational cost (Farsani et al. [2022]). The approach of Kawase and Moo-Young [1990] is used here:
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kb
L = 0.3(DL,O2)

1
2

(
ε

ν

) 1
4

(23)

where DL,O2 is the mass diffusivity of oxygen in the media and ε the local eddy dissipation rate.

2.2.1 Validation

Previous work has validated M-Star for bioreactor mass transfer (Thomas et al. [2021b, 2022b, 2023]; Farsani et al.
[2022]; Schlaich et al. [2023]), mixing time (Thomas et al. [2021a]; Fitschen et al. [2021]) and impeller power number
(Thomas et al. [2021a]; Haringa [2022]; Kuschel et al. [2021]). With prior validation covering CFD predictions of mass
transfer and mixing time, we are interested in further validation of the prediction of the flow field in the proximity of the
impeller, where the peak energy dissipation rate occurs which drives the induced stress metric, and the gas hold up which
is used in system level model B to provide the steady state immersed bubble volume.

A recent comparison of M-Star to experimental velocity and turbulence data in the discharge region of a Rushton impeller
was made by Haringa [2022], and is extended here to consider higher spatial resolutions. The geometry of a bioreactor
with a single Rushton turbine as described by Jahoda et al. [2007] is used with variations in impeller blade thickness,
B, an often neglected dimension in mesh resolution and validation studies, the number of elements across the bioreactor
diameter and blade thickness and the Courant Number. All models are run for 60 seconds of operation, reaching steady
state within 20 seconds, and reporting values that are time averaged over the last 40 seconds. Table 4 shows the range
of variations considered and the resulting predictions of power number and the minimum and maximum lattice densities,
which are a predictor of error and should be as close to unity as possible. The number of lattice elements across the
bioreactor diameter is varied to a higher value than considered previously.

Case B [mm] NX NB Co NP,τ NP,ε ρLB,min ρLB,max t [mins]

A1 5 200 3.4 0.05 3.67 4.25 0.993 1.007 1.17

A2 5 400 6.9 0.05 3.67 3.96 0.990 1.005 14.14

A3 5 600 10.3 0.05 3.57 3.96 0.987 1.005 67.66

B1 1.6 200 1.1 0.05 5.06 5.62 0.989 1.005 1.16

B2 1.6 400 2.2 0.05 3.36 4.00 0.991 1.004 14.12

B3 1.6 600 3.3 0.05 3.98 4.86 0.986 1.004 67.64

B4 1.6 800 4.3 0.05 4.38 4.95 0.984 1.005 179.78

C1 1.6 200 1.1 0.025 4.68 5.34 0.996 1.002 2.31

C2 1.6 400 2.2 0.025 3.44 4.09 0.997 1.001 23.21

C3 1.6 600 3.3 0.025 4.54 5.13 0.996 1.001 72.44

Table 4: The range of blade thicknesses, B, lattice divisions across the tank diameter, NX , lattice divisions across the
impeller blade thickness, NB, and Courant numbers (Co) considered. The outputs are the turbine torque and energy
dissipation rate derived power numbers, NP,τ and NP,ε respectively, the minimum and maximum lattice densities, ρLB,min
and ρLB,max and the simulation time for one second of bioreactor operation, t.

Table 4 shows a significant range of predicted impeller power numbers, from 3.44 to 5.62, which is wider than that
reported by Haringa [2022]; 3.69 to 4.81. Experimental data has power numbers in the range 4.6 to 6.0 (Kaiser et al.
[2017]; Distelhoff et al. [1995]). The range of minimum and maximum lattice densities is very similar, 0.984 to 1.007 in
the present study, and 0.990 to 1.004 from Haringa [2022].

Comparison of the predicted time averaged radial velocity, turbulence kinetic energy and turbulence energy dissipation
rate along a radial line at the centre of the impeller, analogous to Figure 1 from Haringa [2022] is shown in Figure 3.
The trends and comparison between the CFD and experiments are similar to those in Haringa [2022], with the same
characteristics and mechanisms at play. Of particular note in the present comparison are the NX = 600 and 800 cases,
which extend the resolution to significantly higher levels - the maximum considered in Haringa [2022] is NX = 360. The
higher resolutions considered here do not show significant improvement in the comparison to experimental data.

The comparison of predicted power number and discharge flow to experimental data and previous studies using M-
Star indicates that employing a higher spatial resolution does not offer significant improvements in the accuracy of the
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predictions. The higher resolutions do require significantly longer simulation duration, and are therefore not considered
suitable for use in optimisation workflows at this stage as a result of taking orders of magnitude longer to generate
predictions that are not substantially more valuable in terms of predictive accuracy. As a result the NX = 200, Co = 0.05
setup is selected for subsequent use. It may be valuable to note that the resolution sensitivity in terms of the number
of elements across the blade thickness appears to suggest that a resolution of more than seven elements across the blade
thickness leads to a mesh independent solution, which was not achieved with the highest spatial resolution with the 1.6mm
thick blades. The bioreactor geometries considered subsequently will use common blade thicknesses, and the overall
resolution required to achieve the indicated resolution independent solution would not be computationally efficient enough
for the use here in an optimisation workflow. Thorough comparison of lattice Boltzmann simulations of Rushton (and
other) impellers to experiment in terms of NX and NB may be valuable to determine how to best evaluate and characterise
spatial resolution independence, and the most appropriate model configuration and hardware set-up and to achieve. Whilst
potentially valuable, such study is outside the scope of the present work.

Figure 3: Resolution dependency of velocity, turbulence kinetic energy and eddy dissipation rate with blade thickness
and Courant number, compared with experimental data. Top row: green circles - velocity summary by Ranade and Joshi
[1990]; black circles - Haringa et al. [2018]. Middle row: green circles - Wu et al. [1989]; Wu and Patterson [1989]; ;
black circles - Haringa et al. [2018]; yellow circles - Murthy and Joshi [2008]. Bottom row: green circles - Ducci and
Yianneskis [2005]; black circles - Wu et al. [1989]; Wu and Patterson [1989]; yellow circles - Ducci and Yianneskis
[2005].

For use with system level model B, the CFD model is required to predict the steady state immersed bubble volume, or gas
hold up when expressed as a fraction of the liquid volume. As there has been less prior work to validate M-Star for gas
hold up predictions, a comparison is made here with the experimental data for gas hold up in bubbles columns with a fine
pore sparger as reported by Kanaris et al. [2018]. The comparison is made for an air-water bubble column of 9cm width.
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Bubble splitting and coalescence is not modelled in M-Star, rather the inlet bubble size distribution is taken from the
measured distribution, Figure 3.a in Kanaris et al. [2018]. The bubbles are modelled individually with no use of parcels
and the bubble fluid momentum coupling is through Newton’s third law with the use of equation 19. Figure 4 compares
the gas hold up from Kanaris et al. [2018] with predictions from M-Star, showing good agreement in the homogeneous
bubble regime, us ≤ 0.024, the limit of which is an order of magnitude greater than the sparged velocity limit applied by
Humbird [2020] (us ≤ 0.006).

Figure 4: Comparison of predicted gas hold up from M-Star to the experimental data of Kanaris et al. [2018].

2.2.2 Bioreactor System Level Characterisation

The first CFD simulation approach provides bioreactor performance metrics - gas hold up, mixing time, mass transfer
coefficients and hydrodynamic stress - which are subsequently used as inputs to system level models A and B which then
subsequently predict yield. Such a combination provides a modelling workflow that takes bioreactor design and operation
as inputs, and provides production yield as an output (Figure 1).

The mixing time is evaluated by depositing a conserved scalar, or dye, in to a region of the media after 10 seconds of
bioreactor operation and tracking the coefficient of variation of the dye concentration over time. The time taken for
the coefficient of variation to reduce to 5% is taken as the mixing time (reduction to 5% and 1% are common in the
literature).

The gas hold up, or steady state immersed bubble volume is reported directly by M-Star.

The evaluation of the bioreactor mass transfer coefficients for oxygen and carbon dioxide follow the gassing out method
(Garcia-Ochoa et al. [2010]). For the absorption of oxygen from the gas to the liquid the initial concentration in the media
is set to zero, and the time evolution of the average concentration is used to calculate kLa from

ln
(

1− C̄
C∗

)
=−kLa t (24)

where C∗ is the equilibrium interface oxygen concentration calculated from Henry’s law. For the desorption of carbon
dioxide from the media to the gas, the initial concentration is set to 4.464×10−3 moles per litre, and the time evolution
of the average concentration is used to calculate kLa from

ln
(

C0

C̄

)
= kLa t (25)

where C0 is the initial carbon dioxide concentration. The average concentration in each equation, C̄, is taken over values
at probe locations spanning the height of the media. Probe locations for a 20,000 litre STR are shown in Figure 5. Probe
location in the 42,000 litre STR model are scaled from the 20,000 litre locations.

The hydrodynamic stress is evaluated as the maximum value of the time averaged eddy dissipation rate, calculated through
a custom field function in M-Star.
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Figure 5: Probe locations (purple) in a 20,000 litre STR CFD Model. Impeller and shaft (blue), sparger (cyan) and media
height (red line) are also shown.

System level characterisation CFD models couple the bubble parcels to the fluid flow using the buoyancy force only in
order to reduce computational effort.

2.2.3 Bioreactor Spatial Distribution Performance

The second CFD simulation approach aims to provide an initial inisght in to the effects of spatial variability on the
achievable yield. The system level characterisation coupled with a CFD characterisation provides a prediction of the
maximum achievable yield, assuming that the effects of spatial in-homogeneity are negligible, i.e. there are no local
regions starved of oxygen. The CFD model can be set-up to predict the occurrence of such regions when coupled to cell
metabolic rates. Such models cannot be run to simulate the whole production duration as they would take longer to run
than the production duration. They can, however, be used to predict if local regions of low oxygen will exist at a given cell
density, and therefore can be used to indicate if spatial in-homogeneity could affect a maximum achievable yield predicted
by the system level characterisation and performance model workflow.

In order to capture spatial variation in dissolved gas concentration and the effects on cell growth, the general equation for
the transport of a scalar used to model transport of dissolved oxygen is modified to:

∂Cs

∂ t
= ∇ · (D∇Cs)−∇ · (uCs)−q(C)N (26)

where q(C) is the uptake rate of the dissolved gas under consideration, which depends on the concentration, and N is the
cell number density.

The concentration dependent oxygen uptake rate for CHO cells is taken from Meuwly et al. [2006]:

q(CO2) = qmax
CO2

CO2 +Km
(27)

where qmax = 9.44.10−17 moles per cell per second from Meuwly et al. [2006] at 37.5◦C and Km = 2.5.10−3 moles per
cubic metre from prior studies (Villadsen et al. [2011]; Miller et al. [1987]). This oxygen concentration sensitive uptake
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rate is compared to the constant (concentration insensitive) rates of the intermediate metabolism of Humbird [2020] and
that used in the CFD analysis of a 300,000 litre ALR by Li et al. [2020] in Figure 6.

Figure 6: Comparison of oxygen uptake rates used by Meuwly et al. [2006], Humbird [2020]
(intermediate metabolism) and Li et al. [2020].

Spatial distribution CFD models couple the bubble parcels to the fluid flow using the all of the forces in equation 19 as
these models are single runs rather than part of an optimisation loop, where the increase in physical accuracy takes priority
over the increase in model run time.

2.3 Bayesian Optimisation
The combination of a system level model and a CFD characterisation model to provide system level performance char-
acteristics offers the possibility of optimising for the maximum achievable yield for a range of bioreactor geometries and
operating parameters (see Figure 1). Bayesian optimisation is an approach that is well suited to optimising in situations
where there is a significant cost, computational effort in this case, to the activity of evaluating performance. Bayesian
optimisation is comprised of two key steps, the first is the use of Gaussian processes to fit a predicted performance over
the input parameter space using existing data, the second is to use an acquisition function to determine the combination
of parameters most likely to provide an improvement over the current optimum. Bayesian optimisation works well with
CFD and other computational models as the workflow can be set-up to be self-sufficient where the CFD model is used to
evaluate the performance at the conditions generated by the acquisition function, the Gaussian process response is updated
and the acquisition function generates a new parameter set to evaluate, looping over a set number of iterations. Bayesian
optimisation has been coupled with CFD across a range of applications, such as the optimisation of chemical (Park et al.
[2018]) and fluidised bed (Kim et al. [2022]) performance.

The PyTorch based BOTorch python library provides an extensive Bayesian optimisation capability, with full exposure
to all technical aspects. The Adaptive Experimentation Ax platform provides a simple python based framework to set-up
and execute Bayesian optimisation workflows using the BOTorch library and is used here to automate the optimisation of
bioreactor performance.

3 Results
The following optimisations and performance assessments are reported in this section.

1. Optimisation of the yield from a 20,000 litre stirred tank reactor through changes in Rushton impeller diameter,
impeller blade width and RPM, and gassing rate. A number of optimisations are performed to illustrate the effects
of other parameters, such as the hydrodynamic stress limit and bubble size, and the effects of the bioreactor system
level model.

2. Optimisation of the yield from a 42,000 litre stirred tank reactor through changes in Rushton impeller diameter,
impeller blade width and RPM, and gassing rate.

3. Assessment of the potential impact of spatial variability in oxygen availability in optimised designs from 1. and 2.
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4. Assessment of the potential impact of spatial variability in oxygen availability in a previously studied 300,000L air
lift bioreactor at previously considered cell densities.

Python code for the system level models, workflows, results and M-Star CFD models are available in a GitHub reposi-
tory.

3.1 20,000 Stirred Tank Reactor Optimisation
The production yield of a 20,000 litre STR with twin Rushton impellers, as analysed in Humbird [2020] and illustarted in
Figure 5, is optimised for variations in the diameter of the impeller, D, the axial extent - or width - of the blades, W , the
impeller RPM and the gassing rate. The radial extent - or length - of the blades, L is maintained at D/4. The impeller hub
diameter is maintained to coincide with the radial midpoint of the blade width. The sparged gas has 21% oxygen.

3.1.1 Optimisation Approach 1

System level model A is used with an M-Star CFD characterisation model to optimise for yield, driven by the Ax plat-
form. Table 5 shows the key input parameter values and ranges for three different optimisations. In each optimisation
an initial set of simulations are performed using a Sobol technique to determine parameter values, with the parameter
values for the remaining simulation determined using the Gaussian Process Expected Improvement (GPEI) acquisition
function. The number of Sobol simulations and the choice of acquisition function are implemented as defaults by the Ax
platform.

ID N φ [m] εM [W/kg] RPM Q [vvm] D [m] W [m]

20-A1 30 2.10−3 2 20 - 120 0.01 - 0.1 0.7 - 1.2 0.1 - 0.3

20-A2 50 2.10−3 100 20 - 120 0.01 - 0.1 0.7 - 1.2 0.1 - 0.3

20-A3 30 1.5.10−3 2 20 - 120 0.01 -0.1 0.7 - 1.2 0.1 - 0.3

Table 5: Conditions and ranges of input parameters for optimisations of a 20,000 litre STR using optimisation approach 1.
N is the number of simulations, φ the bubble diameter at standard temperature and pressure conditions, εM the maximum
time averaged eddy dissipation rate, RPM the impeller rotation rate, Q the sparging rate, D the impeller diameter and W
the width of the impeller blades.

The first optimisation, 20-A1, uses a fixed bubble size distribution of 2mm at standard atmosphere and pressure, a limit of a
maximum time averaged turbulence energy dissipation rate of 2 W/kg, which corresponds to the Kolmogorov length scale
of 20 µm used by Humbird [2020]. The second optimisation, 20-A2, uses a significantly higher limit of the maximum
time averaged turbulence energy dissipation rate, 100 W/kg, taken to represent the upper limit of what CHO cells may be
able to tolerate (Chalmers [2015]) which may also be representative of what could be achieved with cell line engineering
to increase robustness to hydrodynamic stress. The third optimisation, 20-A3, uses a smaller fixed bubble size distribution
compared to 20-A1, keeping all other inputs the same. Table 6 shows the optimised yield and parameter values for each
of these optimisations.

ID Yield [g/L wet] RPM Q [vvm] D [m] W [m]

20-A1 56.6 40.2 0.0495 0.8299 0.1589

20-A2 101.9 120.0 0.0573 0.8654 0.2771

20-A3 94.5 42.2 0.0534 0.8319 0.3000

Table 6: Predicted optimum yield and corresponding input parameter values from the different optimisations of a 20,000
litre STR using approach 1.

The optimum yield corresponds to that achievable from a bioreactor performance perspective, not including metabolic
product concentration limits. Optimisation 20-A1 compares directly to the predicted optimum from Humbird [2020], with
the only differences being in this case the mass transfer, mixing time and impeller induced hydrodynamic stress being
computed on a per configuration basis, rather than from empirical equations, which provides a more robust approach to
assess variations in impeller geometry and RPM. Doing so increases the predicted optimum yield by nearly 25% from
45.4 to 56.6 grams per litre wet.
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Optimisation 20-A2 considers the effect of a much higher tolerance to induced stress, which is reflected in the increase in
optimum yield to 101.9 grams per litre wet. The results indicate that even higher yields may be possible with such a high
tolerance, as the optimum impeller RPM is at the upper limit (120) of the input range used, indicating that higher mixing
and mass transfer may be achievable at higher RPM due to increased stress tolerance.

Optimisation 20-A3 considers the effect of a smaller initial bubble size, representative of a sparger with a smaller pore
size. In such a case the optimum yield is close to that from the much increased stress limit, 94.5 grams per litre wet.
It is of interest to note that in 20-A3 the optimum yield is achieved at a higher RPM than for 20-A1, which suggests
that the 20-A1 optimisation may not have found the true optimum. This is most likely due to the set-up of the Bayesian
optimisation in the default Ax workflow (the acquisition function) and the implemented limit of N = 30 simulations.
Figure 7 shows the evolution of the predicted yield with iteration N for optimisation 20-A1. The optimum yield is found
halfway through the 30 iterations, after which no improvements were found, which is suggestive of a sub-optimal set-up
of the optimsiation approach.

Figure 7: Evolution of optimum yield with loop iteration for optimisation 20-A1.

3.1.2 Optimisation Approach 2

In the second optimisation approach, system level model B is used in place of model A, and a single optimisation is
performed with equivalent inputs and Ax model setup to the first optimisation using approach 1 with the higher cell stress
limit (20-A2), summarised in Table 7. Table 8 gives the predicted optimum yield and the corresponding input parameter
values.

ID N φ [m] εM [W/kg] RPM Q [vvm] D [m] W [m]

20-B 30 2.10−3 100 20 - 120 0.01 - 0.1 0.7 - 1.2 0.1 - 0.3

Table 7: Conditions and ranges of input parameters for a 20,000 litre STR using optimisation approach 2. N is the number
of simulations, φ the bubble diameter at standard temperature and pressure conditions, εM the maximum time averaged
eddy dissipation rate, RPM the impeller rotation rate, Q the sparging rate, D the impeller diameter and H the height of the
impeller blades.

ID Yield [cells/mL] RPM Q [vvm] D [m] W [m]

20-B 147.2 94.2 0.1 0.8126 0.2496

Table 8: Predicted optimum yield and corresponding input parameter values from the optimisation of a 20,000 litre STR
using approach 2.

Using system level model B, which uses a more robust approach to predict the carbon dioxide concentration limit but
does not consider a limit for the sparging rate, predicts a much higher optimum yield (147.2 g/L wet) than using system
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level model A (101.9 g/L wet). The optimum parameter values show that with system level model B an optimum has
been returned at the limit of the sparging rate, whereas system level model A returned an optimum at the limit of impeller
RPM.

3.2 42,000 Stirred Tank Reactor Optimisation
A 42,000 litre STR is optimised using system level model B, with inputs shown in Table 9 and predicted optimum yield
and corresponding parameters in Table 10.

ID N φ [m] εM [W/kg] RPM Q [vvm] D [m] W [m]

42-B 30 2.10−3 100 40 - 160 0.01 - 0.1 0.9 - 1.5 0.15 - 0.4

Table 9: Conditions and ranges of input parameters for a 42,000 litre STR using optimisation approach 2. N is the number
of simulations, φ the bubble diameter at standard temperature and pressure conditions, εM the maximum time averaged
eddy dissipation rate, RPM the impeller rotation rate, Q the sparging rate, D the impeller diameter and H the height of the
impeller blades.

ID Yield [cells/mL] RPM Q [vvm] D [m] W [m]

42-B 131.2 74.3 0.083 0.998 0.323

Table 10: Predicted optimum yield and corresponding input parameter values from the optimisation of a 42,000 litre STR
using approach 2.
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The predicted optimum yield for a 42,000 litre STR (131.2 g/L wet) is significantly higher than the equivalent from
Humbird [2020] (43.5 g/L wet for 21% oxygen sparge gas) and the value used by Negulescu et al. [2023] (100 g/L wet).
The optimum parameter values show that neither limits of RPM or sparging rate were reached, although the larger impeller
diameter and RPM may have resulted in the eddy dissipation rate limit being reached.

3.3 Stirred Tank Reactor Spatial Variability
The optimum conditions for the 20,000 and 42,000 litre STRs from optimisations 20-B and 42-B are used in a CFD model
to predict the effects of spatial variability of dissolved oxygen concentration. The models are each run for 250 and 180
seconds of bioreactor operation respectively, with the minimum, maximum and mean oxygen consumption constraint,
CO2/(CO2 +Km), from equation 27 becoming independent of time after 120 seconds in both cases. In both cases the
model predicted no restrictions to cell growth due to oxygen restriction. Figure 8 shows the distribution of dissolved
oxygen at the end of the operational duration for each bioreactor, with both bioreactors showing little variation around a
mean concentration of around 40 to 50% of the saturated dissolved oxygen concentration (≈ 3× 10−4 moles per litre).

Figure 8: Mid plane contour plot of the dissolved oxygen concentration in 20,000 litre (left) and 42,000 litre (right) STRs
after 250 and 180 seconds of operation respectively.
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3.4 300,000 Air Lift Reactor Performance
A large 262,000 litre ALR was considered in the TEA of Negulescu et al. [2023] where a maximum cell density of 100
grams per litre wet was used, and modelled in the work of Li et al. [2020] through a combination of 3D computational
fluid dynamics for the flow field and dispersed bubble concentration and a 1D advection-reaction-dispersion equation for
the dissolved oxygen concentration, where they conclude that a cell density of 2.56×108 cells per millilitre, or 770 grams
per litre wet, is viable from an oxygen transfer perspective, despite the cell density used being twice that cited from other
studies (Van der Weele and Tramper [2014]). Li et al. [2020] use a oxygen uptake rate independent of dissolved oxygen
concentration, an order or magnitude lower than the rate used by Humbird [2020] and nearly an order of magnitude lower
than the peak uptake rate qmax from Meuwly et al. [2006] used in this study (see Figure 6).

Given the large difference in achievable cell density for a bioreactor of common architecture and scale, the spatial vari-
ability CFD model is used to assess the viability of the cell densities used in these studies. The CFD model uses the
geometry from Li et al. [2020], including the baffles at the top of the riser and the porous regions intermittently spaced
in the riser which were both found to improve performance, illustrated in Figure 9. The gassing rate is the same as used
by Li et al. [2020], whereas the bubble diameter at standard temperature and pressure is 2mm here compared to ≈1.6mm
from Li et al. [2020]. The spatial resolution is much higher than used by Li et al. [2020] with 70 lattice elements across
the down-comer diameter in the present study compared to 16 finite volumes in Li et al. [2020], facilitated by the higher
computational efficiency of the lattice Boltzmann approach in M-Star compared to the finite volume approach. Two sim-
ulations are performed, one using the cell density from Negulescu et al. [2023], the other using the cell density from
Van der Weele and Tramper [2014].

Figure 10 shows contours of the oxygen uptake rate constraint, CO2/(CO2 +Km), on a cut plane through the centre of the
bioreactor. For optimum performance the constraint will be one everywhere, indicating that the cells are growing at the
maximum rate everywhere. The model with the cell density of Van der Weele and Tramper [2014], shown left, shows
large areas of no oxygen consumption, corresponding to areas of low availability, indicating that such a cell density is not
viable. The image right shows the result from a model with the cell density used by Negulescu et al. [2023], showing
small regions of limited uptake. Given the limited size of these regions, it is reasonable to expect that small changes in
geometry and/or operating conditions would enable this cell density to be viable.

Figure 9: Schematic of the 300,000 litre airlift reactor with probe locations (purple), sparger (cyan) and media height (red
line).
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Figure 10: Mid plane contour plot of the oxygen uptake constraint from the spatial variability CFD model of the 300,000
litre ALR. Cell density from Li et al. [2020] on the left, from Negulescu et al. [2023] on the right

4 Discussion

4.1 Bioreactor Performance Modelling
The workflows developed and used here have enhanced prior modelling approaches by enabling the prediction of biore-
actor performance characteristics specific to the geometry and operation, as opposed to from empirical equations that are
constrained by the parameters in the data set used to generate them. The system level performance models can take such
characteristics from alternate sources, which may be measurements or other models, enabling a broader application. The
use of CFD to provide specific performance characteristics is beneficial in enabling the full variety of geometry and opera-
tion to be considered. The challenge now is the accuracy of these CFD models, which themselves rely on model equations
for lower level characteristics. Oxygen mass transfer is one such case where a previously used empirical equation for the
system level mass transfer has been replaced with a CFD model which implements an empirical equation for the mass
transfer on a per bubble parcel basis. There is little scope for removing empirical equations at this scale as capturing the
dynamics of bubble gas liquid interfaces and the resulting mass transfer at all scales is computationally intractable for ap-
plications with very large numbers of bubbles as is the case here. The validation of these empirical equations and the CFD
model as a whole for the bioreactor(s) under consideration is crucial to the practical application of this approach.

The simple coupling to cell oxygen metabolism has enabled the first step in incorporating the effects of spatial in-
homogeneity in to workflows that aim to optimise for production yield. The challenge with such models is the requirement
to assess the viability of a cell density rather than optimising for the maximum achievable cell density. The coupling could
be easily extended to consider production of carbon dioxide and other metabolites, such as lactate and ammonia as con-
sidered previously (Humbird [2020]), the challenge being the availability of data or models that provide the production
rates given the local nutrient and metabolite concentrations for the cell line concerned. The creation of such data for
cultivated meat cell lines, rather than the common approach of using CHO cells due to their extensive use in research and
application, would enable the extension of the modelling approach used here to consider more nutrients and metabolites.
The extension of the CFD model to then consider alternate modes of production such as perfusion would be relatively
straight forward.

4.2 Optimisation Technique and Computational Efficiency
The Ax platform used here provided a straight forward and user friendly implementation of Bayesian optimisation. How-
ever, the approach itself was likely sub-optimal in terms of the efficiency of the automatically selected acquisition function
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in finding the optimum yield. More specific crafting of the optimisation aspect of the workflow may enable more efficient
determination of the optimum yield, and indeed may further increase the predicted optimum yield. Such crafting may
consider the use of more than one acquisition function, where one that is better at exploring the parameter space is used
initially followed by a second that is better at identifying optima, rather than the use of the GPEI acquisition function,
which aims to balance parameter space exploration and exploitation. The present work suggests that GPEI struggles to
balance these effectively in the current application. Approaches that are superior to that employed here may already be
reported in the literature or could be developed with moderate effort.

The duration required to solve the CFD models is critical to enabling the optimisation to complete in meaningful times.
The use of lattice Boltzmann CFD software on GPUs was critical to enabling this. The STR CFD models used in the
optimisations took around three hours to solve on twin NVidia RTX A6000 GPUs, with the N = 30 and N = 50 run
optimisations therefore taking around ninety and one hundred and fifty hours respectively. Running on more GPUs could
reduce this duration through computational efficiency and improvement to the optimisation workflow may further reduce
the duration through being able to find optima with less parameter space exploration (lower N).

4.3 Bioreactor Performance Potential
The results of the bioreactor optimisations and performance assessments indicate that the maximum achievable cell density
in prior TEAs may be lower than is achievable. When comparing to an equivalent 20,000 litre fed batch STR under
equivalent constraints the relatively simple optimisation of Rushton impeller blade geometry suggested an improvement
of nearly 25% over previously used maximum cell densities in the TEA of Humbird [2020]. Further optimisations suggest
that the maximum achievable density may be much higher, through either modification of the bubble diameter through
sparger specification or the development or more thorough understanding of cell response to hydrodynamic stress. With
a higher tolerance to hydrodynamic stress the results for a 42,000 litre fed batch STR maximum cell density show an
increase of over 200% compared to the value derived and used in Humbird [2020], and an increase of over 30% compared
to the value used in Negulescu et al. [2023]. The CFD model predicting the effects of spatial variability on oxygen
consumption, and by proxy cell viability, suggests that the predicted optimum yields at both 20,000 and 42,000 litres are
unlikely to affected by such variations.

The assessment of a 300,000 litre ALR suggests that the cell density used in a prior TEA (100 grams per litre wet
Negulescu et al. [2023]) is likely to be viable with small modifications geometry or operation. The assessment also
suggests that the high cell density considered viable from prior CFD modelling (770 grams per litre wet Li et al. [2020])
is unlikely to be viable. The uncertainty here is due to the difference in bubble diameter, which was shown to have a
significant effect on yield in the 20,000 litre STR optimisations in the present study. Those results showed a near 100%
increase in yield when moving from 2mm to 1.5mm bubble diameters, which if consistent across to the 300,000 litre ALR
would increase the yield to 200 grams per lite wet. Given the significantly larger volume of the ALR (a factor of 15) one
would expect the effect of the reduction in bubble size on yield to be greater than the 100% seen in the 20,000 litre STR.
In order to sustain a cell density of 770 grams per lite wet however, an increase of 770% would be required, which may
not be achievable even at the much larger volume. The order of magnitude difference in the oxygen uptake rate (Figure
6) used in Li et al. [2020] and the present study is likely to be the main driver for the differences in predicted viable cell
densities. The ALR geometry considered here was developed with a few specific modifications by Li et al. [2020] (porous
plates and baffles at the riser/down-comer transition) and further optimisation using an approach similar that used here
may show significant improvements to the 100 grams per litre wet viable performance shown here.

It is important to recognise that the bioreactor performance potential considered here has focused solely on the perfor-
mance characteristics of the bioreactors in fed batch mode, and has not considered cell density limitations of concentra-
tions of metabolic products. The reason for this separation was to illustrate what may be achievable from a production
hardware perspective and to view this separately to what may be achievable from a cell metabolism and metabolic con-
centration response perspective. The inclusion of cell density limits due to metabolite concentrations such as lactate and
ammonia are straight forward to implement in both the system level and CFD performance models used here. Again,
knowledge of such characteristics of cultivated meat cell lines are critical in using these limits effectively.

4.4 Recommendations
Techno-economic analyses outputs of cost of goods sold for cultivated meat products are influential in driving investment
and production facility development, placing importance on the accuracy of the production yield used or derived in the
analyses. The present work suggests achievable yields may be significantly higher than those used in prior TEA’s; a
simple next step would be to re-evaluate predicted cost of goods using the predicted maximum yields from this study in
existing TEA workflows.
A sensible subsequent development would be to include the economic analysis in to the optimisation workflow, allowing
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optimisation directly for the cost of good sold. Such an approach would then consider both the production performance
and operating cost of impellers and spargers, although the operating cost (kWh of power) from driving the impeller and
sparger is expected to make a very small contribution to the total operating cost component of the cost of goods sold
(Humbird [2020]). A more adventurous development could consider the inclusion of representative cell metabolisms
and media amino acid composition, which makes up the majority, ≈ 80%, of the fed batch operating costs (Humbird
[2020]).

The yields predicted from this study have been evaluated from a bioreactor mixing, mass transfer, hydrodynamic stress
and gas hold up performance perspective only, without consideration of the management of metabolic products and the
consequential limits to yield. This approach was taken for two reasons; to focus solely on bioreactor performance to
ascertain what may be achievable from a hardware design and operation perspective, and to remove the uncertainty in
using metabolic behaviour that may not be representative of the animal cell line under consideration.
The use of CHO cell metabolisms is common in published cultivated meat TEAs due to the lack of available data on cell
lines being developed in industry. This is a significant source of uncertainty in the predicted achievable yield both from
the potential difference in metabolism (primarily nutrient uptake and production rates) between the modelled metabolism
and that of the cell line under consideration, and in the variability that exists in modelled metabolisms in previous stud-
ies. Figure 6 highlights this clearly, showing an order of magnitude difference in oxygen uptake rates used in different
previous studies, in both cases independent of dissolved oxygen concentration, compared to the model used in the present
study which is close to the higher value of previous studies but dependent on concentration. This difference is likely a
primary cause of the variation in predicted achievable yields from the previous and present studies. The use of CHO cell
metabolisms also precludes the ability of models to predict which out of a range of cultivated meat cells lines (pork, beef,
chicken, salmon, etc) may be the most cost effective to produce as a result of having the least challenging metabolism to
manage from a production perspective.
A similar situation exists with regards the ability of a cell line to grow unaffected by hydrodynamic stress, where CHO
cell line data is again used in models, with significant variability in published limiting values. Noticeable simplifications
are made with regards bubble induced stress, with limits to sparging rate in vessel volumes per minute or superficial
velocity used previously, without consideration of the bubble diameter which directly affects the energy dissipation rate
during bubble collapse at the headspace gas-liquid free surface. The 20,000 litre optimisations performed here show the
sensitivity of the predicted achievable yield to cell stress response, with a near 100% increase in yield achieved through
varying stress tolerance within published.
The use of metabolic and stress response behaviour of the cell line under consideration is therefore critical in enabling
technical models (TEA, CFD, optimisation and coupled models) to add value to the industry by enabling accurate produc-
tion facility design and optimisation and financial de-risking of production scale capital investment. Efforts to characterise
and share such cell response for use in models would significantly enhance their ability to make meaningful contribution
to the success of cultivated meat, both from an accuracy perspective and from the subsequent ability of models (primarily
CFD) to be developed to assess production scenarios outside of fed-batch, e.g. perfusion, that may be superior in cost of
good sold performance.

The work required to understand and utilise the cellular response to hydrodynamic stress, from both impeller agitation
and bubble motion and collapse is considerable and complex. Prior work has involved exposing cells to controlled energy
dissipation rates Ma et al. [2002] and measuring the effects on viability, which could offer insight when combined with
cell stress experience predicted directly from CFD. These CFD predictions could be achieved by extending the ”lifeline”
approach used in CFD models to capture microbe metabolic response to nutrient concentration (Blöbaum et al. [2023];
Haringa et al. [2016]; Haringa [2022]). Such extension would be challenging with regards the accuracy of the stress
experienced in the presence of the impeller. Figure 3 (bottom row, middle graph) shows that even at high spatial resolutions
(NX = 800), which would require significant increases in computational hardware and time to run the optimisations in this
study than used here, the predictions of energy dissipation rate in the impeller discharge region show significant difference
to experiment. It should also be noted that experimental measurements of energy dissipation rate around impeller are
without significant challenge themselves. Modelling of cell stress lifelines in the presence of bubble motion and collapse
would require CFD models that captured the evolution of the bubble interface and the resulting energy dissipation in the
liquid across a range of scenarios, including but not limited to bubble velocities, bubble sizes, bubble collapse conditions
and surfactant concentrations. Given these challenges to understanding the generation of hydrodynamic stress and the
effects on cell metabolism, designing novel bioreactors that can cultivate cells without exposing them to impellers or
bubbles could be a more cost and time effective route.

The optimisation workflows developed use a simple front end (the Ax platform) to the BOTorch library, which facilitates
ease of use but encounters difficulty balancing exploration and exploitation of the parameter space. An assessment of
other acquisition functions, a deeper dive in to the characteristics of the yield response in the considered parameter space,
or a more detailed implementation in BOTorch directly may provide improvements to the optisation workflow and may
also reveal higher potential optimum yields. Such approaches could then be further developed to consider a wider range
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of parameters than considered here, such as bubble size distributions rather than single values, and the wide range of
potential geometric optimisations including but not limited to the broad range of impeller designs, axial impeller location,
axial location of one or more spargers and the geometry specific to air lift reactors such as porous plate and baffles.

5 Conclusions
Open access workflows have been developed and used to predict optimum cultivated meat yield in stirred tank and airlift
bioreactors. The workflows use and build on prior approaches and couple to computational fluid dynamics models and a
Bayesian optimisation routine. A metabolic model of oxygen uptake is included in a computational fluid dynamics model
to provide predictions of the effects of spatial in-homogeneity of dissolved oxygen concentration, which is used to indicate
if such effects may impact the predicted optimum yield. Optimisations of 20,000 and 42,000 litre fed batch stirred tank re-
actors suggest that achievable yield may be significantly higher than that used in previous techno-economic analyses, from
a bioreactor performance perspective (neglecting metabolic product concentration constraints). Assessment of a 300,00o
litre airlift bioreactor suggests that the yield used in a recent EA is achievable, but that from a prior computational fluid
dynamics analysis may not be. The developed workflows can be easily extended to consider cell metabolism and alternate
production modes. The use of cultivated meat cell line characteristics, rather than commonly used CHO characteristics as
used here, will be critical in being able to accurately predict and optimise production yield. Further development of the
optimisation routine to include capital and operating production costs could result in a valuable tool in enabling cultivated
meat to overcome production cost challenges.
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