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Abstract 

Slotting a hydrofoil is an effective way to passively control the cavitating flow to reduce the cavity 

pocket size leading to a reduction in vibration, noise, and erosion. However, this comes with losses 

in the hydrodynamic performance of the hydrofoil including its lift coefficient. To avoid this as 

much as possible, optimizing the slotted hydrofoil in terms of the location and the angle is of prime 

importance. The optimization is achieved by designing a deep Artificial Neural Network (ANN) 

to act as a surrogate model in the process of the genetic algorithm. The training dataset in deep 

ANN is gathered through simulations that are based on a newly developed Frink finite volume 

solver for the preconditioned Euler equations. Results obtained indicate that this optimization 

approach is effective such that the cavity pocket size can be shrieked by about 60 % with a penalty 

of about 10 % reduction in the hydrofoil’s lift coefficient. 
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1. Introduction 

Cavitating flows are widely seen in many practical applications such as in pumps, pipes, hydro 

turbines, and blood vessels, or on watercraft including ships, boats, amphibious, submarines, and 

hovercraft. Cavitation takes place when the liquid is accelerated and consequently the local 

pressure becomes lower than the vapor pressure. In such a condition, the preexisted vapor nucleus 

will grow in the liquid medium and eventually create a cavity pocket filled with both liquid and 

many vapor nucleus. When these nuclei arrive at places with higher pressures, condensation 

occurs. In the condensation process, the nucleus violently collapses and high-pressure waves will 

be generated that cause erosion, annoying sounds, and vibration that may cause a shorter lifetime 

for the product [1]. Flow control techniques can be used to avoid these.  

Flow control techniques can be categorized into passive and active methods. In the case of 

active flow control, different methods such as the injection [2]–[5] or suction [6] are employed. 

As for the passive control methods vortex generators [7], [8], leading-edge slats [9], leading-edge 

serration [10], slotted hydrofoils [11]–[15], micro-cylinders [16], hydrofoils with cavity [17], 

roughness [18], and flexible hydrofoil [19] have been used. Owing to the simplicity and economic 

efficiency of passive control methods over the active ones, formers are more applied to practical 

applications. Here, the passive flow control of the slotted hydrofoil is utilized.  

A few studies about the slotted hydrofoil have been performed in the literature [11]–[15]. 

The idea of using slotted hydrofoils comes from the work of Capurso et al. [11], [12] where three 

slots located near the leading-edge of the NACA 0009 hydrofoil have been considered. Their 

results show a 93% reduction for the total length of the cavity, but a 25% reduction in the lift 

coefficient. The optimization has not been performed by them. Conesa and Liem [13], [14] have 

studied the effect of the entry and exit widths of the slot and its angle on the performance of the 

Clark-Y hydrofoil, but they have fixed the slot location near the leading-edge in the optimization 

process. Their study shows that the optimized slotted hydrofoil can achieve higher performance 

with a 50% reduction in cavity pocket in comparison with the base hydrofoil. An experimental and 

numerical study has been done by Ni et al. [15] to investigate the performance of a slotted hydrofoil 

operating close to a free surface. The slotted hydrofoil is constructed from the base hydrofoil 

NACA 634-021. No optimization has been performed, and the slotted hydrofoil had a better 

performance in comparison with the base hydrofoil. Here, the optimization is done by changing 
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the location and the angle of the slot on the NACA 66 (MOD) base hydrofoil as it is widely used 

in many practical real-world artifacts. 

Nowadays, multi-objective optimizations are frequently used to design engineering 

artifacts. The solution to these complex design optimization problems, such as the problem that is 

addressed in this paper, are generally computationally expensive. To reduce the computational 

costs, surrogate model approximations are intensively used in the literature [20], [21]. surrogate 

models use limited combinations of inputs (sample points) and outputs to provide a mapping from 

the input space to the output space which essentially reduces the computational cost [22], [23]. 

surrogate models come in several forms. Surrogate models can be either deterministic or 

stochastic, low-order or high-order polynomial regression models, discrete or continuous, and 

local or global. Some of the better-known surrogate models are the Multivariate Adaptive 

Regression Splines, Radial Basis Function, Polynomial Regression, Neural Networks, Kriging, 

etc. [20]. The advantages or disadvantages of surrogate models vary case by case and we cannot 

easily say essentially one of them is better than the others, and an extensive study is needed 

between surrogate models to judge their priority, which is beyond the scope of this paper. In the 

current study, a deep Artificial Neural Network (ANN) is employed. Choosing the sample training 

data points is of paramount importance to have an accurate surrogate model that both represents 

the design space adequately and does not encounter any numerical difficulties. Usually, to 

determine the sample points the theory of the Design of Experiments (DoE) is employed. Several 

used DoE methods are the factorial, central decomposition, alphabetical optimal, and Box-

Behnken methods [24], [25]. These methods usually tend to push the sample points towards the 

boundaries of the design space. More recent methods address this problem and try to uniformly 

distribute the sample points within the boundaries. To name a few, Maximum Entropy, MiniMax, 

Orthogonal Arrays, and Latin Hypercube algorithms can be mentioned [20], [21], [24]. Latin 

Hypercube Sampling (LHS) is a straightforward well-established sampling method in the literature 

that is chosen to be used in this research. In LHS an even random sampling is employed and then 

all the chosen variables are randomly combined to give the samples required. 

While the surrogate models together with DoE methods are used to find out the 

optimization functions defined in the design space, the optimizers are required to figure out where 

minimums occur. The optimizers can be categorized into two gradient-based and gradient-free 
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groups [26]. As the name suggests, a gradient-based optimizer uses the gradient of the objective 

function to find the optimum solution. This dependence on the gradient raises two main issues. 

First, to use a gradient-based optimizer the gradient of the function must be either known 

analytically or computed numerically. This increases the computational cost. Second, and more 

importantly, a gradient-based optimizer can get stuck in a local optimum. On the other hand, a 

gradient-free/heuristic/Metaheuristics optimizer uses a random operator to search the design space. 

Decades of research resulted in the development of many Metaheuristics. To name a few well-

known metaheuristics, we may mention Particle Swarm Optimization (PSO), Differential 

Evolution (DE), Genetic Algorithms (GA), and Ant Colony Optimization (ACO) [27]. Inspired by 

Darwin’s natural evolution theory, the GA mimics the natural evolution to find the optimal solution 

[26]–[28]. Within the GA, the design parameters are interpreted as characteristics of individuals. 

Taking all individuals among a population, the solutions evolve through cross-over, mutation, and 

elitism operators to find the optimum. The random operator helps the Genetic Algorithm to explore 

the design space better, and the gradient-independence empowers it to deal with any kind of 

objective function. This rigorous searching capability grants the metaheuristics and the GA 

particularly the name “global optimization methods” [26] and it is used here. 

Realizations are needed to create a surrogate model (also called a surrogate model). 

Cavitating flow realizations are usually achieved by simulating inviscid, laminar, or turbulent fluid 

flows. Assuming water as the main medium, the Reynolds number is often high in real applications 

so that the laminar cavitating flow can be only seen seldom, however, the inviscid flow condition 

can provide acceptable results and the turbulent flow simulations are usually expensive. The 

pressure distribution over the hydrofoil determines the cavity pocket size and the lift coefficient 

can be reasonably captured by the solution of inviscid Euler equations. In an inviscid flow 

simulation, a fewer number of grid points in comparison with turbulent flows are required in 

simulations and then the computational cost can be dramatically decreased. Therefore, the 

preconditioned Euler equations representing inviscid flows are used here.  

The preconditioned Euler equations should be solved using an appropriate numerical 

method. Different methods have been utilized in the literature for solving these governing 

equations, such as the central finite difference [29], compact [30], central finite volume [31], 

Quadratic Upstream Interpolation for the Convective Kinematics (QUICK) [32], weighted 
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essentially non-oscillating (WENO) [33], immersed boundary [34], upstream finite element [35], 

and discontinuous Galerkin [36]–[38] methods. Here, the Frink numerical method [39] is applied 

to discretize the governing equation, and an appropriate artificial dissipation term, based on the 

one proposed by Jameson et al. [40], is added for suppressing artificial oscillations in the solution 

domain and to provide a stable, accurate, and reasonably fast solver.  

In this paper, the algorithm of the optimizer is given in Section 2. The design of the deep 

ANN is described in Section 3 and the details of the newly Frink finite volume-based simulator is 

given in Section 4. Results obtain are discussed in Section 5 and the paper is ended up through a 

conclusion in Section 6. 

2. Optimizer 

The optimization parameters are the slot angle 𝜃  and its location 𝑥𝑠𝑙𝑜𝑡 with constraints of 0° ≤

𝜃 ≤ 85° and 0 ≤ 𝑥𝑠𝑙𝑜𝑡 ≤ 0.4. The optimization parameters are geometrically introduced in Fig. 1. 

As shown, the slot location varies from the middle chord up to the leading-edge and its angle is 

defined clockwise. The Latin Hypercube Sampling method (LHS) with an affine mapping is used 

to generate initial sampling points 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠  in this (𝜃, 𝑥𝑠𝑙𝑜𝑡) design space. The initial number of 

sampling points are supposed to be 40 points. Then, the CFD realizations (Section 4) are performed 

for the given sampling points to calculate the lift coefficient and the total length of the cavity 

appeared on the hydrofoil. Therefore, the lift coefficient and the total length of the cavity are our 

two objective functions. The lift coefficient function is represented by 𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡, 𝜃) and the 

total length of cavity is denoted by 𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡, 𝜃) will be found using a deep ANN (Section 3) 

which is exploited to construct the surrogate model. The lift coefficient can be calculated using the 

integral of the pressure in the direction perpendicular to the far-field flow divided by 0.5𝜌𝑢∞
2 . In 

the case of the total length of the cavity 𝐿𝑐, it will be calculated using the following relation: 

𝐿𝑐 = 𝐿𝑐1
+ 𝐿𝑐2

 (1) 

where 𝐿𝑐1
 denotes the length of the leading-edge cavity and 𝐿𝑐2

 is the length of the mid-chord 

cavity. The leading-edge cavity is a cavity formed on the front hydrofoil, and the mid-chord cavity 

is a cavity that appeared on the rear hydrofoil created by slotting the original hydrofoil. The length 

of the leading-edge/mid-chord cavity is the horizontal distance between two points where the 
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pressure over the hydrofoil becomes lower than the vapor pressure and where it becomes higher 

than the vapor pressure. 

The two objective functions of 𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡, 𝜃) and  𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡, 𝜃)  will serve as an input to a 

genetic algorithm (GA) to result in an accurate and fast optimization scheme. The Pareto front 

comes out from GA with 𝑁𝑝𝑎𝑟𝑡𝑜 design points. These procedures are repeated 𝑁𝐺𝐴 times. In each 

iteration, the 𝑁𝑝𝑎𝑟𝑡𝑜 new design points will be added to the sample points, i.e., 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠  will be 

updated to 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝑁𝑝𝑎𝑟𝑡𝑜. Subsequently, CFD realizations, deep ANN, and GA will be carried 

out. Here, 𝑁𝐺𝐴 = 5 is set which means that five generations are considered in the genetic 

algorithm. The number of new design points will not be greater than 𝑁𝑝𝑎𝑟𝑡𝑜,𝑚𝑎𝑥 = 20 in each 

iteration, and if not, 20 points will be selected randomly. The latter is presumed to reduce the 

computational cost. This optimization procedure/algorithm is illustrated in Fig. 2. 

This optimization procedure is performed in Matlab. The information of the sampling points will 

be automatically transformed into a meshing tool which is Gambit to generate the mesh for the 

CFD tool. The CFD tool is also a homemade code using the Frick method and C++ as a 

programming language (Section 4).  

 

Fig. 1 Nomenclatures related to the optimization parameters, the total length of the cavity, the 

length of the leading-edge cavity, and the length of the mid-chord cavity. 
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Fig. 2 Optimizer flowchart. 
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3. Surrogate model (deep ANN) 

Knowing 𝑁𝐿𝐻𝑆 input values for 𝜃 and 𝑥𝑠𝑙𝑜𝑡 using LHS method and their association target output 

values of 𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡, 𝜃) and 𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡, 𝜃) using the CFD tool, a deep ANN can be trained. 

The training dataset is created by 80% of data while the remaining 20% of data is used to verify 

the trained network. The preprocessing on the training dataset should be done before training a 

deep ANN. This preprocessing includes the normalization of data to the interval of [0,1]. 

Normalization increases the accuracy and speed of the ANN.   

The first layer of the designed ANN is an input layer with two features (𝜃 and 𝑥𝑠𝑙𝑜𝑡,). This layer is 

connected to a triple-layer that will be repeated 𝑁𝑟 times. The first layer in this triple layer is a 

fully connected layer with 𝑁𝑛 neurons. The next one is the leaky Rectified Linear Unit (ReLU) 

that can be efficiently employed for the regression jobs. The last one in the triple-layer is the batch 

normalization layer aiming to reduce errors of the ANN and increase its accuracy by retaining 

numbers throughout the ANN on the same scale. After repeating this triple-layer 𝑁𝑟 times, then a 

fully connected layer is used to give out the data to the last layer which is the regression layer to 

estimate 𝐶𝑙 = 𝑓(𝑥𝑠𝑙𝑜𝑡, 𝜃) and 𝐿𝑐 = 𝑔(𝑥𝑠𝑙𝑜𝑡, 𝜃). A schematic of the designed deep ANN is shown 

in Fig. 3. 

  

Fig. 3 Architecture of the designed ANN network 

A residual minimizer is performed to properly adjust the weights and biases of the deep ANN. The 

residual minimizer tries to minimize a loss function indicating the differences between the deep 

ANN outputs (estimated surrogate models at the sample points) and the target outputs (CFD 

results). The Adam method is selected as the residual minimizer. The number of epochs in the 

Adam method is 250 and the learning rate equals 0.08. Our study shows that these values for 

epochs and learning rate leads to an accurate and fast deep ANN.  

The number of repeated triple-layers is 𝑁𝑟 = 4 and the number of neurons is  𝑁𝑛 = 30, which plus 

prescribed deep ANN settings leads to not getting stuck on overfitting and underfitting problems. 
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4. Simulator 

Steady inviscid cavitating fluid flows can be mathematically described using preconditioned Euler 

equations with the artificial compressibility method as follows: 

𝚷
𝜕𝑸

𝜕𝜏
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
− 𝑺𝒄 = 0 (2) 

where 𝚷 indicates the preconditioning matrix which is 

𝚷 =

[
 
 
 
 
 

1

𝜌𝑚𝛽2
0 0 0

0 𝜌𝑚 0 𝑢Δ𝜌𝑙

0 0 𝜌𝑚 𝑣Δ𝜌𝑙
𝛼𝑙

𝜌𝑚𝛽2
0 0 1

]
 
 
 
 
 

 (3) 

The artificial time is denoted by 𝜏 and derivatives with respect to this variable should go to zero 

for satisfying the consistency and convergence conditions. This means that this formulation can 

be used only for steady-state solutions. This is corresponding with the physics we are dealing with 

because we are going to optimize a hydrofoil experiencing quasi-steady sheet cavitation flow. The 

cavitation source term 𝑺𝒄 plays an important rule in cavitation modeling and it is defined in a way 

to appropriately model the mass transfer between the liquid and vapor phases that occurred in the 

cavitation process. We will further discuss this term in the next section. The flux vectors 𝑯 =

(𝑭,𝑮) and the solution vector 𝑸 are written as follows: 

𝑸 = [

𝑝
𝑢
𝑣
𝛼𝑙

] ,   𝑭 = [

𝑢
𝜌𝑚𝑢2 + 𝑝

𝜌𝑚𝑢𝑣
𝛼𝑙𝑢

] ,   𝑮 = [

𝑣
𝜌𝑚𝑢𝑣

𝜌𝑚𝑣2 + 𝑝
𝛼𝑙𝑣

] (4) 

The solution vector is consisting of the pressure 𝑝, the velocity vector (𝑢, 𝑣), and the liquid volume 

fraction 𝛼𝑙. The subscribes 𝑙, 𝑣, and 𝑚 are added to facilitate identifying the liquid, vapor, and 

mixture states. While the liquid density 𝜌𝑙 and 𝜌𝑣 are supposed to be constant, the mixture density 

is allowed to vary according to the relation 𝜌𝑚 = 𝛼𝑙𝜌𝑙 + 𝛼𝑣𝜌𝑣. Note that the summation of volume 

fraction of different phases is always unity, i.e., 𝛼𝑙 + 𝛼𝑣 = 1. Moreover, 𝜌𝑙 = 1 and 𝜌𝑣 = 0.01 are 

used here that prove to be suitable values for simulating cavitating flows in a water medium. In 

Eq. (3), the density jump is indicated by Δ𝜌𝑙 = 𝜌𝑙 − 𝜌𝑣 . 
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Following the concept of the artificial compressibility method, the coefficient denoted by 𝛽 is used 

in the governing equations to tackle the pressure-velocity coupling problem pertaining to 

incompressible flows. It is a user-defined parameter and here we simply use a constant value 𝛽 =

3 similar to [36], [41]. 

4.1. Cavitation modeling 

As mentioned in the previous section, the cavitation process is modeled by the cavitation source 

term 𝑆𝑐 which is 

𝑺𝒄 =

[
 
 
 
 (�̇�+ + �̇�−) (1 −

1

𝜌𝑣
)

0
0

�̇�+ + �̇�− ]
 
 
 
 

 (5) 

where �̇�− models the evaporation phenomena which is the mass transfer from the liquid to the 

vapor phase, and it is vice versa for �̇�+ which represents the condensation process wherein the 

vapor phase transits to the liquid phase. These two variables are differently defined in the literature 

[42]–[46]. Here, the relations proposed by Merkel et al. [42] is exploited, i.e., 

�̇�+ = (
𝐶𝑝𝑟𝑜𝑑

𝑡∞
) (1 − 𝛼𝑙)𝑀𝑎𝑥(0, 𝑝 − 𝑝𝑣) 

�̇�− = (
𝐶𝑑𝑒𝑠𝑡

𝑡∞
)

1

𝜌𝑣
 𝛼𝑙𝑀𝑖𝑛(0, 𝑝 − 𝑝𝑣) 

(6) 

These relations have been proposed by Merkel et al. [42] that derived from their experimental 

work. Numerical studies [36], [47] show that these relations are reliable and accurate for simulating 

cavitating flows. The parameters 𝐶𝑝𝑟𝑜𝑑/𝑡∞ and 𝐶𝑑𝑒𝑠𝑡/𝑡∞ are the constant parameters which 

control the liquid production and destruction rates, respectively. They are user-defined parameters 

where 𝐶𝑝𝑟𝑜𝑑/𝑡∞ = 1 and 𝐶𝑑𝑒𝑠𝑡/𝑡∞ = 80 are used here. Numerical studies done in literature [36], 

[47] prove these values lead to accurate numerical results. Finally, the vapor pressure 𝑝𝑣 is 

obtained according to the predefined cavitation number 𝜎 = 2(𝑝∞ − 𝑝𝑣) where 𝑝∞ is the pressure 

far enough from the hydrofoil surface which is assumed unit. Note that all the variables used in 

the present study are non-dimensional identical to the ones presented in [36]. 
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4.2. Spatial discretization 

So that being able to simulate cavitating flows, we should suitably address the solution of the 

governing equation (2) by means of a numerical method. Here, the Frink numerical method is used 

to discretize the spatial derivative terms in the governing equations.  

By integrating Eq. (2) through the surface A of an element, it can be rewritten as 

∫ [𝚷
𝜕𝑸

𝜕𝜏
+

𝜕(𝑭)

𝜕𝑥
+

𝜕(𝑮)

𝜕𝑦
− 𝑺𝒄] 𝑑A

𝐀

= 0 (7) 

In the finite volume method variables are assumed to be constant through an element, then 

∫ 𝚷
𝜕𝑸

𝜕𝜏
𝑑A

𝐀

= 𝚷
𝜕𝑸

𝜕𝜏
A (8) 

For the spatial derivative of inviscid fluxes, we have 

∫ [
𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
] 𝑑A

𝐀

= ∫[𝛁 ∙ 𝑯]𝑑A

𝐀

 (9) 

and then using the divergence theorem applied to triangular domain results in 

∫[𝛁.𝑯]𝑑A

𝐀

= ∮ [𝑯∗. �̂�] 𝑑𝐿
𝛛𝐀

= ∑ (𝑯∗. �̂�)𝒌𝐿𝑘

𝑵𝒇𝒂𝒄𝒆𝒔=𝟑

𝒌=𝟏

 (10) 

where 𝑯𝒌
∗  is the numerical flux for the 𝑘-th face of the element, and it depends on the flux vectors 

in two neighboring elements sharing that face. After finding the flux vectors in two neighboring 

elements by exploiting the Frink numerical method, the Lax numerical flux method is used to 

calculate the numerical flux. The calculation of the Lax numerical flux method will be explained 

later. Variable �̂� is the normal outward vector. The face length of the triangle element is denoted 

by 𝐿.  

The integration of the cavitation source term 𝑺𝒄 can be written as 

∫ 𝑺𝒄 𝑑A

𝐀

= 𝑺𝒄 A (11) 
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The integration of the artificial dissipation terms should be carefully evaluated, and it will be 

addressed in the next section. Finally, the discretization process, by substituting Eqs. (8)-(11) into 

(7), results in 

𝜕𝑸

𝜕𝜏
=

𝚷−𝟏

𝐴
[𝑺𝒄  A − ∑ (𝑯∗. �̂�)𝒌𝐿𝑘

𝑵𝒇𝒂𝒄𝒆𝒔

𝒌=𝟏

] = 𝑹 (12) 

where 𝑅 is called the right-hand side vector. 

4.2.1. The Frink numerical method 

The higher-order finite volume methods can be derived using reconstructing fluxes at the element 

faces. To show how the Frink numerical method can be used to increase the order of accuracy of 

the solution from the first-order in the classical finite volume method to the second-order one, refer 

to Fig. 4. While in the classical first-order finite volume methods variables at the faces can be read 

as 𝑞𝑓1 = 𝑞𝑓2 = 𝑞𝑓3 = 𝑞𝑐, in the Frink numerical method [39], they are reconstructed as follows: 

𝑞𝑓1 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛1

+ 𝑞𝑛2
) − 𝑞𝑛3

] 

𝑞𝑓2 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛2

+ 𝑞𝑛3
) − 𝑞𝑛1

] 

𝑞𝑓3 = 𝑞𝑐 +
1

3
[
1

2
(𝑞𝑛1

+ 𝑞𝑛3
) − 𝑞𝑛2

] 

(13) 

The remaining variables to be defined are the nodal values denoted by 𝑞𝑛1
, 𝑞𝑛2

, and 𝑞𝑛3
. An area-

weighted average, among the elements sharing the node, is used to calculate values in nodes.  
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Fig. 4 Nomenclatures used for constructing fluxes in the Frink numerical method. 

 

4.2.2. Numerical flux 

The Lax numerical flux is used here to address the Riemann problem for the jumps between two 

neighboring elements. If the flux in a face is denoted by the subscript 𝐿 and its neighbor’s value 

by 𝑅, then 

𝑯𝒌
∗ =

𝟏

𝟐
(𝑯𝑳 + 𝑯𝑹 − 𝐶𝜆𝚷(𝑸𝑹 − 𝑸𝑳)) (14) 

where 𝜆 is the largest eigenvalue of the system of equations 

𝜆 = √𝑢𝐿
2 + 𝑣𝐿

2 + √𝑢𝐿
2 + 𝑣𝐿

2 + 𝛽2 (15) 

and 𝐶 is a constant parameter with 𝐶 ≤ 1 for satisfying stability conditions. Selecting higher values 

for 𝐶 means adding more dissipation to the solution domain that may cause reducing global 

accuracy. Here, 𝐶 = 0.25 is used to consequently provides accuracy and stability needs.  
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4.2.3. Artificial dissipation 

Although discretization has been done, we should care about the artificial non-physical oscillations 

that occur near the cavity zone which could make the solution unstable. To prevent such 

undesirable oscillations in the solution, the artificial dissipation term 𝑫 [40] is added to the right-

hand side of Eq. (12) as follows: 

𝜕𝑸

𝜕𝜏
= 𝑹 + 𝑫 = 𝑹′ (16) 

The artificial dissipation for the 𝑗-th element can be written as: 

𝑫𝒋 = ∑ 𝒅𝑗𝑘

𝑁𝑓𝑎𝑐𝑒𝑠=3

𝑘=1

 (17) 

where 𝑘 indicates the face number. If the solution vector in neighbor element through the 𝑘-th face 

is shown by 𝑄𝑗
𝑘 , then the dissipation term can be written as follows: 

𝒅𝒋𝒌
= −(

𝐴𝑗

∆𝜏
+

𝐴𝑗
𝑘

∆𝜏
) [

𝜀𝑗𝑘

2
(𝑸𝒋 − 𝑸𝒋

𝒌)] (18) 

where ∆𝜏 is the artificial time step. The artificial viscosity coefficient 𝜀 has to be determined such 

that tends to zero where the solution is smooth and to a definite value in non-smooth regions which 

normally occur near the cavity zone which is the origin of the artifact oscillations generated due 

to the sharp jump in the density variable across the interface of the two phases. In order to 

determine the artificial viscosity coefficient, we follow the idea presented in Jameson et al. work 

[40] which is: 

𝜀𝑗𝑘
= 𝜅𝜌𝛾𝑗𝑘

 

𝛾𝑗𝑘
= |

𝜌𝑗 − 𝜌𝑗
𝑘

𝜌𝑗 + 𝜌𝑗
𝑘
| 

(19) 

and 𝜅𝜌 = 0.025 is chosen here.  

 

4.3. Temporal discretization 

The Euler method is used here for discretizing the temporal derivative in Eq. (16) 
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𝑄𝑚+1 − 𝑄𝑚

∆𝜏
= 𝑹′𝒎  (20) 

where superscript 𝑚 indicates the time-level.  

 

5. Results 

In this section, the numerical results are presented. The simulator is first evaluated in subsection 

5.1 wherein the sheet/leading-edge and mid-chord cavitations have been simulated and are 

compared with the experimental data. After proving that the numerical method works fine, then 

the results for the slotted hydrofoil and its optimized shape will be discussed.  

 

5.1. Validation 

Once the original hydrofoil NACA 66(MOD) is slotted, instead of one cavity pocket over the 

original hydrofoil surface, two-cavity pockets might form over the modified hydrofoil. The first 

cavity pocket over the modified hydrofoil can be seen as a sheet/leading-edge cavity, and the 

second one is like the mid-chord cavity over the original hydrofoil. Thus, the sheet and mid-chord 

cavitation phenomenon are simulated here to show that the numerical method arranged here can 

be effectively used for the optimization of the slotted hydrofoil. The sheet cavitation will be created 

over the original hydrofoil when water flows over NACA 66 (MOD) at the angle of attack 𝛼 = 4° 

and cavitation number 𝜎 = 0.84, and by considering 𝛼 = 1° and 𝜎 = 0.43 the mid-chord 

cavitation will be formed.  

In Fig. 5, the generated grid with 16330 triangle elements is shown. The grid type is chosen 

to be triangular because they can be used over arbitrary and complex geometries such as the cases 

we are dealing with in this paper, i.e., slotted hydrofoil. Moreover, they are suitably working in 

inviscid flows, because there is no need for having high-resolution grids close to the walls due to 

the absence of the boundary layer. As can be seen in Fig. 5, the radius of the far-field boundary is 

assumed ten times of the hydrofoil chord. Moreover, a finer grid is used close to the hydrofoil 

surface while a coarser grid is used far from its surface. Using high-resolution grids near the 

hydrofoil will help to sharply capture the cavity pocket, and a coarse grid near the far-field 

boundary will aid to damp the artificial incoming and outgoing waves occurred there.  
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In Fig. 6, the numerical results for the simulation of the sheet cavitation over the original 

NACA 66 (MOD) hydrofoil are illustrated. The density, pressure, and velocity magnitude contours 

indicate that the cavitation phenomenon can be expected over the suction side of the hydrofoil 

wherein the velocity magnitude is increased and subsequently the pressure is decreased to a lower 

value than the vapor pressure. Moreover, the velocity magnitude immediately reduces when the 

cavity pocket is closed which is a sign for the re-entrant jet. In Fig. 7, the calculated surface 

pressure coefficient by the present numerical method is compared with the experimental data [48]. 

As can be seen in this figure, the agreement between numerical results is satisfactory. The pressure 

in the cavity pocket remains unchangeable that excellently follows experimental pieces of 

evidence. In addition, the pressure recovery at the trailing edge is captured by the present numerical 

method efficiently. 

In Fig. 8 the density, pressure and velocity magnitude contours for the mid-chord cavitation 

type has been plotted. As shown the cavitation does not start from the leading-edge, but starts from 

the middle of the suction side. In Fig. 9, the numerical results by utilizing the Frink numerical 

method are shown and compared with the experimental data [48] for this cavitation type. As shown 

in this figure, the numerical results obey the expected physical behaviors and also agree with the 

experimental data. 

From the obtained numerical results for the simulation of these two cavitation types, it can 

be concluded that the numerical framework set up here can be used to effectively simulate different 

quasi-steady cavitation flows encountered in the present study.  
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Fig. 5 Generated grid for the original NACA 66 (MOD) hydrofoil. 
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(a) 

 

(b) 

 

(c) 

Fig. 6 Contours of a) the density, b) the pressure, and c) the velocity magnitude with the 

streamlines computed by the Frink numerical method for the problem of cavitating flow over 

NACA 66 (MOD) at 𝜎 = 0.84 and 𝛼 = 4°. 
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Fig. 7 Comparison of the pressure coefficient obtained by the Frink numerical method and 

experimental data [48] for the problem of cavitating flow over NACA 66 (MOD) at 𝜎 = 0.84 

and 𝛼 = 4°. 
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(a) 

 

(b) 

 

(c) 

Fig. 8 Contours of a) the density, b) the pressure, and c) the velocity magnitude with the 

streamlines computed by the Frink numerical method for the problem of cavitating flow over 

NACA 66 (MOD) at 𝜎 = 0.43 and 𝛼 = 1°. 
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Fig. 9 Comparison of the pressure coefficient obtained by the Frink numerical method and 

experimental data [48] for the problem of cavitating flow over NACA 66 (MOD) at 𝜎 = 0.43 

and 𝛼 = 1°. 

 

5.2. Optimization of slotted hydrofoil 

The goal of this study is to optimize the slotted NACA 66 (MOD) hydrofoil immersed in water at 

cavitation number 𝜎 = 0.84 and angle of attack 𝛼 = 4°. As discussed in detail in the optimization 

procedure, 40 initial sampling points are used to start the optimization process. These initial 

sampling points are obtained by employing the LHS method, and these points are depicted in Fig. 

10(a). By advancing in the optimization process, new design points will be added to the initial 

sampling points to create and assess the objective functions and to finally find out the optimum 

points. All the points used in the optimization process are illustrated in Fig. 10(b) and it can be 

seen that many new points are inserted in the upper right side of the figure where the slots are 

created close to the leading-edge with higher angles. It means that the optimizer seeks the optimal 

point there, and by adding many new points in that region, it improves the high-fidelity model. 

In Fig. 11, the contours related to 𝐿𝑐1
 and 𝐿𝑐2

 obtained using the deep ANN are shown. 
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will reach its minimum size around 𝜃 = 45°, while lower and higher angles than this angle will 

cause having larger leading-edge cavity size. At a given slot angle, moving the slot location from 

the middle to the leading-edge will favorably result in decreasing in 𝐿𝑐1
. Thus, smaller 𝐿𝑐1

 will be 

found around 𝜃 = 45° and high slot angles.  

In the case of 𝐿𝑐2
, as depicted in Fig. 11(b), at a given slot location the mid-chord cavity 

will reach its maximum size around 𝜃 = 60°, while lower and higher angles than this angle will 

cause having larger leading-edge cavity size. At a given slot angle, by increasing the slot location, 

𝐿𝑐2
 will disadvantageously increase. Thus, for having smaller 𝐿𝑐2

, higher slot angles should be 

used with a slot placed around the middle of the hydrofoil. 

The contours of the objective functions 𝐶𝑙 and 𝐿𝑐 are illustrated in Fig. 12. The objective 

functions are purely non-linear with respect to optimization parameters. This figure can be very 

useful for engineers when they are designing artifacts to find out a design point passing their 

presumed criteria and to figure out how changing the design point would affect the performance 

of the artifact.  

According to the results plotted in Fig. 12, we can roughly argue that there are two domains 

where 𝐿𝑐 becomes minimum 

𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛
)1 = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|25° < 𝜃 < 65° , 0 < 𝑥𝑠𝑙𝑜𝑡 < 0.15} 

𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛
)2 = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|72.5° < 𝜃 < 85° , 0.1 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} 

(21) 

and there is one domain that 𝐶𝑙 becomes maximum 

𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) = {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|40° < 𝜃 < 85°  , 0.15 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} (22) 

Then, it is expected that the optimized points placed in the set stated hereunder: 

(𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) ∩ 𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛

)1) ∪ (𝐷𝑜𝑚(𝐶𝑙𝑚𝑎𝑥
) ∩ 𝐷𝑜𝑚(𝐿𝑐𝑚𝑖𝑛

)2)

= {(𝜃, 𝑥𝑠𝑙𝑜𝑡) ∈ ℝ|72.5° < 𝜃 < 85° , 0.15 < 𝑥𝑠𝑙𝑜𝑡 < 0.4} 
(23) 

which is exactly corresponding with the domain that the optimizer seeks for the optimal points as 

depicted in the right upper part of Fig. 10(b). It is evident that the optimization process is suitably 

designed and works appropriately. Before presenting the optimal points, it is important to assess 

the accuracy of the surrogate model and its validity. For this aim, at different points than the trained 

dataset, along the midlines of the design space, the CFD results are compared with the data 
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extracted from the surrogate model that are given in Table 1. The percentage of the error is defined 

as 

𝐸𝑟𝑟𝑜𝑟(𝐿𝑐) =
|𝐿𝑐𝐶𝐹𝐷

− 𝐿𝑐𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
|

𝐿𝑐𝐶𝐹𝐷

× 100 

𝐸𝑟𝑟𝑜𝑟(𝐶𝑙) =
|𝐶𝑙𝐶𝐹𝐷

− 𝐶𝑙𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒
|

|𝐶𝑙𝐶𝐹𝐷
|

× 100 

(24) 

and it is seen that the maximum percentage of the error in predicting 𝐿𝑐 is lower than 4.06 percent, 

while for 𝐶𝑙 this error is lower than 2.24. These amounts of errors are in an acceptable range, and 

it can be concluded that the surrogate model is trained properly and is reliable. In Figs. 13 and 14, 

the density and pressure contours for points used in Table 1 are plotted. From Fig. 13 and Table 1 

it can be deduced that for 𝜃 = 42.5° and by pushing the slot from the middle chord to the leading-

edge, the lift coefficient is desirably increased while the total length of cavity is unfavorably 

increased. However, form Fig. 14 and Table 1 it can be seen that for 𝑥𝑠𝑙𝑜𝑡 = 0.2 and by increasing 

the slot angle, while 𝐿𝑐 is always desirably decreasing, 𝐶𝑙 is first decreasing and then increasing.  

In Table 2, the output of the optimization process, which is the final Pareto front, is given. 

While any point in the Pareto front is a candidate to be served as an optimal point, another criterion 

should be added to help the optimal point selection. This criterion is arbitrary. Here, we are seeking 

a point that shows the best performance in comparison with the average values of all points in the 

Pareto front. These average values are indicated by 𝐿𝑐
̅̅̅ and 𝐶�̅� and are presented in the last row. In 

other words, the optimal point would be a point with max (𝐿𝑐
̅̅̅ − 𝐿𝑐) and max (𝐶𝑙 − 𝐶�̅�) which is 

achieved for (𝜃, 𝑥𝑠𝑙𝑜𝑡) = (80.461,0.354).  

In Fig. 15, generated gird for this optimal slotted hydrofoil is shown where, similar to the 

original hydrofoil illustrated in Fig. 5, a finder grid resolution is utilized close to the hydrofoil 

surface in comparison with the ones far enough from it. The pressure contour with streamlines and 

the density contour is shown in Fig. 16. It can be seen that by the slot the fluid with higher-pressure 

on the lower surface of the hydrofoil is transferred to the suction side with lower pressure resulting 

in shrinking the cavity pocket. In fact, the high-pressure fluid is injected to the suction side with 

lower-pressure and prevents the pressure becoming lower than the vapor pressure and 

subsequently results in not to happen cavitation. However, injecting a high-pressure fluid over the 
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hydrofoil will decrease the lift coefficient. This phenomenon can be clearly seen in Fig. 17 where 

the pressure coefficient over the surface of the optimized slotted hydrofoil is compared with the 

original hydrofoil. In this way, we can favorably shrink the cavity pocket, but the lift coefficient 

will be disadvantageously decreased. Basically, imposing higher pressure over the upper surface 

of the hydrofoil will cause a downward force that means decreasing in the lift. The total length of 

the cavity that appeared on the suction side for the optimized slotted hydrofoil is 𝐿𝑐 = 0.2006, 

while it is 0.482 for the original hydrofoil that shows an improvement. In the case of the lift 

coefficient, it equals 0.6098 for the optimized slotted hydrofoil while it is 0.688 for the original 

hydrofoil that shows a deterioration. These results indicate that with a penalty of about 11.4% in 

the lift coefficient, it is possible to decrease the cavity size by about 58.4%.  

 

 

 

 

 

 

 

 



25 
 

 

(a) 

 

(b) 

Fig. 10 a) Initial sampling using 40 points and b) final training samples. 
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(a) 

 

(b) 

Fig. 11 Contours for a) 𝐿𝑐1
 and b) 𝐿𝑐2

 obtained using the fitting method. 
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(a) 

 

 

(b) 

Fig. 12 Contours for a) 𝐿𝑐 and b) 𝐶𝑙 obtained using the fitting method. 
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Table 1 Investigation of the accuracy of the surrogate model 

𝜃 𝑥𝑠𝑙𝑜𝑡 
CFD Surrogate model Error (%) 

𝐿𝑐 𝐶𝑙 𝐿𝑐 𝐶𝑙 𝐿𝑐 𝐶𝑙 

42.5° 0.00 0.118 0.476 0.123 0.484 4.778 1.591 

42.5° 0.20 0.231 0.519 0.222 0.514 3.723 0.966 

42.5° 0.40 0.323 0.564 0.339 0.577 4.978 2.244 

        

0.0° 0.20 0.284 0.574 0.297 0.575 4.532 0.068 

42.5° 0.20 0.231 0.519 0.222 0.514 3.723 0.966 

85.0° 0.20 0.157 0.584 0.162 0.586 2.852 0.286 
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(a) 

 

(b) 

 

(c) 

Fig. 13 The pressure (left column) and density (right column) contours for 𝜃 = 42.5° and a) 

𝑥𝑠𝑙𝑜𝑡 = 0.0, b) 0.2, and c) 0.4 
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(a) 

 

(b) 

 

(c) 

Fig. 14 The pressure (left column) and density (right column) contours for 𝑥𝑠𝑙𝑜𝑡 = 0.2 and a) 

𝜃 = 0.0°, b) 42.5°, and c) 85.0°. 
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Table 2 Pareto front design points (GA output) 

𝜃 𝑥𝑠𝑙𝑜𝑡 𝐿𝑐 𝐶𝑙 𝐿𝑐
̅̅̅ − 𝐿𝑐 𝐶𝑙 − 𝐶�̅�  

84.545 0.003 0.1293 0.5976 0.0814 -0.0119  

80.780 0.094 0.1945 0.6091 0.0162 -0.0005  

79.936 0.192 0.2107 0.6112 0.0001 0.0017  

78.943 0.138 0.2295 0.6132 -0.0187 0.0036  

75.576 0.146 0.2882 0.6169 -0.0775 0.0073  

80.461 0.354 0.2006 0.6098 0.0102 0.0003 Selected 

79.473 0.284 0.2196 0.6123 -0.0089 0.0028  

76.866 0.339 0.2676 0.6164 -0.0569 0.0068  

82.397 0.111 0.1648 0.6046 0.0460 -0.0050  

78.373 0.198 0.2402 0.6143 -0.0295 0.0047  

77.263 0.247 0.2605 0.6158 -0.0497 0.0063  

82.786 0.003 0.1578 0.6033 0.0529 -0.0063  

82.999 0.047 0.1542 0.6027 0.0566 -0.0069  

83.464 0.202 0.1465 0.6014 0.0643 -0.0082  

78.811 0.302 0.2322 0.6136 -0.0215 0.0041  

76.170 0.073 0.2786 0.6165 -0.0679 0.0070  

84.996 0.001 0.1228 0.5961 0.0880 -0.0135  

75.117 0.400 0.2958 0.6173 -0.0850 0.0077  

  𝐿𝑐
̅̅̅ = 0.2107 𝐶�̅� = 0.6096    
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Fig. 15 Generated grid for the optimal slotted NACA 66 (MOD) hydrofoil. 
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(a) 

 

(b) 

Fig. 16 The pressure (left column) and density (right column) contours for a) the original 

hydrofoil and for b) the optimized slotted hydrofoil. 
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(a) 

       

(b) 

Fig. 17 a) pressure coefficient distribution over the hydrofoil surfaces and b) their corresponding 

shape and the cavity pocket indicated by 𝐶𝑝 = −𝜎. 
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6. Conclusion 

In this paper, a slotted hydrofoil is optimized to find out the slot location and the slot angle that 

results in maximizing the lift coefficient and minimizing the total length of the cavity. Through 

the optimization procedure, a computational fluid dynamic (CFD) solver is required to provide the 

lift coefficient and the total length of the cavity for the optimizer. For this aim, the Frink numerical 

method is newly developed here to discretize the spatial terms in the preconditioned Euler 

equations based on the artificial compressibility method. The artificial dissipation terms are added 

to these equations for stability reasons and a sensor is used to retain the solution accuracy in smooth 

regions. Moreover, source terms that model the cavitation process are also added to the equations. 

The optimizer is constructed using a surrogated model based on the deep ANN surrogate model 

and the genetic algorithm. The Latin Hypercube algorithm is used to generate initial sample points 

in the design space. The outcome of the optimization process is an optimized slotted NACA 66 

(MOD) hydrofoil satisfying the cost functions defined. Some conclusions and remarks regarding 

the present work are as follows: 

- The comparison between results obtained by the CFD solver and available experimental results 

shows that the Frink finite volume-based solver newly proposed and developed here can be 

effectively used for simulating cavitating flows and can be considered as an alternative for the 

other cavitating flow solvers. 

- Regarding the original hydrofoil NACA 66 (MOD), one cavity pocket is formed on its suction 

side. However, in the slotted hydrofoil, two cavities will emerge on the hydrofoil surface, 

namely, the leading-edge and mid-chord cavities. Smaller leading-edge cavity size will be 

found around 𝜃 = 45° and at high slot angles. In the case of the mid-chord cavity, higher slot 

angles should be used with a slot placed around the middle. 

- From the results obtained it can be concluded that high slot angles very close to the leading 

edge desirably result in the small total length of the cavity 𝐿𝑐 and high lift coefficient 𝐶𝑙. 

- The deep ANN surrogated mode is examined against CFD results which shows a good 

agreement with an error lower than 4%, thus it can be reliably used in the genetic algorithm 

for optimizing purposes.  

- Results obtained for the optimized slotted hydrofoil show that with a penalty of about 11.4% 

in the lift coefficient, it is possible to decrease the cavity size by about 58.4%. 
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- The contours for the lift coefficient, the total length of the cavity, the length of the leading-

edge cavity, and the length of the mid-chord cavity obtained in this study can be used by 

engineers to figure out how deviation from the optimum point can affect the performance of 

their artifacts. 
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