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Abstract. Water loss is arguably one of the biggest challenges currently facing 
water distributors globally, with water lost through leakage a key area of 
concern. Leakage not only impacts customers, but has  significant environmental 
and financial implications. Whilst much has been written on the topic of how to 
calculate or predict leakage, water distributors face a challenge in their approach 
to response, with no consensus on the categorisation of leakage. That is, whilst 
there are established approaches to stating the amount of water lost through 
leakage, determining which areas to respond to as a priority is non-trivial, 
especially when limited resources are a concern. In this work, an approach to 
classifying leakage using a simple statistical approach is presented, banding 
leakage from least to most severe. Domain experts in the UK water industry 
have verified this approach on real-world data. 
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1 Introduction

Efficient leakage management in water networks is key for improving water retention 
within the environment, leading to decreased energy use in its treatment and 
distribution [1]. However, the persistent challenge of excessive leakage poses 
significant hurdles in the water industry. This is because, not only does excessive 
leakage strain vital resources, but it also jeopardises environmental sustainability and 
incurs substantial economic losses. OFWAT reports that leakage causes the loss of 
roughly 20% of all water flowing through pipes [2], and 3 billion litres of water are lost 
solely in the UK on a daily basis due to leakage [1]. There are various approaches to 
the physical detection of leakage, each with their own advantages and drawbacks. For 
a recent review of the state-of-the-art sensing technology, see [3]. 

Whilst there is comprehensive literature for detection and prediction of leakage 
there are few examples of classifying or prioritising leakage. This oversight is 
significant as classifying leakage by severity allows the efficient allocation of resources 
to repairs that would have the greatest impact of reducing leakage. This paper 
demonstrates an effective method for classifying leakage by severity that has been 
verified on real-world data by domain experts in the UK water industry.



2 Background

Various approaches to calculating, measuring, and predicting leakage have been 
proposed in the literature, such as recent work that utilised a multi-objective 
multi-gene genetic programming system, described in [4]. This study focuses on 
predicting long-term unreported and background leakage in water networks, and 
involves utilising Minimum Night Flow (MNF) measurements in District Metered 
Areas (DMAs) to estimate leakage. Other recent work, described in [5] looked to 
address the drawbacks faced in current approaches to leakage calculations by 
incorporating valve manoeuvres, which impact network calmness with the potential 
introduction of transients [6].

It has been shown that the physical characteristics of a pipe - such as length, 
diameter, age, volume, and material - can influence leakage levels [7,8]. Yet, there are 
also external factors that contribute to leakage within a DMA, such as freezing weather 
or soil expansion [2]. 

3 Methods

The first step of the proposed leakage detection method is to calculate the DMA 
leakage from flow data. Firstly, the DMA flow data is processed to attain only the data 
from 3 - 4am, referred to as the nightline flow. Calculating the base nightly flow is 
done in multiple different ways depending on the data and area used. Generally, a 
continuous low (multiple days at the same or very similar flow) or taking the lowest 
point over a long period for measurement is a good indicator of the base nightly flow. 
This is standard practice within the water industry in the UK, although there are 
several variations on this in the literature [9-11]. We took the 40th percentile of our 3 - 
4am flow as the nightly base rate as the data is in 15 minute intervals. The nightly base 
rate is then subtracted from the nightly flow data, which will give a leakage value per 
day, as shown in figure 1.  

The next step is calculating the technically achievable leakage level (TAC). This is 
calculated by firstly Z-scoring the leakage values across all available data for a single 
DMA. The formula for Z scoring is seen in the equation below.

z = ( x - μ ) / σ

Where x is the value being evaluated, μ is the mean, and σ is  the standard deviation.
After calculating the Z-scored values for each data point, the 10th percentile is used 

to serve as the level of leakage that is maintainable, the TAC. Any value above this is 
considered for leakage alert classification and notification. This TAC is then used in the 
following leakage classification stages as shown in figure 2. Note that only 28 days of 
data is shown in the plot but the TAC is calculated on all available values in the DMA 
leakage array.



Figure 1: Daily leakage rate for 28 days. Y axis shows the leakage rate and X axis 
shows the date in days.

 
Figure 2: Daily leakage shown with the technically achievable level (TAC). The Y axis 
shows the leakage rate and the X axis shows the date in days. The TAC is shown as the 

red horizontal line on the plot.

Once the daily leakage and the TAC have been calculated, the leakage levels can be 
classified. The leakage classification is divided into three levels of increasing severity. 



Level 1 is a notification that the DMA might be be exhibiting signs of a minor fault, 
level 2 is an alert that the DMA is now leaking at a substantially higher level than usual 
and should be addressed, level 3 is an alert to take immediate action on the DMA as a 
catastrophic burst (or similar event) has likely occurred. Succinctly, in practice, these 
levels were informally referred to as ‘possible’, ‘probable’, and ‘definite’.

The level 1 alert is calculated by measuring the number of increasing data points, 
the number of which being dependent on the intervals of the data. If the leakage data is 
in daily intervals the level 1 alert requires 7 days of increasing (or if it has increased 
and maintained that level) leakage above the TAC to be raised. If the data is weekly 
data, 3 weeks of increasing leakage above the TAC will trigger a level 1 alert. Note that 
the threshold for an alert to be activated can be configured automatically or a manual 
override can be set. 

The level 2 alert is dependent on a level 1 alert, only being raised if a level 1 alert is 
active. The level 2 alert is raised when the leakage is greater than the mean of all 
previously observed data points plus the standard deviation. The level 2 alert can be 
stopped by the leakage returning to or below the mean of all previously observed data 
minus the standard deviation.

Level 3 alerts are the highest level of alert, and are independent of the other two 
levels. A level 3 alert can be triggered in two ways; firstly by having a leakage point 
with a Z-score of greater or equal to two, meaning that the leakage is two standard 
deviations above the mean of all observed data. Alternatively, the alert can be triggered 
by having a leakage greater than 100 times the TAC plus standard deviation. A level 3 
alert can be stopped by the leakage returning below a Z-score of 2. 

There are built in overrides to allow level 1 and 2 alerts to trigger if the data is 
fluctuating a lot as seen in the figure above. Specifically, if the data would trigger a 
level 2 alert but a level 1 alert is not raised, the level 1 counter is set to trigger if the 
next datapoint is the same or more than the current leakage level thus, immediately 
triggering a level 2 alert if the leakage level is maintained.  

Note that the parameters of this method were developed in conjunction with domain 
experts in the UK water industry.

4 Discussion

Figure 3 shows the resulting leakage bands when this approach is applied to specific 
leakage data. It is evident that it has correctly identified the section of the data that has 
a fault. Interestingly, a rising trend is observed of the data that is not classified as any 
leakage level. This is due to the fluctuations in leakage. That is, one day it is high but 
the next it is falling, thus not triggering any level 1 alerts until it has surpassed the 
consecutive data points threshold. The built in override did not trigger early on in the 
data as the following point after the early spike is much lower leakage, thus resetting 
the level 1 counter. This non-trigger is by design to stop the system alerting the user to 
potential false alarms.

The level 1 alert is raised after there are 3 consecutive days of increasing leakage 
which quickly becomes a level 2 alert. This demonstrates the ability of the system to 



identify trends in the data and its ability to ignore highly fluctuating data that could be 
caused by a faulty reading or other non-leakage related events not known by the 
system. 

The level 3 alert is also raised once the leakage has passed its threshold. Note that 
the level 2 alert is also active for this period, demonstrating the independent high level 
alert. The level 3 alert is only active for 3 data points as the leakage seems to 
drastically fall after spiking, this could be because a repair was rapidly carried out. 

Figure 3: Daily leakage shown with the technically achievable level (TAC) and 
leakage bands. The Y axis shows the leakage rate and the X axis shows the date in 

days. The TAC is shown as the red horizontal line on the plot. The leakage bands are: 
Level 1 - Green, Level 2 - Yellow, Level 3 - Red.

A potential drawback of this approach is that it is parametric. That is, the standard 
deviations above which leakage must fall to trigger an alert, and the number of data 
points for which the leakage must rise, have been specified rather than using a more 
intelligent approach, such as a heuristic based method. However, this allows the user of 
the approach to specify system sensitivity, tweaking these values to their needs. Future 
work could look to explore the integration of an approach to automatically set these 
values on a DMA by DMA basis. This approach and the default parameters were 
developed and verified on 5,000 DMAs in a UK water network.



5 Conclusion

Overall, the methods employed to classify leakage work well on the example data and 
have shown promise in analysing real-world data examples. While the method has 
limitations in handling highly fluctuating data, these can be mitigated with tailored 
adjustments to alert level triggers. This customisation demonstrates the system's 
adaptability and its potential for effective use across various datasets with varying 
intervals. Another limitation is that this method only uses the leakage rate in the DMA 
with no other factors attributed like weather and soil conditions or pipe age and 
material. This could however be an avenue for future work where some of those 
features could be integrated into the system to get a measure based not only on historic 
flow data but also environmental and network conditions.
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