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Abstract 

Products or components manufactured by the sheet metal process are indispensable in this 

contemporary era, from daily-used metal jars to high-tech air vehicles. Nonetheless, there are a variety 

of sheet metal manufacturing processes for fabricating these goods; the air-bending sheet metal process 

is one of the most commonly conducted methods. After air bending, commonly used metals — Mild 

Steel, Aluminum, and Stainless Steel — tend to demonstrate an unwanted characteristic called 

springback, which requires being controlled to produce extremely precise parts. Therefore, this study 

aimed to develop an empirical model that would improve springback prediction which would ultimately 

assist in minimizing the springback effect in bending operations. That pragmatic model was supposed 

to be derived from four independent parameters, such as die gap, punch radius to sheet thickness ratio, 

set angle, and material. In addition to this, rigorous optimization of the input variables — springback 

was vehemently affected by those — was also a goal of this research. To achieve both objectives 

thoroughly, several approaches were incorporated sequentially: Box-Behnken experimental design, 

experimental data collection, conducting an ANOVA test, empirical model selection, model 

development, confidence interval check, model validation, and finally numerical optimization. For 

pursuing this study’s methodology, the Design Expert® software, Universal Testing Machine, and Bevel 

Protector were utilized. Thenceforth, the linear model was chosen in light of statistical analysis. In the 

validation phase, it was found that the developed linear models were able to prognosis springback with 

acceptable errors. Moreover, the highest sensibility of springback for one process parameter — punch 

radius to sheet thickness ratio — was also revealed from the developed linear models. Another feature 

of this study’s analysis was to optimize the given factors for four different circumstances. It illustrated 

that different kinds of optimization were possible in light of boundary constraints. Overall, this study 

has some significant insights for sheet metal industries; cost, process, and design optimization; and a 

bright path for forthcoming research. 
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1. Introduction 

Products or components, manufactured by sheet metal process, are indispensable in this contemporary 

era from daily-used metal jars to high-tech air vehicles including automobile panels, airplane skins, 

cans for food and beverages, and frames for electronic devices [1]. It implies that sheet metal fabrication 

is a vital manufacturing process [2]. It is a method of forming thin sheets of metal by applying force via 

core or cavity dies or both [3] as well as execution of numerous operations such as bending, blanking, 

stretch forming, and deep drawing [4]. It is incorporated in many industries — especially in aircraft, 

automotive, food, and home appliances [5]. Thus, it serves as the backbone of modern society, meeting 

its escalating demands effectively. 
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A plethora of industries rely on sheet metal forming processes, notably on bending technologies, among 

which air-bending stands out [6] — a three-point bending process [7]. Because this technology is 

extremely inexpensive as it permits the fabrication of a vast range of bend angles with only a single 

instrument. Another amazing characteristic of this air-bending method is that it gives the flexibility 

required for manufacturing, for instance, it may satisfy the need to create decent parts even with a batch 

size of just one [8]. Moreover, it is appropriate for sheet components with complicated, curved faces 

[9]. Furthermore, it is versatile, allowing a variety of bend configurations to be formed with the same 

set of instruments [7]. However, one crucial undesired feature of air-bending is springback — defined 

as an elastically driven shift in the shape of a component after forming [10]. In other words, springback 

happens in metal forming due to the primarily elastic recovery of material following the removal of the 

punch force [11] [12]. Since the bottoming is nonexistent in air-bending, so springback is high [7]. This 

springback following the shaping stage may produce substantial shape deformities. It is therefore vital 

to understand which elements affect the springback and to be capable of estimating the amount of the 

springback [13]. Springback characteristic is impacted by several parameters such as strain hardening 

exponent, coating thickness, die opening, die radius, punch radius, punch travel, punch velocity [14], 

sheet thickness, tooling shape, lubrication conditions, material qualities, and so on [15]. Hence, several 

previous research were published pertinent to these factors.  

1.1 Brief background study 

One background work on air-bending by Yilamu et al. which was investigated for bending and 

springback phenomena of Stainless Steel and Aluminum clad sheets in V-shaped. Experiments with V-

bending were conducted for both scenarios. In one case, the aluminum layer was positioned within the 

bent clad, and the stainless steel was located outside. In another situation, the Stainless-Steel layer was 

positioned within the bent clad, and the Aluminum layer was located in outside. According to the data, 

the sheet-set state has a significant impact on the bending phenomenon [16].  

In addition to that, another study effort was published by Ozdemir to explore springback behavior by 

employing the air V-bending technique in DP600 sheet material. The influence of varied thickness and 

punch tip radii on springback values were also examined. Experimental data were evaluated by the 

Response Surface Method (RSM). It was established that as the punch tip radius rose, the springback 

value increased; on the other hand, when the sheet thickness increased, the springback value reduced 

[17]. 

Another research work was carried out by Gupta et al. to examine the influence on springback due to 

variations in the die width during air-bending of electro-galvanized CR4 steel. A Universal Testing 

Machine, permitting recording of bending load and regulating of punch travel, was utilized for 

performing the trials. A flexible die set was employed whose die width might be modified by merely 

altering a distance block. But die radius, punch radius and punch speed were maintained the same. A 

strategy to modify one component at a time was adopted. Angles were determined by utilizing an optical 

profile projector and graphics. The Graphical technique was utilized for assessing the springback. It 

was discovered that springback increased with the increase in the width of the die for every punch 

journey and for non-galvanized as well as galvanized steels of varying galvanizing thicknesses. 

Moreover, an increase in springback was seen when the galvanizing thickness was increased [18]. 

Another article published by Garcia-Romeu et al. focused on springback estimation for sheet metals in 

an air-bending method based on an experimental study. In that study, springback values for various 

bending angles of Aluminum and Stainless-Steel specimens were acquired and turned into visuals for 

the air-bending process. Findings expanded the data that a sheet metal designer might use either to 

achieve the final geometry values of an air-bending item or to design bending dies [19]. 
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Research undertaken by Yang et al. aimed to build an analytical model to forecast the springback in air-

bending of Advanced High-Strength Steels, emphasizing the specific features of these materials. A 

computer code was constructed based on classical bending theory, and the finite element simulation 

was applied. The comparison between the experimental findings and forecasts suggested that the careful 

study of the attributes of Advanced High-Strength Steels influenced the correctness of the springback 

prognosis using the analytical technique [20]. 

The research by Thipprakmas et al. explores the influence of process parameters on springback and 

spring-go in V-bending processes utilizing the finite element method, Taguchi, and ANOVA 

approaches. The findings demonstrated that material thickness had a large impact on springback, 

whereas bending angle had a significant role in spring-go. The ANOVA analysis aided in evaluating 

the relevance of each process parameter. Experimental validation revealed excellent agreement between 

finite element simulation and real findings. The research gave insights into adjusting process parameters 

for getting desirable bending results [21]. 

1.2 Justification from the background study 

From the literature review, it can be said that there are numerous factors affecting springback behavior 

in the air-bending sheet metal process. To analyze this characteristic, many tools and techniques may 

be utilized: Universal Testing Machine, Graphical technique, Response Surface Method, finite element 

simulation, Taguchi, ANOVA, and a computer code based on classical bending theory. 

1.3 Conspicuous research gaps from background study 

Hardly previous papers can be found where categorical variable like material was included alongside 

numerical factors for the development of empirical models. A few past works might be conducted to 

optimize factors affecting springback. But none of those considered optimizing those factors for 

different independent cases: comprehensive, fixed part design, cost-efficient, and performance-driven 

optimization. 

1.4 Objective of this study 

The objective of this research was to develop and investigate an empirical model whose role would 

predict springback, so that it could be minimized for the air-bending sheet metal manufacturing process. 

That pragmatic model was supposed to be derived from four critical independent parameters such as 

die gap, punch radius to sheet thickness ratio (abbreviated as P.R/S.T in this work), set angle, and 

material types. Another goal of this study was to rigorously optimize the input variables on whose 

springback was vehemently affected. 

2. Methods 

This study required to conduct many things to follow sequentially and all of them are visually 

illustrated by a flowchart in Fig. 1. 
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Fig. 1: Sequences of this study. 
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2.1 Study’s factors specifying 

There are numerous parameters that can influence springback [14]. Thus, first and foremost, the study’s 

parameters needed to be selected which were going to be investigated. In this study, those parameters 

were materials, initial bend angles, punch radius to sheet thickness ratio (P.R/S.T), and die gaps. 

2.2 Materials 

Appropriate materials section is a critical criterion for pursuing research pertinent to springback 

characteristics. The first thing that should be mentioned is that Mild Steel S355 grade is one of the 

commonly used materials for rod, beam, and other important structural applications [22]. Another vital 

material that could be considered for this research was Stainless Steel 304 — a widely used Stainless 

Steel in different kinds of industries for several purposes [23]. Another useful material is Aluminum 

7050 alloy, particularly in the aerospace industry [24], was also the point of concern of this study. 

Therefore, those three materials widely utilized in industrial applications were chosen in this study: 

Mild Steel (S355 grade with 0.20% carbon), Stainless Steel 304 (comprising 18% chromium and 0.11% 

carbon), and Aluminum 7050 alloy (containing 89% aluminum). Furthermore, it should be mentioned 

that sheets of these materials were examined at three distinct thicknesses — 1 millimeter, 1.5 

millimeters, and 2 millimeters. Because materials of varying compositions and thicknesses were 

incorporated in this comprehensive study in order to ensure a robust exploration of the impact of diverse 

material properties on springback. Moreover, to ensure precision in extracting the desired size from the 

bulk material, each sheet was carefully prepared to the exact dimensions of 150mm in length and 30mm 

in width, by using a hydraulic cutter.  

2.3 Necessary tools: Universal Testing Machine and Design Expert® software  

After choosing the desired materials, proper equipment selection is another immediate indispensable 

step for any experimental research. In this study, a Universal Testing Machine —is a very popular and 

versatile option for testing materials and components [25] — was used. It is commonly used in both 

research and quality control to provide engineering property data on a wide range of materials [26]. The 

Universal Testing Machine was incorporated into this study to make the bend of aforementioned three 

metals. Fig. 2 shows the Universal Testing Machine, which supported the experiment. In addition to 

this, Fig. 3 depicts the photographic view of the experimental setup for air bending of specimens. 

Another hardware equipment was the Bevel Protector — it is a tool for measuring angles [27]. 

 
Fig. 2: A real view of experimental setup under a Universal Testing Machine for air-bending. 
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Fig. 3: A photographic view of the experimental setup for air-bending. 

Apart from the Universal Testing Machine and Bevel Protector, another vital tool for this study was the 

Design Expert® software — developed by State Ease [28]. It is one of the most extensively used 

programs [29]. It was first released in 1996 to help carry out experimental designs such as determining 

the optimum formula for a preparation. Apart from optimization, this software could also interpret the 

factors in the experiment. This software provided the least number of Runs — the number of 

experiments that must be carried out according to the selected experimental design — required in light 

of given factors or information for optimization [28]. In this study, there were several variable factors, 

shown in Table 1, as well as constant factors, illustrated in Table 2, which were inserted into Design 

Expert® software (version 13).  

Table 1 Experimental variables and their corresponding numeric codes. 

Process factors Units Symbol Levels of each factor 

1 2 3 

Die gap mm DG 65 70 75 

Punch Radius / Sheet Thickness - PR/ST 5 10 15 

Initial bend angle Degree SA 120 135 150 

Material - Material Mild Steel 

S355 grade 

Aluminum

7050 alloy 

Stainless Steel 

304 

 

Table 2 Four constant factors for one response factor springback. 

Constant factor Corresponding value 

Die radius 5 millimeters 

Initial punching force 500 Newton 

Punch velocity 0.8 

Sheet dimension 150 millimeters X 30 millimeters 

2.4 Response surface methodology 

Response Surface Methodology is a collection of statistical design and numerical optimization 

techniques used to optimize processes [30]. To put it another way, it is a general strategy for combining 

designed experiments and regression analysis to explore the relationship between one or more response 

variables and a set of factors that are thought to affect the responses [31] [32]. It is widely used in 

research and development and industrial applications [31]. In this study, by using the Box-Behnken 

methodology — one sort of Response Surface Methodology — as a design matrix, Design Expert® 

software demonstrated that fifty-one individual Runs were necessary based on Table 1 and Table 2. In 
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that design matrix, both the actual and coded levels for numerical and categorical factors were specified. 

At this moment, it needs to be clarified that if all four factors were numerical, a total of twenty-nine 

runs would be required according to Box-Behnken Design; however, one categorical factor — materials 

— exists in this study which elevated total runs from twenty-nine to fifty-one. It should also be 

mentioned that among all the Response Surface Methodology methods for a higher number of variables, 

Box-Behnken Design and Central Composite Design are the most appropriate design methodologies. 

Between those two methods, the Box-Behnken Design algorithm was implemented in this study, a 

component of Response Surface Methodology [33] [34], as it required fewer runs than Central 

Composite Design which was fifty-seven. Box-Behnken Design algorithm can generate higher-order 

response surfaces using fewer required Runs than a normal factorial technique [35]. Therefore, Box-

Behnken Design was not only a time-effective but also a cost-efficient technique for this research. 

2.5 Experimental testing procedures via a Universal Testing Machine 

Since materials and necessary equipment were chosen, thus those experimental fifty-one Runs could be 

performed in the lab. Basically, in this study, a Universal Testing Machine bents sheet metal by using 

two adjustable dies of the same diameter but different punches which is shown in previous Fig 2. The 

desired die gap between two adjustable dies was achieved by T-slot manipulation — fastened with nuts 

and bolts. Throughout the experiment, the punch traveled and set angle both were governed by an 

equation (i), which helped monitor punching force and velocity. In equation (i), h stands for punch 

travel distance, d represents die gap, and the symbol θi indicates the initial angle. 

 𝒉 =
𝒅

𝟐 𝒕𝒂𝒏(
𝜽𝒊

𝟐
)
  (i) 

Punch travel varied with die gap and set angle, for obtaining several data — all of those fifty-one distinct 

Runs’ experiments were conducted randomly to minimize any systematic inaccuracies or noise within 

the experiment. Each time, the punch travel was verified by using a laser light. Moreover, sheet 

specimens were bent at three predetermined angles — 120, 135, and 150 degrees — throughout the 

experiments. During the process, upon the release of the punching force, the specimen experienced 

elastic recovery. Thus, the initial given predetermined set angle did not remain anymore and a new 

angle of that specimen was formed — it is called the ‘final bend angle’ in this study. Three deformed 

specimens of each three materials namely Stainless Steel 304, Mild Steel S355 grade, and Aluminum 

7050 alloy are depicted in Fig. 4 after 32 hours of punch force removal.  

 
Fig. 4: deformed specimens of Stainless Steel 304, Mild Steel S355 grade, and Aluminum 7050 alloy. 

Afterward, it was time to measure that final bend angle. But the question was:  how could that angle 

measurement be conducted? Two possible ways: excluded angle or included angle measurement, 
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depicted in Fig. 5a — both are complementary angles to each other. The excluded angle is the 

measurement between the outside part surface after bending and its idle straight surface prior to bend 

[36], demonstrated in Fig. 5b. The included angle, on the contrary, is the measurement between the 

inside surfaces of a part [37], illustrated in Fig. 5c. Since one approach needed to be chosen for 

determining angles, included angle measurement approach was chosen for this study. Here, equation 

(ii), represents the angular springback formula [37] [17], where θi is the initial bending set angle before 

load removal and θf is the final bend angle after load removal, and ∆θ stands for angular springback. 

  ∆θ= θf – θi  (ii) 

 θf  > θi 

The final bend angle (θf) was measured carefully with a bevel protractor. Therefore, subtracting the set 

angle from that measured final bend angle which eventually gave the angular magnitude of springback 

— shown in Fig 5d. To improve repeatability, each experiment was replicated three times and the 

average result was recorded. 

 
Fig. 5: demonstration of initial bend angle and final bend angle by line art. 

Additionally, it needs to be mentioned that lubrication during the air-bending process significantly 

affects both punch force, die, and springback compared to the dry conditions [38]. Hence, lubrication 

was excluded from the experiment in order to acquire an actual scenario of those factors without 

affecting the outcomes, therefore, a rational conclusion could be made from this experiment.  
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2.6 Pilot test 

In the pilot run, experiments were conducted using all parameters, including die gap, punch radius to 

sheet thickness ratio, material, and set angle. The result from the pilot run was thoroughly analyzed to 

detect any anomaly or effect of noises. Thus, from the pilot run, it was decided to conduct three trials 

for each experimental setup to mitigate noise and errors effectively. Additionally, measures were taken 

such as introducing a laser at a proper height to ensure correct punch travel and set angle alignment, 

thereby optimizing experimental conditions for accurate springback measurements. Apart from this, it 

needs to be addressed that final bend angles were subsequently measured at 8, 16, 24, 32, and 40 hours 

of post bending, in order to observe what the right time interval was for measuring the final spring-

back angle of the parts. Since there was no further springback angle increment after 32 hours; therefore, 

a decision was made that all springback would be measured after 32 hours during the experimental data 

collection phase of this study. 

2.7 Appropriate model selection 

In this phase of the research, an appropriate response model for the response factor was essential for 

the collected data from the experiment. There are several response models, for instance, linear, first-

order interaction (2FI), quadratic, and cubic [39]. Selecting the best model among those models involves 

comparing how well each model fits the data — it is known as the Fit Test from the statistical point of 

view. Analysis of variance (ANOVA) is a widely used set of statistical models aimed at comparing 

variation between data. ANOVA models include the partitioning of the sum of squares, lack-of-fit tests 

[40], and R-square test [41]. Statistical tools namely Sequential Model Sum of Squares, Lack of Fit 

Test, and performance of different regression models play crucial roles in this selection process.  

There are three types of Sum of Squares: Type I, Type II, and Type III. The analysis of variance employs 

these sums. The Type I sum of squares is calculated sequentially, whereas the Type II and III Sum of 

Squares are computed partially. In Type I, the elements are evaluated sequentially according to their 

order in the model [42]. In this study, the Type I Sum of Squares was considered. Because the Sequential 

Model Sum of Squares assists in figuring out the gradual contribution of each term (linear, interaction, 

quadratic, cubic) when they are introduced to the model in a specified order [43].  

The lack of Fit Test is useful for finding model inadequacies [40] [44]. The lack-of-fit test compares 

the unbiased estimate of variance to the estimated variance from noise within data. Potentially a lack-

of-fit test could be utilized to decide which part (model or data) ought to be prioritized for refinement. 

A model passing the lack-of-fit test implies that the noise in the experimental data is restricting the 

precision of the measured values [40]. Therefore, a model requires to unable to pass the lack of fit test 

to have significance of the model based on acquired data correctness. For this, the P-value of the lack 

of fit test for the model must be more than 0.05 — the accepted criterion. On the contrary, if the P-value 

of the lack of fit test for the model is less than 0.05, the model is insignificant — the rejected criterion 

[40]. 

There are two metrics used to assess the effectiveness of linear regression models: adjusted R-squared 

and R-squared. R-squared is a metric that quantifies the proximity of the data points to the regression 

line that has been fitted [45]. The value ranges from 0 to 1, or from 0% to 100%. An R-squared value 

of 1 or 100% indicates that all variations in the dependent variable can be entirely accounted for by 

variations in the independent variable(s). It is vital to emphasize that a small R2 value does not indicate 

a weak association, nor does a big R2 value ensure a strong relationship [45]. An R-squared value of 0 

or 0% indicates that the independent variable(s) do not account for any of the variability seen in the 

response variable. Conversely, the concept behind adjusted R-squared is to consider the inclusion of 

factors that do not substantially enhance the model. As more predictor factors are included in the model, 
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the R-squared value will often improve, even if those variables have only a weak association with the 

response variable. This might provide a deceptive perception of enhancing the accuracy of the model. 

The adjusted R-squared value is always lower than or equal to the R-squared value.  

Furthermore, in order to provide statistical reliability for the selected model, several plots would be 

considered: the normality plot, scatter diagram, and Box-Cox graph. First, the normal probability plot 

of residuals is used to assess the normality of the data. If the plotted points align closely with a straight 

line, the dataset can be considered to be normally distributed [46]. Second, a scatterplot is an effective 

tool for investigating connections among parameters, discerning relationships beyond facile 

correlations, and routing more accurate data science practices [47]. Third, the Box-Cox transformation 

technique is used to enhance the compression of spatial data by promoting normalcy, efficiently 

lowering spectral dimensions, and eliminating mistakes in spatial values [48] [49]. Thus, if the data 

need to be transformed from non-normality to normality, the Box-Cox could be utilized. Apart from 

that, if the data are already normally distributed, the Box-Cox plot will indicate that no transformation 

is needed. So, it can be a cross-checking technique for reinforcement that the collected data has 

normality. A question might be raised about how it could be understood that there is no transformation 

needed. Well, lambda (λ) — a transformation parameter in Box-Cox [50]— values help with this. There 

are different standard transformations for different lambda values: lambda values of -3, -2, -1, -0.5, 0, 

0.5, 1, 2, and 3 represent inverse cubic, inverse square, inverse, inverse root square, logarithmic, root 

square, no transformation, square, and cubic, respectively [51] [52]. So, a lambda value of one indicates 

that no transformation is required since the data are already normally distributed. 

2.8 Empirical model development 

After the selection of a model, it might be the time for development of an empirical model — this kind 

of model is only supported by experimental data [53]. So, those are not based on any specific theory 

[54]. To put it another way, empirical models are based on correlations obtained from the analysis of 

experimental data [55]. Empirical models that have been used for curve fitting processes to generalize 

the results of experiments [56] [57]. The curve fitting may be achieved by suitable methods to fit 

polynomials or other functions [56]. It is mandatory to mention that an empirical model can provide 

reliable results when it is based on a substantial amount of test data [58]. In this study, a particular 

response model was chosen in an earlier phase, and in light of that model, the final empirical model 

was developed with the help of Design Expert® software. 

2.9 Confidence interval 

In this stage, the chosen developed model requires to demonstrate how much error it may tolerate. It 

can be inferred that researchers gather information from samples and anticipate that it discloses reality 

about the population of interest. However, sample statistics are not guaranteed to properly represent 

what is true of the population. This is where confidence intervals are important. A confidence interval 

(CI) — also known as error tolerance level or margin of error [59] — is a spectrum of scores inside 

which you are certain the genuine population value resides. Said another way, a confidence interval 

reveals how much sampling mistakes could influence the outcomes of research [60]. Basically, the 

confidence interval is the probability of the assertion, which by convention is set at 95%, although it is 

also rather usual to see values of 99%, 99.9%, and even 90%. The trade-off for a higher level of 

confidence is greater [61]. The 95% confidence interval is one of the most regularly stated confidence 

intervals [62]. Hence, in this study, a 95% confidence interval was considered. The main difference is 

that the bigger the percentage utilized, the surer one is that the genuine population estimate fits within 

the range  [62]. Actually, it illustrates how data transformations may be used to convert anomalous 

information to a normal distribution. It is to be addressed that data necessary to calculate a confidence 

interval for the mean should be at least substantially regularly distributed [63]. In this study, as a 95% 
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confidence interval was right for the developed empirical model, the next phase was model validation 

experimentally. 

2.10 Model validation 

In experimental validation, the response factor — angular springback — was forecasted in light of 

process parameters via using the developed empirical model for all three selected distinguished 

materials. Subsequently, actual angular springback was measured for the same magnitude of those four 

independent factors. Eventually, errors were calculated by following equation (iii). 

  𝐄𝐫𝐫𝐨𝐫 (%) =
𝐀𝐜𝐭𝐮𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 –𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐯𝐚𝐥𝐮𝐞

𝐀𝐜𝐭𝐮𝐚𝐥 𝐯𝐚𝐥𝐮𝐞
× 𝟏𝟎𝟎  (iii) 

2.11 Optimization techniques 

After validating the constructed chosen model experimentally, it was time to apply optimization 

techniques. In this study, the numerical technique was employed using the Design Expert® software to 

minimize springback for four different cases. The initial step was defining the boundary constraints, 

after which the software identified the optimal factor settings that meet these criteria. In that numerical 

optimization, a function exists in that software namely Desirability — it is an established method for 

assessing optimal combinations among all variables [64]. It employs an established scale to assess the 

extent to which a process metric fulfills its prerequisites, and it also helps discern among alternatives in 

order to select an optimal process design [65]. To make this concept clearer, it can be written that 

Desirability is an objective function whose values lie from 0 to 1 [64]. Zero indicates undesired output 

whereas one implies a very desired outcome [64]. Therefore, the value of the Desirability function is 

useful to pick the best conditions among alternatives. During the numerical optimization throughout 

Design Expert® software, it is capable of determining the optimal point by itself that offers the greatest 

value for the desirability function.  

3. Analysis and findings 
All the phrases of this study’s analysis have been sequentially described: experimental data collection, 

model selection, model development, 95% confidence interval, model validation, and finally model 

optimization. 

3.1 Experimental data collected via using a Universal Testing Machine  

All of those recorded specific combinations derived from these experimental fifty-one Runs are detailed 

in Table 3, where the magnitude of four independent variables and the corresponding value of one 

dependent variable for each run are shown. These experimental data were imported into Design Expert® 

(version 13) so that an appropriate response model could be chosen in light of necessary statistical tests. 

Table 3 Experimental design matrix of four actual independent process variables with the 

experimental response of springback. 

Run 

 

Factor A: 

Die gap 

(millimeters) 

Factor B: 

P.R/S.T 

Factor C:  

Set Angle (Degree) 

Factor D: 

Material 

Response 

 springback  

(degree) 

1 75 5 135 Mild Steel 3 

2 75 10 120 Stainless Steel 10 

3 70 10 135 Stainless Steel 8 

4 70 10 135 Aluminum 10 

5 70 10 135 Aluminum 11 

6 65 15 135 Stainless Steel 13 

7 70 10 135 Aluminum 8 

8 70 15 150 Aluminum 6 
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9 70 15 120 Mild Steel 11 

10 70 10 135 Stainless Steel 5 

11 75 5 135 Stainless Steel 6 

12 65 15 135 Mild Steel 6 

13 70 15 150 Stainless Steel 7 

14 75 15 135 Stainless Steel 14 

15 65 10 150 Mild Steel 5 

16 70 5 120 Stainless Steel 8 

17 75 15 135 Aluminum 12 

18 65 5 135 Stainless Steel 4 

19 70 5 150 Stainless Steel 5 

20 65 10 150 Aluminum 9 

21 65 10 150 Stainless Steel 5 

22 65 10 120 Stainless Steel 9 

23 70 15 120 Stainless Steel 10 

24 70 10 135 Aluminum 9 

25 75 10 120 Aluminum 11 

26 70 10 135 Mild Steel 11 

27 70 10 135 Stainless Steel 5 

28 75 5 135 Aluminum 7 

29 75 10 120 Mild Steel 13 

30 70 5 150 Mild Steel 2 

31 70 10 135 Mild Steel 7 

32 70 10 135 Stainless Steel 10 

33 70 10 135 Aluminum 12 

34 75 15 135 Mild Steel 6 

35 65 5 135 Mild Steel 4 

36 70 15 150 Mild Steel 12 

37 70 15 120 Aluminum 16 

38 70 5 120 Mild Steel 5 

39 70 5 150 Aluminum 3 

40 75 10 150 Stainless Steel 5 

41 65 15 135 Aluminum 10 

42 70 10 135 Mild Steel 9 

43 65 10 120 Mild Steel 13 

44 75 10 150 Aluminum 7 

45 75 10 150 Mild Steel 11 

46 70 5 120 Aluminum 7 

47 65 5 135 Aluminum 4 

48 70 10 135 Mild Steel 11 

49 70 10 135 Stainless Steel 4 

50 70 10 135 Mild Steel 10 

51 65 10 120 Aluminum 12 

3.2 Appropriate model selection 

To determine the best model based on inserted experimental data, a statistical Fit Test was necessitated 

to perform. Albeit there were many models — linear, first-order interaction (2FI), quadratic, and cubic 

— in the Design Expert® program, the linear model was suggested by the software after incorporating 

a test namely the Sequential Model of Sum of Squares. Because the linear model was not only 
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significant (Sequential p-value less than 0.05) but also had the least sequential p-value among all models 

in that test. The outcomes of the Sequential Model of the Sum of Squares test are depicted in Table 4. 

Table 4 Sequential Model Sum of Squares 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F-

value 

p-value Comment 

Mean vs Total 3475.31 1 3475.31 
   

Linear vs Mean 297.12 5 59.42 10.50 < 0.0001 Suggested 

2FI vs Linear 7.92 9 0.8796 0.1284 0.9986 
 

Quadratic vs 2FI 25.10 3 8.37 1.25 0.3087 
 

Cubic vs Quadratic 109.98 15 7.33 1.18 0.3630 Aliased 

Residual 111.57 18 6.20 
   

Total 4027.00 51 78.96 
   

Another test as a complete part of the statistical Fit Test is Lack of Fit. It was also conducted in this 

study’s experimental data to cross-check whether the linear model was appropriate or not. The selected 

linear model had an insignificant Lack-of-Fit with a p-value of 0.184, illustrated in Table 5, which was 

above the 0.05 threshold, indicating that the model fitted the data well without significant inconsistency. 

This criterion was crucial as it ensured the model's robustness and reliability in capturing the underlying 

data structure. 

Table 5 Lack of Fit Tests 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F-

value 

p-

value 

Comment 

Linear 208.16 33 6.31 1.63 0.1843 Suggested 

2FI 200.25 24 8.34 2.16 0.0831 
 

Quadratic 175.14 21 8.34 2.16 0.0856 
 

Cubic 65.17 6 10.86 2.81 0.0604 Aliased 

Pure Error 46.40 12 3.87 
   

The performance of different regression models was also evaluated and displayed in Table 6 taking into 

account some metrics: standard deviation (Std. Dev.), coefficient of determination (R²), adjusted R², 

predicted R², and the predicted residual error sum of squares (PRESS). These values helped in 

comparing the models and selecting the most appropriate one. After comparing those models, a linear 

model was suggested due to its balanced performance across various metrics. It had a relatively low 

standard deviation (2.38), indicating good precision. Moreover, the R² value of 0.5386 betokened a 

reasonable amount of variation explained by the model. The adjusted R² (0.4873) and predicted R² 

(0.4010) were both positive and higher than those of the more complex models. Besides, The Predicted 

R² of 0.4010 was in reasonable agreement with the Adjusted R² of 0.4873; i.e. the difference was less 

than 0.2, indicating better predictive power and generalizability for the minimum variety between them. 

Furthermore, the PRESS value (330.44) was the lowest among all models, suggesting that the linear 

model had the best predictive accuracy. These factors made the linear model the most suitable choice, 

balancing simplicity and effectiveness. 

Table 6 Performance of different regression models 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS Comment 

Linear 2.38 0.5386 0.4873 0.4010 330.44 Suggested 

2FI 2.62 0.5529 0.3791 -0.0175 561.33 
 

Quadratic 2.59 0.5984 0.3916 -0.1066 610.49 
 

Cubic 2.49 0.7978 0.4383 -3.3838 2418.50 Aliased 

This statistical Fit Test is summarized in Table 7 where the linear model had a Sequential p-value well 

below the required 0.05 threshold, indicating that the model terms significantly contribute to the fit. 
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Additionally, the model was not aliased, making it reliable. Another aforementioned criterion was an 

insignificant p-value — greater than 0.05 — for the Lack of Fit test and the linear model also belonged 

to that condition. Furthermore, the Linear model also demonstrated the close values between Adjusted 

R² and Predicted R², with scores of 0.4873 and 0.4010, respectively. These values indicate the best 

balance of fit and predictive performance by the linear model for this study’s experimental data. In 

comparison, the first-order interaction (2FI), quadratic, and cubic models exhibited poor closeness 

between Adjusted R² and Predicted R² values, suggesting overfitting and impecunious predictive 

performance. 

Table 7 Fit test summary 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² Comment 

Linear < 0.0001 0.1843 0.4873 0.4010 Suggested 

2FI 0.9986 0.0831 0.3791 -0.0175 
 

Quadratic 0.3087 0.0856 0.3916 -0.1066 
 

Cubic 0.3630 0.0604 0.4383 -3.3838 Aliased 

Apart from that statistical Fit Test, the Normal Plot of the Residuals graph — depicted in Fig 6 — for 

the selected linear model conspicuously showed that the residuals closely follow a straight line, 

indicating they were approximately normally distributed. The points are symmetrically distributed 

around the line without significant outliers, suggesting random errors and reliable model predictions. 

The consistency of residuals across the range of predicted values indicates homoscedasticity, 

confirming that the variance of residuals was constant. This observation validated the use of the linear 

model, confirming its appropriateness for the data and indicating that no transformation of the response 

variable was necessary. 

 
Fig. 6: Statistical check for normality of residual data for selected linear model. 

Another thing is that the Residuals vs. Predicted graph — demonstrated in Fig 7 — for the selected 

linear model shows that the residuals were randomly scattered around the horizontal axis, indicating no 

systematic pattern. This randomness suggested that the model's predictions were unbiased and that the 

linear relationship was appropriate. Additionally, the spread of the residuals is consistent across all 

levels of predicted values, indicating homoscedasticity, meaning the variance of the residuals remains 

constant. There are no noticeable outliers, — arise due to mechanical faults, human error, or instrument 

error [66] — confirming that the model assumptions are met, and no transformation of the response 

variable was needed. 
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Fig. 7: Scattered plot of Residuals vs Predicted data for selected linear model. 

The Box-Cox graph, shown in Fig 8, for the selected linear model, indicates that a Lambda value of 1 

is appropriate, suggesting that no transformation of the response variable was necessary. The graph 

shows that the confidence interval for the optimal Lambda includes 1, confirming that the linear model 

without transformation was suitable. This supports the assumption that the response variable satisfied 

the requirements for normality and homoscedasticity without any transformation. Consequently, the 

linear model with a Lambda value of 1 is validated as the best choice, ensuring accurate and reliable 

results. 

 
Fig. 8: The Box-Cox graph for the selected linear model. 

3.3 Development Empirical Model 

A relationship between the input parameters and the output parameter was developed in light of that 

selected linear model. Initially the relationship as a coded equation — expressed in equation (iv) — was 

developed by the Design Expert® program for divination springback based on several input factors.  

𝑺𝒑𝒓𝒊𝒏𝒈𝒃𝒂𝒄𝒌 = 𝟖. 𝟐𝟓 + 𝟎. 𝟒𝟓𝟖𝟑 × 𝑨 + 𝟐. 𝟕𝟏 × 𝑩 − 𝟐. 𝟎𝟎 × 𝑪 − 𝟎. 𝟎𝟕𝟖𝟒 × 𝑫𝟏 + 𝟎. 𝟖𝟎𝟑𝟗 × 𝑫𝟐 (iv) 
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In equation (i), the intercept of 8.25 provides the baseline when all factors are at their reference levels. 

Die gap (A) and PR/ST (B) positively influence springback with a coefficient of 0.4583 and 2.71, 

respectively, while set angle (C) negatively affects springback having a coefficient of -2.00. For material 

types, -0.0784 signifies the effect of material being Mild Steel (coded as 1 for D1 and 0 for D2), and 

0.8039 signifies the effect of material being Aluminum (coded as 0 for D1 and 1 for D2). When using 

Stainless Steel (SS), both dummy variables D1 and D2 were coded as -1, reflecting how springback 

differed compared to Mild Steel and Aluminum. It can be said from this coded equation (iv) that 

springback has the most sensitivity for PR/ST (B) independent factor since it has the maximum 

coefficient among all. 

In addition to that coded equation, actual equations could also be revealed from the Design Expert® 

program for each material. Actual equations of Mild Steel, Aluminum, and Stainless Steel are (v), (vi), 

and (vii), respectively. 

The actual equation for Mild Steel: 

𝑺𝒑𝒓𝒊𝒏𝒈𝒃𝒂𝒄𝒌𝑴𝑺 = 𝟏𝟒. 𝟑𝟒𝟑𝟏𝟒 + 𝟎. 𝟎𝟗𝟏𝟔𝟔𝟕 × 𝑫𝒊𝒆 𝑮𝒂𝒑 + 𝟎. 𝟓𝟒𝟏𝟔𝟔𝟕 × 𝑷. 𝑹/𝑺. 𝑻 − 𝟎. 𝟏𝟑𝟑𝟑𝟑𝟑 × 𝑺𝒆𝒕 𝑨𝒏𝒈𝒍𝒆  (v) 

The actual equation for Aluminum: 

𝑺𝒑𝒓𝒊𝒏𝒈𝒃𝒂𝒄𝒌𝑨𝑳 = 𝟏𝟓. 𝟐𝟐𝟓𝟒𝟗 + 𝟎. 𝟎𝟗𝟏𝟔𝟔𝟕 × 𝑫𝒊𝒆 𝑮𝒂𝒑 + 𝟎. 𝟓𝟒𝟏𝟔𝟔𝟕 × 𝑷. 𝑹/𝑺. 𝑻 − 𝟎. 𝟏𝟑𝟑𝟑𝟑𝟑 × 𝑺𝒆𝒕 𝑨𝒏𝒈𝒍𝒆  (vi) 

The actual equation for Stainless Steel: 

𝑺𝒑𝒓𝒊𝒏𝒈𝒃𝒂𝒄𝒌𝑺𝑺 =  𝟏𝟑. 𝟔𝟗𝟔𝟎𝟖 +  𝟎. 𝟎𝟗𝟏𝟔𝟔𝟕 ×  𝑫𝒊𝒆 𝑮𝒂𝒑 +  𝟎. 𝟓𝟒𝟏𝟔𝟔𝟕 ×  𝑷. 𝑹/𝑺. 𝑻 −  𝟎. 𝟏𝟑𝟑𝟑𝟑𝟑 × 𝑺𝒆𝒕 𝑨𝒏𝒈𝒍𝒆  (vii) 

Moreover, from these three equations (v), (vi), and (vii), it can be inferred that when die gap, P.R/S.T, 

and set angle have the same value for all three equations, by then only distinguished maker will be the 

constant of each equation. Because it makes the difference. To make this proposition more sense, a 

visual graph can be created with the help of MS Excel software where the die gap, P.R/S.T, and set 

angle have the value of 70 millimeters, 10 ratios, 135 degrees, in sequence for the equations and 

eventually corresponding springback of each material has been illustrated in Fig. 9. From this graph, it 

can be written that, Aluminum has the supreme characteristic for spring-back whereas Stainless Steel 

exhibits least spring-back properties among three selected materials. 

 
Fig. 9: Column graph for comparison springback behavior. 

3.4 Confidence interval for the developed linear model 

The 95% Confidence Limit Bands graphs, visualized in Fig 10, for the three numerical factors display 

the relationship between each factor and the response variable. Each graph shows the predicted response 

along with upper and lower confidence limits, providing a visual representation of the prediction 
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accuracy and variability. These bands help in understanding the range within which the true response 

is expected to lie with 95% confidence, highlighting the reliability of the model predictions for each 

numerical factor. It consists of four subplots. 

 
Fig. 10: Ninety-five percent confidence interval graph.  

Firstly, the plot for the die gap shows a positive linear relationship between the die gap (mm) and 

springback. The 95% confidence bands (shaded area) indicate the prediction interval, which is relatively 

narrow, suggesting reliable predictions. As the die gap increases, the springback slightly increases. 

Secondly, the punch radius to sheet thickness ratio graph also illustrates a positive linear relationship 

between PR/ST and springback. The 95% confidence bands are shown, indicating the range within 

which the true response is expected to lie with 95% confidence. An increase in PR/ST results in a 

notable increase in springback. Thirdly, in the next graph, a negative linear relationship between set 

angle (degrees) and springback is depicted. The 95% confidence bands are present, showing the 

reliability of predictions. As the set angle increases, the springback decreases. Eventually, the fourth 

subplot shows the influence of the categorical factor namely material on springback. The graph 

highlights the mean springback for each material, with error bars representing the 95% confidence 

intervals. 

3.5 Experimental validation of the developed model 

In this phase of this study, experimental validation was executed for each material with the help of their 

corresponding actual equations. To clarify it for Mild Steel, 71.5 millimeters die gap, 8 ratios of P.R/S.T, 

and 135 degrees set angle were given during experimental validation; as a result, the Mild Steel 

specimen witnessed a 7-degree springback in the lab. Predicted spring-back, on the contrary, of that 

Mild Steel part was 7.23 degree by using actual springback equation (v) for the same process 

parameters. Therefore, the error was -3.286% which was calculated by equation (iii). The first row of 

Table 8 represents this scenario. Analogously, the second and third rows depicts the summary of the 
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experimental validation settings for Aluminum and Stainless Steel. The results of the experiments also 

showed that the established model was credible, as the percentages of errors were excellently tinny. 

Table 8 Confirmation Experiment 

No. of 

Experiment 

 

Process Parameters  Response factor: Spring-back 

(degree) 

Die gap 

(mm) 

P.R/

S.T 

Set Angle 

(degree) 

Materials  Predicted Actual Error 

(%) 

1 71.5 8 135 Mild Steel  7.23 7 -3.286 

2 74.5 12 125 Aluminum  11.89 12 0.917 

3 68.5 6 145 Stainless Steel  3.89 4 2.750 

 

3.6 Numerical optimization 

There was total of four optimization cases according to the needs: comprehensive, fixed part design, 

cost-efficient, and performance-driven optimization. 

3.6.1 Comprehensive optimization of springback 

Strive for maximum optimization of springback by simultaneously optimizing all key parameters. In 

other words, the Design Expert® program was permitted to pursue optimization of whatever it needed 

for four independent factors to minimize the dependent factor springback. To conduct this 

comprehensive optimization, the software required some boundary conditions which are shown in Table 

9. 

Table 9 Boundary conditions for comprehensive optimization. 

Name Goal Lower 

Limit 

Upper Limit Lower 

Weight 

Upper 

Weight 

Importance 

Die Gap in range 65 75 1 1 5 

P.R/S.T in range 5 15 1 1 5 

Set Angle in range 120 150 1 1 5 

Material in range Mild Steel Stainless Steel 1 1 5 

Spring-back minimize 2 16 1 1 5 

After incorporating the optimization operation in light of these boundary conditions, the Design Expert® 

program did many iterations, which is depicted in Fig. 11, and finally gave an optimized senecio picked 

by the “red dotted plus symbol”. Therefore, optimized values of die gap, P.R/S.T, set angle, and 

material were 65.00 millimeters, 5.00 ratios, 150.00 degrees, and Stainless Steel. For these values, the 

optimized springback magnitude was 2.363 degrees. In addition to that, the value of the desirability 

function was 0.974 (rounded off to thousandths) which was very near to one — indicating that the linear 

model was nicely optimized under given boundary conditions. 
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Fig. 11: Optimized senecio of comprehensive case among many iterations by the Design Expert® 

program. 

3.6.2 Fixed part design optimization 

It can be easily understandable that most of the real cases, a set angle and material may be mandatory 

to be kept fixed for fabricating a specific desirable component. Therefore, fixed-part design 

optimization was also assimilated in this study. To perform such optimization analysis, it was assumed 

that a part was required to be manufactured via an air-bending sheet metal process whose bending set 

angle needed to be 135 degrees and it must be made of Mild Steel. However, the other two independent 

factors such as die gap and P.R/S.T could be altered to achieve minimize springback. Thus, software 

was allowed following constraints, shown in Table 10, under confined limits. At this moment, readers 

may be confused after noticing ranges of those two fixed valued factors — set angle and material. To 

eliminate this confusion, it is necessary to clarify that the software’s desirability function enforced those 

ranges; however, the goals of those two fixed factors were specific. Another software feature was 

Importance whose values were five for die gap, P.R/S.T, and springback because those variables got 

the maximum priority. 

Table 10 Boundary conditions for fixed part design optimization. 

Name Goal Lower 

Limit 

Upper Limit Lower 

Weight 

Upper 

Weight 

 Importance 

Die Gap in range 65 75 1 1  5 

P.R/S.T in range 5 15 1 1  5 

Set Angle 135.00 120 150 1 1  1 

Material Mild Steel Mild Steel Stainless Steel 1 1  1 

Springback minimize 2 16 1 1  5 

After conducting the optimization operation based on the aforementioned constraints, the Design 

Expert® program did numerous iterations, which is demonstrated in Fig. 12, and eventually an optimized 

senecio was found by the software, which was picked by the “red dotted plus symbol” in the graph. 

Optimized values of die gap and P.R/S.T were 65.00 millimeters and 5.00 ratios, accordingly. In this 

circumstance, the fixed part was supposed to witness a springback of 5.010 degrees. Furthermore, the 

score of the desirability function was 0.785 (rounded to thousandths), which was considerably close to 

1, exhibiting that the linear model was well optimized beneath the stated limit conditions. Moreover, 
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the “red dotted plus symbol” in Fig. 12 is located at 135 degrees for set angle and Mile Steel for material 

as specified in Table 10 according to analysis goals. Thus, the upper and lower limits of set angle had 

null values in the desirability scale in this figure. Likewise, Aluminum and Stainless Steel had zero 

desirability values. 

 
Fig. 12: Optimized senecio of fixed part design case among many iterations by the Design Expert® 

program. 

3.6.3 Cost-efficient optimization 

When considering cost efficiency, the primary focus could be the factors that have a significant impact 

on springback while minimizing changes to other variables. For this experiment optimizing the set angle 

and die gap can potentially yield substantial improvements in springback control without extensive 

changes in material or other design parameters. This approach is cost-effective because it targets 

specific variables known to influence springback significantly but there is no requirement for additional 

expenditure. To gain a cost-efficient optimization analysis, the following boundary constraints, 

exhibited in Table 11, were considered.  

Table 11 Boundary conditions for cost-efficient optimization. 

Name Goal Lower 

Limit 

Upper Limit Lower 

Weight 

Upper 

Weight 

Importance 

Die Gap minimize 65 75 1 1 5 

P.R/S.T in range 5 15 1 1 1 

Set Angle maximize 120 150 1 1 5 

Material in range Mild Steel Stainless Steel 1 1 1 

Springback minimize 2 16 1 1 5 

The Design Expert® software detected that the optimal springback was 2.363 degrees where the die gap, 

P.R/S.T, set angle, and material were 65.00 millimeters, 5.00 ratios, 150 degrees, and Stainless Steel, 

respectively, illustrated in Fig 13. Besides, the magnitude of the desirability function was 0.991 

(rounded to thousandths), which was remarkably around one, implying that the linear model was 

adequately optimized according to the given border conditions. 
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Fig. 13: Optimized senecio of cost-efficient case among many iterations by the Design Expert® 

program. 

3.6.4 Performance-driven optimization 

In this case, the study’s deliberation was to optimize factors that highly influence the performance 

characteristics of the springback. To determine which factors were mostly sensitive, it was necessary to 

look at previously written equations (v), (vi), and (vii), from where it was apparent that the set angle 

and PR/ST ratio were very sensitive and significantly affect output variable springback. Hence, by 

optimizing the PR/ST ratio and initial set angles, springback can be alleviated in the most effective way. 

For this case, boundary conditions were given to the software likewise shown in Table 12. 

Table 12 Boundary conditions for performance-driven optimization. 

Name Goal Lower 

Limit 

Upper Limit Lower 

Weight 

Upper 

Weight 

Importance 

Die Gap in range 65 75 1 1 1 

P.R/S.T minimize 5 15 1 1 5 

Set Angle maximize 120 150 1 1 5 

Material in range Mild Steel Stainless Steel 1 1 1 

Springback minimize 2 16 1 1 5 

The Design Expert® software also identified that the optimal springback was 2.363 degrees where the 

die gap, P.R/S.T, set angle, and material were 65.00 millimeters, 5.00 ratio, 150 degrees, and Stainless 

Steel, respectively. Plus, the numerical value of the desirability function was 0.991 (rounded to 

thousandths), which was impressively approximately one, pointing to the fact that the linear model was 

sufficiently optimized to satisfy the supplied border conditions. Albeit it was surprisingly same optimal 

outcomes that the earlier case-3 had; curves of Fig 14 clarified that it was different investigation than 

case-3 did. 
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Fig. 14: Optimized senecio of performance-driven among many iterations by the Design Expert® 

program. 

Table 13 summarizes the all-fours circumstances of optimal outcomes found from numerical analysis.  

Table 13 Summary of numerical optimization for better comparison. 

Case Die 

Gap 

P.R/S.T Set Angle Material Springback Desirability 

Comprehensive  65.000 5.000 150.000 Stainless Steel 2.363 0.974 

Fixed part design 65.000 5.000 135.000 Mild Steel 5.010 0.785 

Cost-efficient 65.000 5.000 150.000 Stainless Steel 2.363 0.991 

Performance driven 65.000 5.000 150.000 Stainless Steel 2.363 0.991 

4. Conclusion 

The research presented in this study showcases significant advancements in the prediction and 

optimization of springback in air-bending operations for sheet metal, specifically focusing on Mild 

Steel, Aluminum, and Stainless Steel. Applying the Box–Behnken experimental design, this research 

demonstrates a method to optimize experimental runs, thereby reducing both experiment time and cost. 

By developing an empirical model that incorporates critical parameters such as die gap, punch radius 

to sheet thickness ratio, set angle, and material, this study addresses the inherent challenges associated 

with springback. The inclusion of punch radius to sheet thickness ratio and materials as parameters is 

particularly notable, as it represents an unprecedented approach in the field. Besides using a categorical 

factor, called material, for developing empirical models will be a significant reference for similar 

imminent works. Moreover, the developed models have practical applications that can significantly 

benefit the manufacturing industry. For instance, it can improve the precision of manufacturing setups 

and part designs by providing reliable springback predictions, especially in scenarios where conducting 

tests is prohibitively expensive. The model also serves as a valuable tool for guiding product 

development to achieve high precision, which is crucial for producing quality components.  
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From this rigorous study, it can be written that the empirical model may be an insightful mathematical 

tool for the air-bending sheet metal manufacturing process for many purposes.  

✓ Springback can be predicted and controlled for commonly employed materials Mild Steel, 

Aluminium, and Stainless Steel with the help of developed pragmatic mathematical models. In 

other words, equations (v), (vi), and (vii) in this study will be useful to forecast the springback 

of abound products made of corresponding materials in various industries. Thus, the desirable 

exact shape of the products or components — quality for high precision and accuracy — can 

be achieved which will eventually lead to reduce unwanted defects.  

✓ Another thing that the empirical model could offer is to scrutinize the independent process 

parameter that has the most sensibility on the springback. In this study, the punch radius to 

sheet thickness factor had the most influence on springback.  

✓ One more feature of several empirical models is that they let the springback properties among 

different materials be comparable. For instance, equations (v), (vi), and (vii) in this study helped 

to infer that Aluminum has the highest Spring-back behavior whilst Stainless Steel may exhibit 

the least springback characteristic among all three materials.  

✓ Furthermore, along three numerical process parameters — die gap, P.R/S.T, and set angle — 

in this research, one categorical factor namely material was included in the linear model to give 

a novel dimension. 

Moreover, the study showcases various optimization criteria, such as optimizing all parameters for 

maximum springback reduction, which serve as useful references for both industrial and laboratory 

settings. These criteria can help manufacturers identify the most cost-effective and efficient methods to 

minimize springback, ultimately leading to better process control and product quality. Therefore, 

numerical optimization was also a penetrating part of this meticulous investigation for helping 

manufacturers. It aids in ameliorating the bending process by figuring out the optimal point for different 

cases. There were four different optimization circumstances investigated in this study: comprehensive, 

fixed part design, cost-efficient, and performance-driven. This numerical optimization analysis depicted 

that there were some situations when a model might not only be optimized for cost-effectiveness but 

also it could be optimized for performance-driven cases. The rows three and four of Summery Table 13 

solidify this proposition. It is a mostly desirable optimization that modern sheet metal manufacturers 

may seek since it can catch two birds with one stone. In addition to this, the numerical investigation 

also demonstrated that a linear model could be optimized for fixed-part design cases with an acceptable 

desirability value. Thus, optimization could be accomplished during manufacturing of a sheet metal 

part, even though some design restrictions are provided from R&D department. 

Overall, this research offers important insights and methodologies that can be directly applied to the 

sheet metal industry, facilitating cost savings, process improvements, and more precise product designs. 

It also lays a foundation for future research in optimizing bending operations and controlling 

springback, contributing to the ongoing development of advanced manufacturing techniques. 

4.1 Limitations of the study 

There were, howbeit, some limitations in this research. Firstly, this study was not conducted at constant 

room temperature; therefore, the thermal effect could slightly distort the outcomes. Secondly, though 

an empirical model could be developed in this study, it was not able to foretell the absolute value of 

springback. It means there were acceptable errors under the validation stage. Thirdly, the Bevel 

Protector was kept for measuring the integer angular value. In other words, all of the collected 

experimental data of springback were integers due to Bevel Protector’s measuring specification.  
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4.2 Future work 

Several aspects can be undertaken in future research to give more dimensions to this current study. 

Limitations of the current study may be eliminated such as by maintaining a constant room temperature 

and using a highly precise Bevel Protector. Furthermore, the Finite Element Method, a sort of 

simulation, can incorporated to analyze springback in forthcoming research work when numerous 

experimental trials will not be cost-effective. Moreover, a lot of experimental data can be collected to 

use as a training data set for developing an artificially intelligent model for predicting springback. In 

that AI model, numerous materials could be utilized to focus on material characteristic like strength, 

hardness, elasticity, and thermal conductivity in order to evaluate springback for any future novel 

material in advance in light of its properties. As a result, with the help of that AI model, different process 

parameters, such as die gap, and set angle, can be included along material characteristics — for example, 

strength, hardness, elasticity, thermal conductivity, and so on — in order to forecast springback. That 

model will be helpful not only for common industries for fabricating sheet metal-related goods but also 

for research and development sectors. For instance, a specialized material may require to be invented 

for developing a component for the space-exploring robot, in that case, the springback of the component 

may be predicted based on needed process parameters and deliberately made novel metal with 

customized material characteristics. It will diminish not only the cost of the research but also foreshorten 

development time of the product. Furthermore, that vigorous AI model might be useful for allowing 

researchers to put diverse combinations of inputs for independent variables without any trial experiment 

for divergent sets of input parameters for each time. There will be no need for developing empirical 

model for various materials or different input types at every time; only a vehement AI model could be 

the panacea for all kinds of springback pertinent issues. It will be a supercalifragilisticexpialidocious 

prospective research work for springback prognostication, won’t it? 
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