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Abstract

It was well established that rate-independent linear damping (RILD) can benefit base-isolated building
structures by reducing the isolator displacement without increasing the floor response acceleration. In the
present study, we further extended the application of RILD for seismic vibration mitigation of multi-story
building structures. For this purpose, a gradient-based optimization method was presented to determine
the locations and required quantities of RILD elements. A ten-story benchmark building structure was
employed as an analytical example, and the effectiveness of the proposed method was verified by comparing
the performance of the RILD controlled structures using different damper placement methods. Moreover,
parametric studies were conducted to investigate the effect of RILD on the dynamic behavior of the optimally
controlled structure. The performance curves of the benchmark structure enhanced with optimally placed
RILD and viscous dampers were further compared in terms of the control cost and structural inter-story drift.
It is suggested that RILD can be advantageous over the conventional viscous damper by more effectively
mitigating the seismic vibration response of a multi-story building structure without increasing the control
cost.

Keywords: rate-independent linear damping, vibration mitigation, optimal damper placement, multi-
story building structure, gradient-based optimization method.

1. Introduction

In the past decades, passive control technolo-
gies have been extensively applied for mitigating
harmful vibration responses of engineering struc-
tures subject to extreme excitations (i.e., strong5

earthquake and wind) [1, 2]. By installing addi-
tional passive energy dissipation systems into en-
gineering structures, the energy dissipation capac-
ity can be increased without requiring a external
power source, and the structural vibration ampli-10

tude can be reduced. For this purpose, various pas-
sive energy dissipation systems have alreadly been
developed, e.g., metallic yield dampers [3], friction
dampers [4], fluid viscous dampers [5, 6, 7], tuned
mass dampers [8, 9], tuned liquid dampers [10, 11],15

inerter-based dampers [12, 13, 14, 15, 16], negative
stiffness dampers [17, 18, 19, 20, 21], and so on.
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Different from the viscous damping or nonlin-
ear hysteretic damping in traditional passive energy
dissipation systems, rate-independent linear damp-20

ing (RILD) is an idealized damping model which
provides a control force proportional to the defor-
mation whereas in phase with the velocity. It was
also known as complex damping, linear hysteretic
damping, or structural damping in earlier litera-25

tures [22, 23, 24]. Recently, the application of RILD
for vibration mitigation of engineering structures
have attracted increasing attentions. Inaudi and
Kelly [24] obtained the optimal coefficient of RILD
for minimizing the mean-square responses of a base-30

isolation system under stationary random excita-
tions. Ikago and Inoue [25] indicated that RILD
is capable of reducing the isolator displacement of
a base-isolated structure without increasing floor
response accelerations when subjected to strong35

high-frequency ground motions. Because RILD is
non-causal in the time domain [26, 27], many re-
searchers [28, 29, 30, 31, 32, 33, 34] attempted to
approximate the behavior of RILD by developing

Preprint submitted to Elsevier July 16, 2024



causal models.40

More recently, in terms of RILD used for the
performance improvement of seismically laoisolated
structures, Keivan et al. [35, 36] proposed a semi-
active method of approximating RILD based on a
first-order all-pass filter, and verified its effective-45

ness by by conducting real-time hybrid simulation
tests on seismically isolated structures. Later, in
order to passively realize RILD, Luo et al. [37] pro-
posed a mechanical model combining a Maxwell el-
ement coupled in parallel with a negative stiffness50

element (hereafter referred to as Maxwell-negative-
stiffness (MNS) model). Furthermore, Luo and Ik-
ago [27] proposed a unifying causal model that can
include existing causal models of RILD in the litera-
ture, and explored its benefits in improving the seis-55

mic performance of high-rise building structures.
Liu and Ikago [38, 39] implemented the MNS model
by using a physical Maxwell-type damper and veri-
fied its effectiveness by conducting real-time hybrid
simulation tests on a base-isolated structure. Luo60

et al. [40] proposed a novel physical device to real-
ize RILD for performance enhancement of seismi-
cally isolated structures. Wu et al. [41] presented
an inerter-based device to mimic the behavior of
RILD for seismic protection of base-isolated struc-65

tures. Zhu et al. [42] examined the feasibility of
RILD for simultaneously reducing the isolator and
sloshing displacements of base-isolated flexible liq-
uid storage tanks. Luo et al. [43] proposed the use
of base-isolation systems with RILD for seismic pro-70

tection of high-rise building structures subject to
both near- and far-fault ground motions. It is well
established that RILD can benefit a base-isolated
structure by effectively reducing the isolator dis-
placement without increasing the structural floor75

response acceleration, whereas the application of
RILD for seismic vibration mitigation of base-fixed
building structures is still limited. In the present
study, we further explored the benefit of RILD for
seismic vibration mitigation of a multi-story shear-80

ing building.
To fully utilize the capacities of RILD elements,

an optimal design procedure for simultaneously de-
termining their locations and quantities at differ-
ent stories is to be developed. Indeed, many re-85

searchers have worked on the optimal methods
of placing damping devices in multi-story shear
buildings for seismic performance enhancement.
Zhang and Soong [44] presented a sequential pro-
cedure for finding the optimal locations of vis-90

coelastic dampers in a frame structure. Later,

Wu et al. [45] further extended this sequential pro-
cedure to 3-D unsymmetrical structures by mini-
mizing translation-torsion coupling effects. Take-
waki [46] proposed a gradient-based procedure for95

optimally placing viscous dampers in a shear build-
ing. Later, Takewaki et al. [47] further presented a
augmented gradient-based procedure for finding the
optimal locations and required capacities of added
viscous dampers in a 3-D shear building model.100

Park et al. [48] proposed a gradient-based optimiza-
tion procedure for designing viscoelastic dampers
and their supporting braces installed in a struc-
ture. Lavan and Levy [49] conducted the fully
stressed design method of added viscous dampers105

installed in a frame structure subject to realistic
ground motions. Kanno [50] developed a mixed-
integer programming method of optimally placing
supplemental viscous dampers used in shear build-
ing structures. Mart́ınez et al. [51] proposed a op-110

timization procedure for designing nonlinear hys-
teretic dampers installed in planar structures un-
der seismic excitations. Shen et al. [52] presented
an elastic–plastic design method of a structure with
metallic yield dampers based on the elastic–plastic115

response reduction curve. Pollini et al. [53] pur-
sued the minimum-cost optimization design for seis-
mic retrofitting of structures using nonlinear fluid
viscous dampers. Sanati and Karamodin [54] pre-
sented an optimum design procedure of frame struc-120

tures with metallic yielding dampers considering
life-cycle cost. Hao et al. [55] presented a design
method of designing viscoelastic dampers to retrofit
reinforced concrete structures based on the struc-
tural design capacity redundancy ratio. However,125

to the best of the authors’ knowledge, few research
work on the optimization method of designing the
locations and required quantities of RILD elements
in a multi-story shear building structure have been
reported.130

In the present study, a gradient-based method
was developed to optimally place RILD elements for
seismic vibration mitigation of a multi-story shear-
ing building structure, and a ten-story benchmark
building structure was employed to verify the effec-135

tiveness of the developed method and identify the
advantages of RILD over conventional dampers for
structural seismic vibration mitigation.

2. Single-degree-of-freedom system

In structural dynamics, damping is an idealized140

concept to represent a process by which vibra-
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tion steadily diminishes in amplitude [56]. Sev-
eral damping models are available to represent the
damping effect for engineering applications, and
two types of linear damping model are considered145

for comparison.

2.1. Two types of linear damping models

2.1.1. Linear viscous damping

The linear viscous damping (LVD) model has
been often used to represent damping since its use
by Lord Rayleigh [57]. With respect to this model,
it is assumed that the resisting force is proportional
to relative vocility, i.e.,

f1(t) = cdẋ(t) (1)

which f1 and x are the damping force and relative
displacement of the LVD model, respectively; the150

overdot denotes the derivative with respect to time;
cd is the viscous damping coefficient.

By conducting the Fourier transform to Eq.(1),
one can reformulate the LVD force in the frequency
domain as follows:

F1(iω) = iωcdX(iω) (2)

where i denotes the imaginary unit, and ω is the
excitation frequency. From the above equation, the
transfer function of an LVD model from the de-
formation to the resisting force, also known as the
dynamic stiffness, is obtained as follows:

K1(iω) =
F1(iω)

X(iω)
= iωcd (3)

The LVD model is one of the most widely used
linear damping model, which is partly becuase it
provides great convenience to the mathematical
analyses of structure in both the frequency and time
domains. It should be noticed that, in one cycle of
harmonic vibration, the energy dissipated by the
LVD model can be readily derived as follows:

E1 = πωcdX
2 (4)

which suggests that the energy dissipated by the
LVD model is proportional to the vibration fre-
quency.155

2.1.2. Rate-independent linear damping

The RILD model is another type of damping
model considered here, and it was first used for the
simulation of internal friction in engineering materi-
als. In 1927, Kimball and Lovell [58] reported that,160

from tests on eighteen solids with different physical
properties, the energy loss per sinusoidal strain cy-
cle is proportional to the square of strain amplitude,
but independent on the strain rate over a consider-
able frequency range. This led to the introduction165

of an idealized concept of RILD.

The resisting force of the RILD model is usually
expressed in terms of dynamic stiffness in the fre-
quency domain as follows:

K2(iω) =
F2(iω)

X(iω)
= ikd sgn (ω) (5)

where kd denote the complex stiffness coefficient;
sgn(·) denotes the signum function. It is suggested
that the force of RILD is proportional to the defor-
mation with a phase lead of π/2 rad. The energy
dissipated by the RILD model in one cycle of har-
monic vibration is expressed as follows:

E2 = πkdX
2 (6)

It is worthy noting that E2 is independent on the
excitation frequency ω. Thus, it can be used to
simulate the rate-independent dissipation behavior
of some solid materials.170

Fig. 1 depicts the dynamic stiffnesses of the LVD
and RILD models, where the magnitude of dynamic
stiffness is normalized by using the complex stiffness
coefficient kd, and ω0 = kd/cd denotes a parame-
ter with a unit of circular frequency. It is shown175

that with ω < ω0, RILD generates higher control
force compared with LVD. This implies that RILD
can more effectively control the structural response
displacement under low-frequency excitations. As
ω > ω0, RILD generates lower control force than180

LVD. This implies that RILD can avoid generating
excessive control force under high-frequency excita-
tions.
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Figure 1: Normalized dynamic stiffness
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2.2. Response amplification factors

Let’s further consider a generalized linear damp-
ing model comprising LVD and RILD elements in-
corporated into an SDOF structural system, which
is governed by the following equation of motion:[
−mω2 + k + Kp(iω)

]
X(iω) = mω2Xg(iω) (7)

where m and k denote the structural mass and
stiffness, respectively; X(iω) and Xg(iω) are the
frequency-domain response displacement relative to
the ground and the excitation acceleration of the
ground, respectively; Kp(iω) denotes the dynamic
stiffness of the generalized damping model

Kp(iω) = iωcd + ikd sgn (ω) (8)

which reduces to Eqs.(3) and (5) in the cases of kd =
0 and cd = 0, respectively. Letting ω1 =

√
k/m,

cd = 2ξmω1, kd = ηk, one can rewrite Eq.(8) as
follows:

Kp(iω) = imω1 [2ξω + ηω1 sgn (ω)] (9)

From Eqs.(7) and (9), one can obtain the relative
displacement response amplification factor (RAF)
of the damped structural system as follows:

DRAF =
γ2√

(γ2 − 1)2 + [2ξγ + η sgn (γ)]
2

(10)

where γ = ω/ω1. Similarly, one can also obtain the
structural absolute acceleration RAF as follows:

ARAF =

√
1 + [2ξγ + η sgn (γ)]

2

(1− γ2)2 + [2ξγ + η sgn (γ)]
2 (11)

For example, letting η = 2ξ, Fig. 2 depicts185

the relative displacement and absolute acceleration
RAFs of the LVD and RILD damped SDOF struc-
tural systems. It is well established that the ad-
dition of more LVD can decrease the displacement
and acceleration RAFs in the resonant zone at the190

expense of increased acceleration RAFs at higher
frequencies beyond ω =

√
2ω0. However, as shown

in Fig. 2, the incorporation of more RILD can
achieve a similar reduction in displacement and ac-
celeration RAFs in the resonant zone as LVD, with-195

out compromising the high-frequency responses.
This indicates that RILD can be more beneficial
than LVD in reducing structural response accelera-
tion when it is integrated into base-isolated struc-
tures subject to strong earthquake-induced ground200

motion [18].
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Figure 2: Response amplification factor

It is well established that RILD can effectively
reduce the structural response displacement with
lower control forces compared with other types of
damping devices when subjected to strong ground205

motions [37]. Several attempts have been made
to investigate the effect of RILD on the seismic
responses of high-rise building structures [27, 43],
however, there is still limited research work on the
application of optimally placed RILD elements for210

the seismic vibration mitigation of building struc-
tures.

3. Optimal damping placement

Here, we presented a gradient-based optimization
method of placing RILD elements for the seismic215

vibration mitigation of multi-story building struc-
tures.

3.1. Sensitivities of the response amplification fac-
tor

Let’s consider supplemental generalized linear
damping elements incorporated into a multi-degree-
of-freedom building structure model, which is gov-
erned by the following equation of motion formu-
lated in the frequency domain:[
−ω2M + iωC + Kp(iω) + K

]
X(iω) = ω2M1TXg(iω)

(12)
where M, C, and K are the structural mass,220

damping, and stiffness matrices, respectively; X =
{X1, X2, ..., Xn}T is the displacement vector rela-
tive to the ground, where n denotes the story num-
ber, and the superscript ’T ’ denotes the matrix
transposition operator; 1 = {1, 1, ..., 1}; Kp(iω) is225

the dynamic stiffness matrix contributed by supple-
mental generalized linear damping elements.
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By introducing a transformation matrix, i.e.,

T =


1 0 · · · 0 0
−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · −1 1

 (13)

one can formulate the dynamic stiffness matrix of
generalized linear damping elements as follows:

Kp(iω) = qp(iω)TTdiag(kd)T (14)

where diag(·) denotes the operation of transforming
a vector into the corresponding diagonal matrix;
kd = {kd,1, kd,2, ..., kd,n} denotes a vector of stiff-
ness coefficients of supplemental damping elements;
qp(iω) denotes the frequency-dependent term asso-
ciated with the dynamic stiffness of the p-th type
of linear damping element, i.e., one has

qp(iω) =

{
iω/ω1, p = 1;

i sgn (ω), p = 2.
(15)

which are associated with the LVD and RILD ele-
ments, respectively.

Furthermore, let’s introduce the following auxil-
iary matrix

A =
1

ω2
1

[
K + iω1C + Kp(ω1)− ω2

1M
]

(16)

By substituting Eq.(14) into Eq.(16) and conduct-
ing the partial differentiations of the resulting ma-
trix A with respect to kd, one can obtain

A′j =
∂A

∂kd,j
=
q(iω1)

ω2
1

TTDjT (17)

with j = 1, 2, ..., n, where Dj denotes a square ma-230

trix whose elements are zeros, except for a unity
element at the j-th entry in the diagonal.

By using Eq.(16), Eq.(12) can be reformulated as
follows:

AX̃ = MrT (18)

with X̃ = X(ω1)/Xg(ω1). By performing partial
differentiations of both sides of Eq.(18) with respect
to kd,j , one has

A′jX̃ + AX̃′j = 0 (19)

with j = 1, 2, ..., n. It follows the first-order sensi-
tivity of the transfer function of relative displace-
ment vector with respect to kd,j

X̃′j = −A−1A′jX̃, j = 1, 2, ..., n. (20)

Notice that the inter-story drift vector can be ex-
pressed in terms of the relative displacement vector
as follows:

Û = TX̃ (21)

Similarly, one can obtain the first-order sensitivity
of Û with respect to kd,j as follows:

Û′j = −TA−1A′jT−1Û (22)

Substituting Eq.(17) into Eq.(22) gives

Û′j = −q(iω1)

ω2
1

TA−1TTDjÛ (23)

with j = 1, 2, ..., n. Notice that the complex quan-
tity Û can also be formulated in terms of its real
and imaginary parts as follows:

Û = Re[Û] + i Im[Û] (24)

From the above equation, one can obtain

Û′j = [Re(Û)]′j + i [Im(Û)]′j (25)

Therefore, with Û′j = {(Û1)′j , (Û2)′j , ..., (Ûn)′j}T ob-
tained from Eq.(23), one can calculate the first-
order sensitivity of the RAF of inter-story drift at
the l-th story, |Ûl|, with respect to kd,j by using the
following equation

|Ûl|′j =
1

|Ûl|

(
Re(Ûl)[Re(Ûl)]

′
j + Im(Ûl)[Im(Ûl)]

′
j

)
(26)

with l = 1, 2, ..., n.
Furthermore, by conducting the partial differen-

tiation of Eq.(23) with respect to kd,r, one can ob-
tain the following equation

Û′′jr = −q(iω1)

ω2
1

TA−1
[
TTDjÛ

′
r −A′rA

−1TTDjÛ
]

(27)
where the relation (A−1)′r = −A−1A′rA−1 is used.
On substitution of Eq.(17) into Eq.(27) and use of
Eq.(23), the following equation can be obtained

Û′′jr = −q(iω1)

ω2
1

TA−1TT
[
DjÛ

′
r + DrÛ

′
j

]
(28)

From the above equation, the real and imaginary
parts of Û′′jr can be obtained, respectively, which235

are useful to calculate the partial differentiation of
Eq.(26) with respect to kd,r as follows:

|Ûl|′′jr =
1

|Ûl|2
{|Ûl|([Re(Ûl)]

′
r[Re(Ûl)]

′
j + Re(Ûl)[Re(Ûl)]

′′
jr + [Im(Ûl)]

′
r[Im(Ûl)]

′
j

+ Im(Ûl)[Im(Ûl)]
′
jr)− |Ûl|′r(Re(Ûl)[Re(Ûl)]

′
j + Im(Ûl)[Im(Ûl)]

′
j)} (29)
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3.2. Formulation of the optimal problem

The objective of the optimal damping placement
problem in a multi-story building model is to find
optimal kd so that the sum of the structural inter-
story drift RAFs at the undamped fundamental fre-
quency is minimized, i.e.,

Min V = 1|Û| (30)

subjected to constraints on the sums of stiffness co-
efficients of added linear damping elements

1kd = w (31)

where w is a specified constant value. The La-
grangian for the aforementioned problem can be ex-
pressed in terms of Lagrange multiplier λ as follows:

L1(kd, λ) = 1|Û|+ λ (1kd − w) (32)

The optimality criteria for the above problem is ob-
tained from the stationary conditions of L (kd, λ)
with respect to kd and λ as follows:{

1|Û|′j + λ = 0

1kd − w = 0
(33)

with j = 1, 2, ..., n. It is assumed that the stiff-
ness coefficients of added linear damping elements
should be non-negative. In the cases of kd,j = 0,
the corresponding equation of the optimality crite-
ria should be modified as follows:

1|Û|′j + λ ≥ 0 (34)

By introducing the following auxiliary quantities

βj =
Bj+1

B1
, j = 1, 2, ..., n− 1. (35)

where
Bj = 1|Û|′j , j = 1, 2, ..., n. (36)

the optimality criteria, Eq.(33), can be alterna-
tively reformulated without the Lagrange multipli-
ers as follows: {

βj − 1 = 0

1kd − w = 0
(37)

with j = 1, 2, ..., n − 1. The linear increment ∆βj
of βj can be written in terms of increment ∆kd as
follows:

∆βj =
1

B1
[(Bj+1)′ − (B1)′βj ] ∆kd (38)

where (Bj)
′ = ∂Bj/∂kd. By combining Eq.(38)

with 1∆kd = 0, one can obtain a set of simultane-
ous linear equations with respect to ∆kd as follows:


1
B1

[(B2)′ − (B1)′β1]
...

1
B1

[(Bn)′ − (B1)′βn−1]

1

∆kd =


∆β1

...
∆βn−1

0

 (39)

where the l-th entry in the vector (Bj)
′ is calculated

from the following equation

(Bj)
′
l = 1|Û|′′jl (40)

with j, l = 1, 2, ..., n. Recall that |Û|′′jl can
be obtained from Eq.(29), therefore, one can
readily evaluate ∆kd from Eq.(39) with ∆β =
{∆β1,∆β2, ...,∆βn−1}T provided. For this pur-
pose, letting

∆β =
1

N
(βF − β0) (41)

where βF and β0 denote the target and initial val-
ues of the quantities defined in Eq.(35), respec-240

tively; N denotes the number of incremental steps.
From Eq.(37), one can initially assume that βF =
{1, 1, ..., 1}T so that ∆β can be readily evaluated.

It should be mentioned that the stiffness coeffi-
cients of supplemental damping elements are non-245

negative. In the case of kd,j = 0, the expres-
sion of the optimality criteria in Eq.(37) with re-
spect to βj−1 should be modified as follows. For
j = 2, 3, ..., n, if kd,1 6= 0 and kd,j = 0, βj−1 ≤ 1; if
kd,1 = 0 and kd,j 6= 0, βj−1 ≥ 1. It should be no-250

ticed that a similar formulation was presented by
Takewaki [46] to optimally place viscous dampers
in shear buildings.

4. Numerical examples

In order to verify the effectiveness of the afore-255

mentioned method and illustrate the benefit of
RILD, a ten-story benchmark shear building struc-
ture [59] was used as an analytical example, as
shown in Fig. 3, whose structural parameters are
listed in Table 1. Modal analyses were conducted260

for the undamped primary linear structure, and the
first three undamped fundamental natural periods
are 2.01 s, 0.76 s, and 0.46 s. The inherent damping
matrix of the primary building structure was as-
sumed to be proportional to the structural stiffness265

matrix with a inherent damping ratio of ξ0 = 0.02,
i.e., C0 = 2ξ0/ω1K.
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Figure 3: A 10-story benchmark shear building structure

Table 1: Primary structural properties

j mj (ton) kj (kN/m) cj (kN·s/m) Height (m)
1 700 279 960 3 586 6
2 682 383 550 4 913 4
3 680 383 020 4 906 4
4 676 328 260 4 204 4
5 670 306 160 3 921 4
6 667 291 890 3 739 4
7 660 244 790 3 135 4
8 656 220 250 2 821 4
9 649 180 110 2 307 4
10 875 158 550 2 031 4

4.1. Effectiveness of the optimal method

Additional RILD elements are supplemented to
mitigate the vibration of the primary structure un-270

der strong earthquakes. For comparison, three dif-
ferent cases are considered: (i) the complex stiffness
coefficients of RILD elements are proportional to
the structural stiffness coefficients, i.e., Pkd = ηk
(proportional case, η = 2ξ = 0.1 is considered in275

this example); (ii) the coefficients of RILD elements
are uniformly distributed at each story of the build-
ing structure (uniform case); (iii) the coefficients
of RILD elements are optimally obtained by using
the developed method (optimal case, β0 is obtained280

from the uniform case). The sums of the complex
stiffness coefficients of RILD elements used in the
three cases are assumed to be equal. For the last
case, N = 100 was used in this example. The com-
plex stiffness coefficients of RILD elements obtained285

in the three cases are also listed in Table 2.

4.1.1. Frequency response analyses

Fig. 4 depicts the inter-story drift and absolute
acceleration RAFs of the uncontrolled structure
and those of the controlled structure equipped with290

RILD elements evaluated at the undamped funda-
mental frequency. It is noticed that in the opti-
mal case, RILD elements are placed in the first
and fourth stories (as shown in Table 2), where the
inter-story drifts of the uncontrolled structure are295

larger than those of other stories (see the solid black
line in Fig. 4(a)). From Fig. 4, it is observed that
compared with the proportional and uniform cases,
the structure equipped with optimally placed RILD
elements are more effective in reducing both inter-300

story drift and absolute acceleration RAFs evalu-
ated at the undamped fundamental frequency.
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Figure 4: Structural RAFs at the fundamental frequency

Figs. 5 and 6 depict the first story drift and
rooftop acceleration RAFs of the controlled struc-
ture equipped with RILD elements, respectively. It305

is shown that compared with other two cases, the
optimally placed RILD elements are more effective
in reducing the the first story drift RAFs all over
the frequency, without compromising the rooftop
acceleration RAFs. It is expected that RILD can be310

used to simultaneous mitigating the response dis-
placement and acceleration of a multi-story build-
ing structure subject to strong earthquakes.

4.1.2. Response history analyses

Time-history response analyses were conducted315

to investigate the performance of the differ-
ently controlled benchmark structures under strong
earthquakes. For example, Figs. 7 and 8 depict the
peak responses of the uncontrolled and controlled
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Table 2: Properties of RILD elements in three different cases

j jkd (kN/m) βj

Proportional Uniform Optimal Proportional Uniform Optimal
1 27 996 27 765 186 748 0.51 0.51 0.88
2 38 355 27 765 0 0.46 0.47 0.82
3 38 302 27 765 0 0.56 0.56 1.00
4 32 826 27 765 90 906 0.54 0.54 0.95
5 30 616 27 765 0 0.47 0.46 0.83
6 29 189 27 765 0 0.48 0.48 0.86
7 24 479 27 765 0 0.38 0.38 0.68
8 22 025 27 765 0 0.30 0.29 0.54
9 18 011 27 765 0 0.14 0.13 0.24
10 15 855 27 765 0 – – –
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Figure 5: Structural first story drift RAFs
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Figure 6: Rooftop absolute acceleration RAFs

structures under the 1940 Imperial Valley Earth-320

quake (El Centro, N–S component, peak ground
velocity (PGV) = 0.5 m/s) and the 1968 Tokachi-
oki Earthquake (Hachinohe, N–S component, PGV
= 0.5 m/s), respectively. Figs. 9 and 10 depict the
corresponding response histories of the controlled325

structure equipped with RILD elements. It can be
observed from Figs. 7-10 that compared with the
proportional and distributed RILD elements hav-
ing equal sum of coefficients, the optimally placed
RILD elements are much more effective in reduc-330

ing the inter-story drifts without compromising the
floor response acceleration. This example verifies
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Figure 7: Structural peak floor responses (El Centro)
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Figure 8: Structural peak floor responses (Hachinohe)

the effectiveness of the developed optimal RILD
placement method for seismic vibration mitigation
of a multi-story shear building model.335
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Figure 9: Structural Response histories (El Centro)
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Figure 10: Structural Response histories (Hachinohe)

4.2. Parametric studies

Here, we further increase the sum of complex
stiffness coefficients of RILD elements and investi-
gate the distribution pattern variation of optimally
designed RILD elements at different damping lev-340

els. To this end, the sum of the coefficients of
proportionally designed RILD elements is consid-
ered, w = 1kd = η1k, and the loss factor η is in-
creased from 0 to 0.16 with an interval of 0.002.
By applying the developed procedure, the opti-345

mally designed coefficients of RILD elements can
be determined. Figs. 11 and 12 depict the corre-
sponding objective functions and the designed coef-
ficients of RILD elements at different damping lev-
els. For comparison, the sums of the fundamental350

modal RAFs of the inter-story drift of the structure
equipped with proportionally and uniformly dis-
tributed RILD elements are also plotted. It should
be mentioned that the optimally designed coeffi-
cients of RILD elements at the other stories are ze-355

ros in this case studies, and thus they are not shown
in Fig. 12 for brevity.
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Figure 11: Objective functions
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Figure 12: Optimally designed complex stiffness coefficients

It is observed from Fig. 11 that the objective
functions decrease with the increase of the sum
of complex stiffness coefficients of RILD elements360

(or loss factors), and the lowest objective functions
among the three different cases at the same damp-
ing level are achieved by the optimally designed
RILD elements. This further verifies the effective-
ness of the developed optimal design method.365

It is observed from Fig. 12 that with η ∈ [0, 0.16],
there exist three different patterns for the optimal
distribution of RILD elements in the benchmark
structure. At low damping levels, the RILD ele-
ments are installed at the first story only. Gradu-370

ally, as the sum of RILD complex stiffness coeffi-
cients or loss factor increases, part elements start
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to be distributed at the fourth story, and then they
are distributed at the first, fourth, and fifth stories.
This example verifies that the developed procedure375

can well adapt the distribution pattern variation
of added RILD elements in a multi-story shearing
building structure.

4.3. Comparison between different types of dampers

4.3.1. Performance curves380

In order to further illustrate the benefit of RILD
incorporated in multi-story shear buildings, the
seismic responses of the benchmark building struc-
ture equipped with additional optimally placed
LVD and RILD elements are compared.385

To this end, the maximum value of the sum of
peak damping forces of added damping elements
used in the structure normalized by the total struc-
tural weight W , i.e., I1 =

∑
max
t

(|fd(t)|)/W , is

considered as a cost-related index in this study, be-390

cause the damper force is directly related with the
costs of a damper and its supporting members in
engineering practice, and the maximum value of
the peak inter-story drift angles of the controlled
structure, i.e., I2 = max[max

t
(|u(t)|./h)], where h395

denotes the structural height vector, is considered
as a performance index. By increasing the sums of
LVD and RILD coefficients and conducting struc-
tural response history analyses, we obtained the
performance curves of the optimally designed LVD400

and RILD controlled structure in terms of the cost-
related index I1 and performance-related index I2,
respectively, as shown in Figs. 13 and 14. It should
be noted that the developed procedure can be read-
ily used for the optimal design of added LVD ele-405

ments in the benchmark structure with slight mod-
ification.
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Figure 13: Performance curves (El Centro)
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Figure 14: Performance curves (Hachinohe wave)

It is shown in Figs. 13 and 14 that with an equal
cost-related index I1, the RILD controlled structure
generates smaller response inter-story drift than the410

LVD controlled structure. This verifies the benefit
of RILD used for mitigating the seismic vibration
of a multistory shear building structure subject to
strong ground motions.

4.3.2. Comparison with equal cost-related indexes415

To illustrate the performance difference of dif-
ferently controlled structures, we assumed that the
cost-related index is targeted at I1 = 0.15 when
the structure is subjected to the El Centro wave,
and optimally determined the distribution of added420

LVD and RILD elements in the multistory build-
ing structure, respectively. The designed damper
properties and the corresponding normalized con-
trol forces are listed in Table 3.

Fig. 15 plots the maximum floor responses of425

three types of structures subject to the El Centro
wave. For example, Fig. 16 plots the floor response
histories of those structures in terms of the second
floor inter-story drift (which results in the largest
inter-story drift angle) and rooftop response accel-430

eration, when they are subjected to the El Centro
wave. Fig. 17 plots the corresponding hysteresis
loops of the added damping elements installed at
the first and fourth stories.

It is shown in Figs. 15 and 16 that the RILD435

elements can be more effective than the LVD el-
ements in reducing the structural inter-story drift
and response absolute acceleration, when they are
optimally designed with the equal cost-related in-
dexes I1 (i.e., sum of maximum normalized damp-440

ing forces) for uses in a multistory building struc-
ture.
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Table 3: Designed properties of LVD and RILD elements for comparison (El Centro wave)

j
LVD RILD

cd,j (kN·s/m) Normalized control force kd,j (kN/m) Normalized control force
1 57 411 0.114 182 420 0.091
4 22 604 0.036 79 806 0.033
5 0 0 54 300 0.026
other 0 0 0 0
sum 80 015 I1 = 0.15 316 526 I1 = 0.15
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Figure 15: Maximum floor responses (El Centro)
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Figure 16: Structural response acceleration (El Centro)

Furthermore, a large number of response his-
tory analyses are conducted to investigate the per-
formance of the RILD optimally-controlled struc-445

ture under ground motions containing various phase
properties. To this end, three types of recorded
excitations are employed for time-history dynamic
analyses. According to the design practice in
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Figure 17: Hysteresis loops (El Centro): (a) first story, (b)
fourth story

Japan [37], the three natural records were scaled450

such that their peak ground velocities (PGVs) are
equal to 0.5 m/s, which corresponds to design level
earthquakes. Table 4 lists details of these ground
motions. Each time-history excitation is identified
by a number, as shown in Table 4.455

Table 4: Recorded ground motions

No. Earthquake Year Station Component PGV
1 Imperial Valley 1940 El Centro N-S 0.5
2 Kern County 1952 Taft E-W 0.5
3 Tokachi-oki 1968 Hachinohe N-S 0.5

Table 5 summaries the maximum seismic re-
sponses of the aforementioned LVD and RILD con-
trolled structures under the chosen ground motions.
It is shown that with equal cost-related indexes, the
optimally designed RILD elements can be more ef-460

fective than the viscous dampers in reducing the
peak inter-story drift and floor response accelera-
tion of a multi-story building structure under strong
ground motions. This example also verifies that by
minimizing the sum of structural inter-story drift465

RAFs, the developed method can be readily used
to effectively mitigate the peak seismic vibration of
a multi-story building structure under earthquake
waves containing various phase properties.
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Table 5: Maximum seismic responses of LVD and RILD controlled structures

No.
LVD RILD

I1 I2 Floor acc.(m/s2) I1 I2 Floor acc.(m/s2)
1 0.15 1/112 4.49 0.15 1/122 4.08
2 0.15 1/118 4.73 0.14 1/122 4.37
3 0.14 1/130 3.92 0.15 1/135 3.83
Max. 0.15 1/112 4.79 0.15 1/122 4.08

5. Conclusions470

In this paper, we presented a gradient-based op-
timization method of placing RILD elements for
seismic vibration mitigation of a multi-story build-
ing structure. Firstly, the relative displacement and
absolute acceleration RAFs of the RILD controlled475

SDOF system were investigated by considering var-
ious damping levels. It is revealed that increasing
RILD can effectively reduce the structural resonant
responses without compromising the responses at
high-frequency regions. This is one of the main ad-480

vantages of RILD over the conventional LVD used
for structural vibration mitigation.

A ten-story benchmark building structure was
employed as an analytical example to verify the ef-
fectiveness of the proposed method. The conven-485

tional stiffness proportional and uniform distribu-
tion methods were considered for comparison with
the proposed method. It was shown that with equal
sum of RILD complex stiffness coefficients, the pro-
posed method contributed to smaller structural vi-490

bration responses than the conventional methods.
Parametric studies were conducted to investigate

the effect of RILD on the performance of the opti-
mally controlled structure by gradually increasing
the sum of complex stiffness efficients. The perfor-495

mance curves of the RILD controlled structure were
obtained and compared with those of the controlled
structure equipped with optimally placed viscous
dampers. It is suggested that with equal sum of
control forces, the optimally placed RILD elements500

can be more effective than viscous dampers in mit-
igating the inter-story drift and floor response ac-
celeration of a multi-story building structure un-
der strong ground motions containing various phase
properties.505
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