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Abstract— A method for shaping the power spectral density
(PSD) of the total error due to uniform quantisation is proposed.
It utilises non-subtractive dithering, generated with a joint
specification of the probability density function (PDF) and the
PSD. If the dither PDF has certain properties, the expected
value of the quantiser output can be linearised and the variance
of the error (the error power) can be made independent of the
quantiser input. It is demonstrated that making the error power
independent of the input enables shaping the error PSD as a
separate problem. The method relies on the use of a linear
noise colouring filter and a static non-linear transform, which
imposes some restrictions on the specification of the error PSD.
However, it is possible to synthesise a range of filters that can
be used to shape the PSD of the error. Simulations are provided
to verify and illustrate the operation of the method.

I. INTRODUCTION
Quantisation and re-quantisation are fundamental opera-

tions in digital signal processing, digital-analogue conver-
sion, power electronics and measurement systems. Error is
introduced since only a discrete subset of values can be
represented [1,2]. Several methods can be used to shape the
power spectral density (PSD) of quantisation error. Com-
bined with oversampling, shaping the error PSD can be used
to reduce the effective error due to quantisation by additional
filtering in the frequency domain where the error power is
concentrated. ∆Σ-modulation uses quantiser model feedback
to shape the PSD at the output [3]. As the quantiser is
discontinuous, it becomes a chaotic system with an input-
dependent, empirical sense of stability [4]. An alternative
is to use model predictive control (MPC) which can offer
both higher performance and rigorous stability results [5,6],
but comes with high computational cost. Learning control
(LC) has been shown to significantly suppress quantisation
error [7], and can use actual output measurements, not only
model feedback, but is restricted to periodic input signals.

Dithering is a feed-forward method with similar properties.
An external signal is added to the input of the quantiser,
and the resulting quantiser error can have a spectral dis-
tribution [8,9]. Dithering has been shown to mitigate the
effect of static non-linearities such as element mismatch in
digital-analogue converters [10] as well as dynamic non-
linearities [11,12] such as glitches in digital-analogue con-
verters [13]–[15]. In this paper we study the use of non-
subtractive dither (NSD). Alternatively, subtractive dithering
(SD) [16] can be used, and may have more conducive
properties. However it can only be utilised when the exact
dither signal is available for subtraction after quantisation.
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This is challenging to achieve in practical systems [16], and
severely limits the applicability of SD in many systems.

If the dither probability density function (PDF) is triangu-
lar with a range that is an integer multiple of the quantisation
step, the averaged response of a quantiser can be linearised
and the variance of the error, or for a zero-mean signal,
the error power, can be made independent of the quantiser
input [8]. For the special case of a triangular PDF (TPDF),
it can be produced by applying a simple difference operation
to a noise signal with rectangular PDF (RPDF), causing
convolution of two RPDFs, and simultaneously producing
a first-order high-pass PSD [8]. The shape of the dither
PSD is in this case maintained in the output, but the noise-
shaping effect is modest. Here we investigate the possibility
of improving the error PSD shaping when dithering.

A dither signal can be produced using a pseudo-random
number generator (PRNG) [17]. These typically produce a
RPDF, but arbitrary PDFs can be realised e.g. by applying
the inverse of the cumulative distribution function (CDF) to
the PRNG output [17]. Coloured noise can be produced by
spectral factorisation of a desired PSD [18], producing an
implementable linear filter. Combining spectral factorisation
with the inverse CDF method is not straight-forward, as
the output of linear filters driven with noise will tend to
a normal distribution, due to the central limit theorem [19],
and conversely static non-linearities will tend to whiten the
PSD of the input signal [20]. One solution to the problem
of realising a noise-like signal with jointly specified PDF
and PSD is to compensate for the whitening effect of the
non-linearity when synthesising the colouring filter [21,22].

A. Contributions

Results from [8] and the method from [22] are used to
provide a novel solution to the problem of shaping the PSD
of the total error due to uniform quantisation when applying
a non-subtractive dither signal. As TPDF dither with proper
amplitude decouples the error power from the input to the
quantiser, the method in [22] is extended to find the non-
linear transformation necessary such that a desired PSD for
the total error is produced in the output. Simulations show
that a wide range of PSDs can be realised, and significantly
improved ability to shape the error can be achieved compared
to the PSDs realisable using the method in [8].

B. Notation

A definition is denoted by ≜ and the Fourier operator
is denoted F . All probabilistic considerations will be with
respect to a fixed probability space (Ω,F,P), and for a
random variable, g, we typically omit the dependency on
ϖ ∈ Ω, we write g = g(ϖ). The probability density
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Fig. 1. Non-subtractively dithered quantiser, with input x, dither d,
quantiser input w, output y, and quantisation error q.

function (PDF) of g is denoted by pg(g) and the characteristic
function (cf) by Pg(u) ≜ F [pg](u) = E[ejug], with the
ith moment of g given by E[gi] ≜

∫
R g

ipg(g) dg, and the
cumulative distribution function (CDF) is denoted Fg(a) ≜∫ a

−∞ pg(u) du. The notation is also used if g is a stochastic
process, g = g(t) = g(t,ϖ), i.e. all quantities are time
dependent. If ψ(τ) ≜ E(g(t)g(t + τ)) denotes the auto-
covariance function (ACF) of g with delay operator τ , then
the PSD Ψ(ω) of g is the Fourier transform Ψ(ω) = F [ψ](ω)
with ω the angular frequency. The Heaviside step-function
is defined as

Γ(u) ≜

{
0 , u ≤ 0
1 , u > 0

,

and convolution is defined as

(f ∗ h)(t) ≜
∫ ∞

−∞
f(τ)h(t− τ) dτ .

II. ANALYTICAL FRAMEWORK

A. Uniform Quantisation

A mid-tread uniform quantiser, Q in Fig. 1, with step-size
∆ ∈ R>0 can be defined as Q(w) ≜ ∆

⌊
w
∆ + 1

2

⌋
where ⌊·⌋

denotes the floor operator. The quantisation error q(w) given
an input w is defined as the function

q(w) ≜ Q(w)− w . (1)

The output can then be modelled as:

y = w + q(w) = Q(w) . (2)

If we consider a mid-rise multi-bit quantiser with a word-
size of B bits, it has 2B output levels. With an output range
between Vmin and Vmax the step-size is

∆ =
Vmax − Vmin

2B − 1
, (3)

and in this case Q(w) can be expressed as

Q(w) = ∆

NT∑
i=1

(
Γ(w − Ti)−

1

2

)
, (4)

where NT = 2B − 1 is the number of quantisation lev-
els, and the step-functions have the thresholds Ti : i ∈
{1, 2, 3, ...NT }; where, Tj = (j − i)∆ + Ti for j > i and
T2B−1 = (Vmax + Vmin)/2.

Fig. 2. NSD for a mid-tread uniform quantiser by dither d of PDF pd. The
conditional PDF (cPDF) pε|x(ε|x) of the total error ε for a fixed input value
x is an area sampled version of the quantiser input cpdf pw|x(w|x). Ai is
the sampled area under pd(w−x) for w ∈ [−∆

2
+(k+i)∆, ∆

2
+(k+i)∆].

B. Non-subtractive Dithering (NSD)

Consider the quantiser configuration in Fig. 1. The total
error ε is defined as the difference between the output y and
input x, ε ≜ y − x, to distinguish it from the quantisation
error q in (1). For NSD ε = Q(x+ d)− x = q(x+ d) + d.
From [8], the conditional PDF of ε given the input x is

pε|x(ε|x) = p−∞ + p∞ +

NT−1∑
k=2

pk (5)

with

pk =δ(ε+ x− k∆)

∫ ∆
2 +k∆

−∆
2 +k∆

pd(w − x) dw

p−∞ =δ(ε+ x−∆)

∫ ∆
2 +∆

−∞
pd(w − x) dw

p∞ =δ(ε+ x−NT∆)

∫ ∞

−∆
2 +NT∆

pd(w − x) dw

where δ is the Dirac delta function, see Fig. 2. Note that
pε|x(ε|x) cannot be rendered independent of x by any choice
of dither.

For given specifications of the PSD S(ω) of the total error
ε we will in the sequel investigate how to generate a dither
d which both linearises the uniform quantiser in mean, that
is, E[y] becomes a linear function of x, and induces a PSD
S(ω) having the required specifications.

Regarding the linearisation, first note that E[y] = x +
E[ε]. Now from [8] we know that E[ε] = E[d] and E[ε2] =

E[d2] + ∆2

12 whenever

G
(m)
d

(
k

∆

)
= 0 ∀k ∈ Z− {0}, m = 1, 2 (6)

with Gd(u) = sinc(u)Pd(u), G
(m)
d the mth derivative of

Gd, and sinc(u) ≜ sin(π∆u)
π∆u . Choosing a zero mean dither

with a triangular PDF (and cf Pd = sinc2(u)) will result
in (6) being fulfilled, see [8]. With this choice of dither it
follows that E[ε] = 0 thus linearising the uniform quantiser
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Fig. 3. Block diagram for the proposed method: White Gaussian process
η, spectrally shaped Gaussian process v, dither with desired PDF d, input
x, quantiser input w, quantiser output y, total error ε, and reconstructed
output yr .

in mean. Moreover, note how the total error ε is now a
zero mean stationary process with E[ε2] = ∆2/4. Hence,
Var(y) = E[ε2] is constant and independent of the value of
x. Furthermore, it follows from the choice of a TPDF dither,
that the PSD Sy of the output y is just the sum of the PSD
S of the total error ε and the PSD Sx of the input x. Thus
shaping S also shapes Sy .

When it comes to spectrally shaping S, it is ideally
desirable to shape S such that it has minimal power content
at frequencies where Sx has significant power content. For
example, the reconstructed output yr after the smoothing
filter in Fig. 3 contains the low-pass power content of y
where Sx is concentrated; therefore, it is advantageous to
shape S to have a high-pass power content away from Sx

such that yr ≈ x. The best shaping performance known to be
achievable using TPDF NSD is in (Sec.II-C & Sec.III-E [8]):

S(ω) = Sd(ω) +
∆2

12

2

fs

where fs is the Nyquist sampling frequency. Note how the
shaping is limited to a quantisation noise floor of ∆2

12 as
in the classical model of quantisation (CMQ) [9]. In Sec-
III, the method in [22] is reconfigured to allow shaping the
total error due to quantisation to have a desired S(ω) via the
proper choice of the shape of Sd(ω) of the dither d.

III. SHAPING THE PSD OF THE TOTAL ERROR

A block diagram for the proposed method is shown in
Fig. 3. A white, unity variance Gaussian process η (with PSD
U(ω) = 1) is passed through a properly designed linear time-
invariant (LTI) colouring filter H(jω) to shape the spectral
density Φ(ω) = H(jω)H(jω)∗U(ω) = H(jω)H(jω)∗ of
v. The coloured noise v is then passed through a probability
density shaping static non-linearity 𭟋(·) as a composition of
the inverse CDF of d and the CDF of v:

𭟋(.) ≜ F−1
d (Fv(.)). (7)

The resulting dither d will have the necessary PDF (in this
case a TPDF) and PSD for ε to have a prescribed PSD S(ω).
Since H(jω) is a linear filter and η ∼ N (0, 1), the filtered
input will remain Gaussian at the filter output. However, it
needs to be scaled by a factor K ≜

σ2
η

σ2
v

such that the output
also has a unity variance (i.e. v ∼ N (0, 1)).

The relation between the PSD Φ(ω) of v, which can be
shaped using H(jω), and the desired PSD S(ω) of ε can
be described by means of the corresponding auto-correlation

functions (normalised ACFs); ρ(τ) ≜ ϕ(τ)
ϕ(0) where ϕ(τ) =

E[v(t)v(t+ τ)] and R(τ) ≜ s(τ)
s(0) where s(τ) = E[ε(t)ε(t+

τ)] = E[ε2]R(τ). Indeed, from [22] the relation between
R = R(τ) and ρ = ρ(τ) is as follows:

R =

∫
R

∫
R

g(m,n, ρ)

E[ε2]

(Q(𭟋(m) + x)− x)(Q(𭟋(n) + x)− x) dm dn. (8)

with g the bi-variate Gaussian joint PDF

g(m,n, ρ) =
e
− 1

2(1−ρ2)
[m2+n2−2ρmn]

2π
√

1− ρ2
; (9)

It is a property of the bi-variate Gaussian joint PDF that
∂g
∂ρ = ∂2g

∂m∂n . For Q(·) in (4), we therefore get from [22]:

dR

dρ
=

∆2

E[ε2]

NT∑
i=1

NT∑
j=1

𭟋′(m)𭟋′(n)g(m,n, ρ)

χ{𭟋(m)=Ti−x}(m)χ{𭟋(n)=Tj−x}(n); (10)

where χ{}(·) is the indicator function and 𭟋−1(Tk−x) ≜ d̂k.
Note how varying the input value x is captured by a change
in the corresponding d̂k. Hence, the solution to (10) is a
3D surface of the variables R, ρ, x; where for each x value,
ρ is varied in (−1, 1) to find the corresponding R. Now
consider v ∼ N (0, 1) and d a TPDF dither; this means that
d(t) ∈ [−∆,∆]. Hence x+d ∈ [x−∆, x+∆], so for all x ∈
(T2, TNT−1) there can only be one or two {Tk, Tk+1} ∈ [x−
∆, x+∆] where pd ̸= 0). Hence, (10) can be evaluated for
the quantisation levels pair {Tk, Tk+1} when x ∈ (Tk, Tk+1)
or at the single level Tk when x = Tk for k ∈ {2, 3, ..., NT −
2}.

dR

dρ
=

k+1∑
i=k

k+1∑
j=k

4𭟋′(d̂i)𭟋′(d̂j)

2π
√

1− ρ2
e
− 1

2

(d̂i
2+d̂j

2−2ρd̂id̂j)

(1−ρ2) (11)

Given the choice of d as a TPDF dither, 𭟋′(·) is:

𭟋′(u) = ∆


pv(û)√
2Fv(u)

, u ∈ (−∞, 0]

pv(û)√
2(1−Fv(u))

, u ∈ [0,+∞)
. (12)

Note how all terms in (11) are non-negative (i.e. R(ρ) is
invertable since the solution to (11) is monotone). Taking
R = 0 when ρ = 0, the solution to (11) at x = Tk (i.e.
d̂k = F−1

v (Fd(0)) = 0) is:

dR

dρ
= 4(𭟋′(0))2g(0, 0, ρ) =

(
pv(0)√
2Fv(0)

)2
4∆2

2π
√

1− ρ2

Rnum = (∆pv(0))
2 2

π
sin−1(ρ)

and so ρ(τ) = sin
(π
2
R∝(τ)

)
; (13)

where

R∝(τ) ≜
max(Rnum)−min(Rnum)

max(R)−min(R)

R(τ)

(∆pv(0))2
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Fig. 4. Dependence of E[y], E[y2] over x for a 3-Bit uniform quantiser
(TPDF vs. RPDF).

is a numerical scaling implemented to assure that both
R(τ) and the corresponding ρ(R(τ)) are in (−1, 1). Note
from (13) that Rnum varies in the feasible numerical range
of (−(∆pv(0))

2, (∆pv(0))
2) as ρ varies in (−1, 1). Hence,

to obtain ρ(τ) ∈ (−1, 1) corresponding to a desired R(τ) ∈
(−1, 1), the feasible ranges (of R,Rnum) are mapped via
R∝ (in the case of (13), at x = Tk, it simplifies to
R∝(τ) = R(τ)). Once the mapping ρ(R) can be obtained
by (numerically) solving (10) (for a general PDF choice)
or (13) (in the case of TPDF) over ρ ∈ (−1, 1), the effect
varying x has over the feasible range of Rnum values can
be investigated. More importantly however, (13) establishes
the proper ρ(τ) corresponding to a desired R(τ). Note that
as long as the specified s(τ) = E[ε2]R(τ) corresponds to a
Φ(ω) ≥ 0 for all ω (PSDs must be non-negative), the desired
shaping at the output stage is attainable. Unfortunately, Φ(ω)
is not guaranteed to be non-negative at all frequencies for
every specified R(τ). This is because when ρ(τ) in Eq. (8)
ranges over all possible normalised ACFs, R(τ) ranges only
over a subset of possible normalised ACFs [22]. So, H(jω)
is synthesised to best approximate Φ(ω) as follows:

Let Φ+(ω) ≜ Φ(ω)X{Φ(ω)≥0}(ω), then

H(jω) =
√

Φ+(ω). (14)

IV. SIMULATIONS

In the simulations, the output range is set to Vmax =
−Vmin = 10. Fig. 4 shows the effect of using TPDF
over RPDF dither for spectral shaping, as alluded to in the
discussion of Sec. II-B. Either dither linearises the quantiser
in mean, E[y] = E[x], but TPDF dither also results in
a constant total power, subsequently shaped to S(ω), with
Var(y) = E[ε2] = ∆2/4. The RPDF dither causes a so-called
noise modulation effect, i.e. the error power varies with the
input x. This effect in the case of RPDF dither can be
inferred from Fig. 5, where the range of Rnum is maximum
at x = Tk = k∆ while it evaluates to zero as it approaches

Fig. 5. The dependence of R(ρ) mapping on the input x in the case
of RPDF dither. Solving (10)-(13) for Rnum(ρ, x) : ρ ∈ (−1, 1), x ∈
[Vmin + ∆

2
, Vmax − ∆

2
] for a 3-Bit uniform quantiser.
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Fig. 6. Desired vs. Achieved single-sided output PSD S(ω) for TPDF
NSD of a 10−Bit uniform quantiser.

midpoints between quantisation levels, R∝(R(τ)) → 0 for
all R(τ).

Algorithm 1 was used to generate randomised PSDs with
arbitrary shapes. Desired error PSDs must be feasible, i.e.
S(ω) = S(−ω) ∈ R≥0 and scaled to have an area equivalent
to an achievable total power at the output,

∫
R S(ω) dω =

E[ε2] = ∆2/4. Figs. 6 and 7 show results of the method
when shaping the PSD of ε to a desired S(ω).

V. RESULTS AND DISCUSSION

In order to get an indication of the range of PSDs that
can be realised using the method, 3000 randomised PSD
function samples were generated as described in Sec. IV.
68% of the generated PSDs were not entirely non-negative,
Φ+(ω) ̸= Φ(ω), indicating that there are limitations on the
properties that a PSD function can exhibit in order to be fully
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Fig. 7. Desired vs. Achieved single-sided output PSD S(ω) for TPDF
NSD of a 7−Bit uniform quantiser.

Algorithm 1 PSD Generator, MATLAB
G = d r s s ( 7 ) ; % Random d i s c r e t e S t a t e Space , S t a b l e SISO
G t f = t f (G) ;
S t f = G t f * G t f ' ; % Real va lued , non − n e g a t i v e , PSD
S num = S t f . Numerator { :} ;
S den = S t f . Denomina tor { :} ;
w = l i n s p a c e ( 0 , 2 * pi ,M) ; % Sample whole c i r c l e
S f r = f r e q z ( S num , S den ,w) ; % Frequency r e s p o n s e a t w
S f r 2 n o r m = sum ( abs ( S f r ) . * mean ( d i f f (w) ) ) / ( 2 * p i ) ;% 2−Norm
% Normai l ze a r e a S (w) t o a u n i t y power
S f r = ( S f r / S f r 2 n o r m ) * Var y ; % S c a l e t o f e a s i b l e power

realised using the proposed method. Of the 68%, 72% of the
PSDs were not non-negative for ω where S(ω) < ∆2/12,
exemplified by S2(ω) in Fig. 6.

Of the 32% PSDs resulting in Φ+(ω) = Φ(ω), 94%
produced the desired S(ω). Of these, 75% of the cases
satisfied S(ω) > ∆2/12 for all ω, exemplified by S1(ω)
in Fig. 7. The remaining 6% had a deviation from S(ω)
when S(ω) had a concentration of power in a narrow band
of frequencies, or there was a mismatch when S(ω) dropped
approximately 8-dB below the CMQ noise floor, in the 8-
bit quantiser case. For higher number of bits the spectral
density tended to reach the CMQ noise floor. In general, the
results indicate that PSDs that drop below the CMQ noise
floor often have a mismatch between desired and achieved
results, but the CMQ noise floor apparently is not a general
lower bound, as exemplified by S1(ω) in Fig. 6 and S2(ω) in
Fig. 7. These examples indicate that increased performance
in terms of spectral shaping of the total error via NSD is
possible, as compared to the results in Sec.II-C & Sec.III-E
in [8]. Future work will focus on determining the limitations
and bounds of the proposed spectral shaping method.

VI. CONCLUSIONS

It was demonstrated by way of simulation that the pro-
posed dithering method can provide a large degree of free-
dom in shaping the spectral distribution of the total error
power for a uniform quantiser. The choice of a triangular
probability density for the dither makes the error power

independent of the input, enabling shaping of the error power
spectral density. This requires a jointly specified probability
and spectral density for the dither, and the required results
were developed in order to generate such a dither. Simulation
results indicate that there are limitations to achievable spec-
tral densities, and these should be investigated further. How-
ever, the method can in its current form produce improved
performance compared to existing non-subtractive dithering
methods.
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