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Abstract
The reuse of reinforced concrete components from deconstructed buildings offers a promising approach
to reduce the environmental impact of new constructions. However, it represents a complex combinatorial
optimization problem to efficiently place the available modules, which vary in geometry and load-bearing
capacity, into new structures while maximizing their utilization. This paper proposes a two-stage optimization
method to enable the reuse of arbitrary reinforced concrete modules. First, an agent-based model is employed
to rapidly explore feasible geometric combinations of modules and preselect suitable placements based on a
target span length. Second, metaheuristic optimization algorithms, namely Simulated Annealing and Tabu
Search, are adapted to maximize the utilization of the modules’ load-bearing capacity while ensuring global
structural integrity. The methods are demonstrated on a case study of assembling a three-span continuous
beam from a sampled construction kit of 100 reinforced concrete modules with varying cross-sectional
properties and material parameters. The results show the agent-based preselection effectively finds viable
geometric combinations, while the metaheuristics converge on optimised module placements with up to
88% utilization on average. The proposed approach provides a computational framework to enable the direct
reuse of structural concrete components, supporting the design of low-carbon circular buildings.
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1 INTRODUCTION

For centuries, building has served to fulfill basic needs such as providing shelter, supply, and disposal. The steady population
growth results in many new construction projects as well as replacements, while also maintaining existing structures. This has
led to a high demand for resources, as well as increased emissions and waste from construction. More precisely, construction
activities account for about 20% of global CO2 emissions1 and 90% of natural mineral extraction, as well as 35% of waste
generation across Europe2. Reinforced Concrete (RC) is the dominant building material, resulting in 8-9% of global CO2

emissions from cement production alone3. To reduce the environmental impact of RC buildings, researchers are increasingly
exploring alternatives to holistic new construction4. Recycling is the most widespread method for reutilizing existing structures at
a material level. Through complex dismantling, RC structures are destructively broken down into their name-giving components,
concrete and steel reinforcement. Concrete can then be used as an aggregate for so called recycled concrete5 or as a filler material
in road construction. However, this approach does not replace energy-intensive cement production.

A less emitting method is reuse that involves utilizing entire components for new structures in an equivalent manner6,7, as
various studies have shown8. This means that the current building stock becomes the component stock or construction kit for
future structures. Steel construction, with its inherently modular character and generally bolted connections, already facilitates
reuse9. Reuse is also increasingly being used for RC components8,10,11. Thereby, precast concrete components are particularly
suitable for this purpose12, as they can be easily separated at their regular connections and reused in a quasi-equivalent way,
such as prestressed hollow core slabs13. Also from monolithic structures, RC components can be separated, for example, by
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sawing and become modules for reuse. The cut edges then form the subsequent joints for new structures and must be prepared to
transmit forces and moments if necessary. There are two types of joints: classic poured joints and (often pre-stressed) dry joints.
Therefore, various types of joints to connect RC components are numerically and experimentally investigated14,15. The reuse
for concrete components shows, for example, a 10-metre span, prestressed arch bridge16. The almost equal RC modules are
cut out of an existing structure and then are reassembled using mortar joints. The load transfer in this case is primarily under
compressive stress so that additional bending capacity through reinforcement does not need to be provided. If needed, other
approaches combine reused steel profiles with concrete elements. Here, the profiles serve as the main load-bearing elements
supporting RC slabs17. In contrast to the other approaches and although the major part of the load is transferred by the steel
profiles, the concrete slabs contribute in bending, too.

For form finding of new structures made from reused modules, various optimization approaches have been derived mainly
for the reuse of steel and timber components. These methods are based on, for example, Integer Linear Programming (ILP)18,
Evolutionary Algorithms (EA)19, or extended algorithms of discrete truss optimization20. Often so-called ground structures
that consist of a pattern of nodes connected by trusses serve as design domain. They define permitted module positions with
corresponding lengths. The quantity and length of possible modules vary with the level of connectivity between the nodes that
represent permitted module positions and corresponding lengths are used for the fundamental placement. On these, modules
from a construction kit are binary placed, i.e. a position is assigned with a module or is not. Too large modules are either cut off
or the ground structure is subsequently adapted with respect to the module lengths21. However, these modules are primarily
subjected to axial loads so that the load-bearing capacity is ensured by stress restrictions22,23. Hybrid approaches that incorporate
both reused and new modules can also be utilized with these methods. Compared to pure reuse, CO2 emissions can be reduced24.

Two essential things change when reusing almost arbitrary RC modules: Due to the varying geometry, i.e. module dimensions,
the static system changes with respect to the placement of the modules and their joints. Moreover, the stiffness and load-bearing
capacities within the system change due to the geometry of the modules’ cross-sections, the reinforcement ratio and material
strengths, too. Thus, the internal forces vary depending on the modules’ placement. This results in a complex Combinatorial
Optimization Problem (COP) already when considering simple systems or subsystems, such as frames or continuous beams,
and becomes even more complicated with the size of the construction kit, i.e. the number of module types. Metaheuristics have
proven to be particularly effective for COP25,26, as has been shown, for example, for the permutation of concrete modules in
modular structures consisting of only a few module types27.

The paper aims at a method for designing new structures made from reused RC modules. Therefore, modules from a
construction kit, which consists of different RC modules characterized by uncertain geometries and material parameters, form a
structure using meta-heuristics. The objective is maximum utilization of the modules while maintaining geometrical boundary
conditions and structural integrity. For this purpose, a construction kit is first generated and the associated load-bearing capacities
of the modules are derived. Second, an agent-based preselection reduces possible combinations of the reused modules within the
investigated system depending on geometric tolerance requirements. The reduced combinations form an Action List (AL) for the
COP using metaheuristic with the objective of maximum utilization, thus generating an optimal placement of the existing RC
modules for new structures.

2 MATERIAL AND METHODS

2.1 Problem statement - Reuse of RC elements for new structures

The form finding method is derived at the example of one-way floor slabs of high-rise buildings, since slabs as the simplest
spatial structure usually form the basis of the architectural design. The slabs are supported by substructures and can for simplicity
be designed separately from the rest of the structure as continuous beams subjected to bending and shear. The statical system to
be investigated is a three-span beam with fixed supports. The construction kit comprises modules that adapt reused RC modules
with inherent load-bearing capacities depending on their external and internal geometry and material parameters. It is assumed
that modules from the deconstruction of a structure partially exhibit similar geometries and material properties and therefore can
be consolidated to certain module types.

Depending on the position and stiffness of the modules and their connections, internal forces – for known loads – result.
The placement strategy is controlled by both geometrical needs and the utilization of the modules’ load-bearing capacity.
Geometrically, the module combinations of the formed slab must not be too short, but also not exceed a tolerance range to avoid
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unnecessary cut offs from the modules at the edges. Mechanically, the aim is to maximize utilization in order to reuse modules
as efficiently as possible.

The placement strategy involves two steps: first, identifying all geometrically feasible module combinations, and then
optimizing these combinations for maximum utilization using combinatorial optimization. The basic procedure is shown in
Figure 1. After deconstruction (left), the existing RC modules, here slab elements, are grouped together in a construction kit
consisting of different module types. Depending on the geometry and the material, they possess certain load-bearing capacities,
in the form of M-N resistances (center) and bearable shear loads. Possible module type combinations are determined via the
geometric tolerance requirements and yield the static system. Optimal combination and permutation ensures the load-bearing
capacity and also maximizes the utilization (right).

F I G U R E 1 Method for the reuse of structural RC modules: The dismantled modules from deconstruction are consolidated
to construction kits with respect to their geometry and load-bearing capacity and finally reused in new structures steered by a
geometrical and mechanical placement strategy

2.2 Construction kit of reused elements

2.2.1 Sampling of geometry and material properties

Lacking a real use case is compensated for by artificial generation of a construction kit. The RC modules therein are generated
using Monte Carlo sampling of the geometrical and mechanical parameters. The modules consist of normal-strength concrete
with symmetrical steel reinforcement (As1 = As2) and exhibit the common reference width of b = bw = 1 m for slabs. From
this data, load-bearing capacities can be derived to simulate a construction kit of reused modules. In general, distinction is
made between five module types, which differ in geometry i.e. length l, height h, reinforcement distances to the surface d1,2 and
amounts As1,2 as well as material properties, i.e. characteristic concrete compressive fck and reinforcement yield strengths fyk,
and regarding their scatter (Table 1). For each module type and its associated uncertainties, 20 modules are sampled so that in
total 100 modules form the construction kit.

Typically, dimensions and mechanical parameters exhibit variation, which is, in a probabilistic approach, considered by
associated distribution functions. The distribution function of the length l is uniform U with type-specific tolerance limits t.
Hereby, t defines the absolute limits from the mean µ. The height h and the distances to the reinforcement d1 and d2 are normally
distributed N . The mean height of the modules varies from 16 to 28 cm and the mean distances d1,2 between 3 and 5 cm. The
variation of these geometric parameters is described by the standard deviation σ. It is based on a tolerance t, which captures the
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T A B L E 1 Stochastic properties of the five module types in the construction kit.

l [m] h [cm] As1,2 [cm2] d1,2 [cm] fyk [N/mm2] fck [N/mm2]
amount µ t pdf µ σ pdf µ µ σ pdf µ µ σ pdf

type 1 20 4.5 ±0.2 U 20 0.5 N 3.77a 4 0.25 N 500a 30 3 LN
type 2 20 5.5 ±0.3 U 24 0.5 N 5.13a 4 0.25 N 500a 40 3 LN
type 3 20 6.7 ±0.5 U 28 0.5 N 7.54a 5 0.25 N 500a 55 3 LN
type 4 20 3 ±0.3 U 16 0.5 N 1.88a 3 0.25 N 500a 30 3 LN
type 5 20 3.8 ±0.25 U 18 0.5 N 2.57a 3 0.25 N 500a 40 3 LN

U - uniform; N - normal, LN - log-normal
aconstant

confidence interval as a function of the probability value zp, usually set to 2 for RC components28. As the tolerance of h is set to
1 cm, and that of d1 and d2 to 0.5 cm, the standard deviations in Table 1 are obtained from Equation 1.

σ =
t
zp

(1)

Usually, existing components are originally made of normal-strength concrete. But, the compressive strength fck has increased
with time. As a resistance quantity its variation is described with a log-normal distribution LN . A standard deviation of 3
N/mm2 indicates good concrete quality. In comparison to the uncertain parameters, the steel strength of fyk = 500 N/mm2 and
the reinforcement amounts (As1 = As2) are assumed to be deterministic to account for precise production. The reinforcement
amounts reflect typical mesh reinforcement of the building practice. Besides the general placement, the resistance and thus the
takeable forces of the modules depend on their (bending) stiffness. While the moment of inertia I results from the geometry, the
Young’s modulus is a material property. In accordance with DIN EN 1992-1-1 the mean elastic modulus of the concrete Ecm is
determined with Equation 2 as a function of the mean concrete strength fcm.

Ecm = 22,000 ·
(

fcm

10

)0.3

(2)

with: fcm = fck + 8

2.2.2 Load-bearing capacity

The 100 modules of the construction kit are fully specified with the values provided in Section 2.2.1 and the associated variations
in Table 1. Assuming constant conditions over the entire module length, this also applies to the load-bearing capacities (MRd, NRd

and VRd). As common with DIN EN 1992-1-129, these are calculated separately for bending with longitudinal forces and shear.
For slabs, the latter is usually done with the approach for members without reinforcement. For convenience, these resistances
and the associated input variables are documented in Appendix A.

2.2.2.1 Bending design
Since all modules possess rectangular cross-sections and symmetrical reinforcement (Figure 2, left) their bending capacity can
be obtained from classical M-N design charts30 (cf. Figure 2, right) observing the limit strains of normal-strength concrete and
reinforcement steel type B50029. The stress-strain relationship for normal-strength concrete follows the parabolic rectangular
diagram and delivers the design strength fcd.

fcd = αcc
fck

γc
(3)

with: αcc = 0.85

γc = 1.5
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The material law of the reinforcement is bi-linear with a horizontal branch at the design yield strength fyd (Equation 4). The
Young’s modulus of the linear-elastic branch is Es = 200,000 MPa.

fyd =
fyk

γs
= 435 N/mm2 (4)

with: γs = 1.15

With two strains, e.g. the maximum concrete strain at the compressed edge εc2 and the steel strain in the lower reinforcement
layer εs1, the strain distribution in the cross-section is uniquely defined (Figure 2, left). x denotes the proportion of height in
compression. Moreover, with the two material laws, the transition from the strain space to the design stress space is possible any
time. The stresses and their associated effective areas (As1, As2 and Ac = x · b) provide the forces (Fs1d, Fs2d and Fcd) that yield
the design resistances (NRd and MRd) via the equilibrium conditions.

NRd = Fs1d – Fs2d – Fcd (5)

MRd = Fs1d · (
h
2

– d1) + Fs2d · (
h
2

– d2) + Fcd · (
h
2

– a) (6)

with: Fsid - force in the reinforcement layer Asi

Fcd - compressive force in the concrete

a - distance from top to the concrete force

F I G U R E 2 Dimensions, strain and stress distributions, and inner forces along with resulting M-N design chart for a rectangular RC cross section

Computation for all admissible strain combinations specifies a resistance curve that covers all bearable M-N-ratios for each RC
module with respect to geometry and reinforcement layout. In Figure 2 (right) a general diagram is shown in which characteristic
strain states are highlighted. This diagram uniquely assigns a bending resistance MRd to each axial force NEd. However, due to
the statical system of slabs investigated here, subjected to vertical forces only, MRd is always read from the diagram for NEd = 0,
i.e. for pure bending.
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2.2.2.2 Shear design
The shear resistance of members without shear reinforcement and axial loads (σcp = NEd/Ac = 0) is calculated from Equation 729:

VRd =
[

0.15
γc

· k · (100ρlfck)1/3
]
· bwd (7)

with: γc = 1.5

k = 1 +

√
200

d [mm]
≤ 2

bw = 1 m

d = h – d1

ρl =
As1

bw · d
≤ 0.02

It depends on the geometry and the concrete strength. k is a scaling factor, d denotes the statical height and ρl the reinforcement
ratio. In general, a minimum value VRd,min must be considered for the shear resistance VRd according to Equation 7. However,
this only applies to low reinforcement ratios, which are not encountered in the reused modules.

2.3 System and Assembly

The statical system is specified as a three-span beam with outer span lengths of 4.5 m and an inner span length of 3 m (Figure 3).
In addition to the dead load gk of the modules, the system is subjected to a variable line load of qk = 2 kN/m, which corresponds
to service loads in conventional building construction. gk depends on the individual cross-section of the module and the weight of
concrete γc = 25 kN/m3. All combinations must have 3 modules to ensure a static determinate system. A surplus is tolerated but
limited to △ = 1 m on each side. Their arrangement on the supports always ensures that it is the same on both sides. This enables
a certain variability of the modules and at the same time avoids excessive overlength that could impair neighboring buildings.
By contrast, too short combinations are (statically) not feasible. For design, the connections of the modules are mechanically
modeled as ideal moment joints so that only shear and axial forces are transmitted between the modules. After placing, the
internal forces are calculated and compared locally to the modules’ load-bearing capacities to cover the global load-bearing
capacity of the system. Comparison considers the ultimate limit state with design values for actions and resistances according to
the partial safety concept.

As said, the created construction kit consists of n = 100 modules. k = 3 of these are put together to form a load-bearing
structure. Mathematically, the number of possible permutations PMC is determined by the laws of combinatorics according to
Equation 8, whereby order matters and no repetitions are permissible. It yields the vast number of 970,200 module combinations.
Clearly, the computational effort of numerical modelling that many combinations is too expensive. Therefore, it is advisable to
first reduce it by preselecting only the geometrically feasible ones. For simplicity this is done with agent-based modeling on the
basis of the five module types introduced above (Section 2.4). In general, interval analysis is also suitable for the same task31.

PMC (n, k) =
n!

(n – k)!
(8)

Just the remaining combinations are numerically modelled by guidance of metaheuristics, which specifically check their load-
bearing capacities. Since the latter is explicitly done on the level of modules and not on types, again geometrically unfeasible
solutions might occur that are rejected within in the metaheuristics (Section 2.5).

2.4 Geometric Preselection of Structural Elements using Agent-Based Modeling

While many traditional optimization algorithms, such as Genetic Algorithms (GAs)32, the Greedy Search Algorithm33, or the
Hungarian Algorithm34, have been proven powerful in solving complex combinatorial problems, an Agent-based Modeling
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F I G U R E 3 Statical system with dimensions and loads for an exemplary positioning of modules with qualitative moment and shear force

(ABM) approach for the geometric preselection of elements was chosen here. The preselection problem is particularly challenging
because it involves dynamically exploring a vast array of potential configurations to filter out unsuitable combinations early in
the process. Unlike final selection, which focuses on optimizing within a narrowed set of options, preselection must handle high
variability and complexity from the outset.

ABM is especially suited for this task due to its ability to simulate numerous agents exploring different combinations
simultaneously, thus efficiently navigating and narrowing down the extensive solution space. Its flexibility and adaptability
makes it suited for handling the dynamic and iterative aspects of solving complex geometric problems, where multiple variables
and evolving criteria must be continuously balanced35. The challenges originate from the continuous evaluation and adjustment
of module combinations as new geometric constraints are introduced or existing ones are modified. ABM allows agents to
independently test and modify combinations of modules, responding to changes in requirements and optimizing configurations
in real-time.

Moreover, ABM presents a robust alternative to other optimization methods by simulating decentralized decision-making
processes that can adapt and evolve through local interactions and simple behavioral rules, fostering the exploration of the wide
solution spaces that characterize early design stages in construction36. Behavioral rules are the basic guidelines that dictate how
agents make decisions and interact with their environment and other agents. Here, they include selecting random combinations
of modules, evaluating their total length against the target, and modifying combinations based on mutation rates. Decentralized
decision-making in ABM characterizes that multiple agents make their decisions independently based on local information
and interactions rather than relying on a single centralized control entity. This decentralized approach allows for flexibility and
adaptability, as agents can explore different parts of the solution space simultaneously.

The implemented ABM simulates a population of agents, each representing a decision-making entity in preselecting suitable
combinations of three modules from the given set of module types. Figure 4 illustrates the ABM for the geometric preselection,
evaluation, and optimization of module type selection, and depicts the model’s main constituents, namely “GirderModel” and
“GirderAgent”, along with the sequence of actions from initialization to compiling results. Each agent starts with a random
combination of modules and iterates through a process of selection and mutation, akin to a simplified form of genetic crossover
and mutation seen in GA. However, unlike GAs where the crossover and mutation are centrally controlled and applied, in the
model presented, each agent autonomously adapts its strategy based on localized performance metrics. This autonomy can prevent
premature convergence on suboptimal solutions by preserving a diverse set of potential solutions throughout the simulation run.

Each module type covers the geometric characteristics, e. g. lengths according to Table 1, of its members. In total PMTC

possibilities exists to combine k = 3 out of n = 5 module types. For the construction set specified, the total number of module type
combinations PMTC = 125 is obtained from Equation 9, mathematically by permutation with repetition and when order matters.

PMTC (n, k) = nk (9)
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F I G U R E 4 ABM for geometric preselection, evaluation, and optimization of type selection. Model constituents (left) and actions (right).

Length-matching solutions that consist of only two modules are intentionally neglected due to the potential of these longer
modules to be more effectively utilized in applications requiring wider spans. Since there could potentially be module types of
exactly the same dimensions, it is also noted that these may be used multiple times within a single configuration.

The key criteria for selecting suitable modules from the given set of module types shown in Figure 5 (left) is the difference
of the length resulting from the combination of three chosen modules to the spanning distance of the given support locations.
A minimum resulting length of 12 meters is required, module combinations that span further are considered viable, but less
desirable. Combinations that result in a span shorter than 12 meters are considered non viable and therefore removed from the
list of viable solutions.

Agents assess the effectiveness of their module combinations against the target span length. Combinations that do not meet
the minimum required length are discarded immediately, while those that exceed the target length are subjected to a penalty
proportional to their surplus. In the model, each agent calculates an error as the absolute difference between the total length of a
combination and the target span length, effectively quantifying the material surplus. This error serves as a penalty, directing
the agents toward the most material-efficient combinations. Only those combinations where the calculated error is less than
the agent’s previously recorded best error are considered improvements and are retained for further evaluation. Consequently,
agents refine their search iteratively, always seeking to minimize this error, thereby reducing excess material use. Through this
mechanism, the model promotes an optimized search for module combinations that meet or slightly exceed the target length,
enhancing material efficiency in structural design.

The ABM prioritizes the discovery of diverse, near-optimal solutions rather than converging on a single global optimum. This
approach is particularly advantageous in architectural preselection, where multiple viable solutions offer the flexibility to adapt
to changing design requirements or material availability.

In the presented model convergence plot (Figure 5, right), an initial wide distribution of total module lengths, reflecting
extensive exploratory behavior by the agents, is observed . With successive iterations, there is a discernible increase in the
frequency of solutions meeting or exceeding the target length of 12 meters, as evidenced by the growing density of blue points
around the horizontal red line indicating the optimal length of 12 meters resulting from a module combination, which suggests
progressive learning within the agent population. In the presented model, a total of 10 agents are used to select, calculate, and
evaluate module combinations. To share the best-fitting findings among the agents, the GirderModel class continuously updates
and tracks the best combination found by any agent, allowing other agents to adopt this global best solution. Red points below
the target length occur mainly within the first half of the simulation, indicating early exploration and a potential presence of
local optima.

The convergence pattern observed underscores the model’s capability to balance exploration with the exploitation of viable
solutions over successive iterations. The resulting possible combinations provide the basis for a load-bearing capacity-based
placement using metaheuristics (Section 2.5).
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F I G U R E 5 Overview of module types and converging module selection over time.

2.5 Metaheuristics

2.5.1 Basics

For Combinatorial Optimization Problems (COPs) the goal is to find an optimal combination of design variables from a finite
set of values. Consequently, the number of possible solutions grows with the number of variables, respectively with the size
of the finite set. Thus, COPs can be hard to solve in reasonable computational time. Dealing with a large number of possible
solutions and lacking on problem-specific knowledge, such as gradient information of the objective function, highlights where
metaheuristics can express their potential. Combining local search algorithms with methods to overcome local minima, they
provide a method to find either the global optimum or to approximate it by “trial and error” and without evaluating the complete
solution space37. Furthermore, due to their generality, existing methods can be adapted to various kinds of optimization problems.
Key is to define an objective function related to a suitable solution and the neighborhood of this solution38.

Metaheuristics are mainly categorized into trajectory-based and population-based algorithms39,37. Trajectory-based algorithms
incrementally build a path through the solution space. Based on criteria of exploration and exploitation, at each step a single
neighboring solution is chosen to extend the trajectory. Thereby, without getting stuck, local neighborhoods can be searched
thoroughly to find a better solution. In contrast, population-based algorithms handle multiple solutions at one step which results
in a more diverse investigation of the solution space. Nevertheless, this often requires more computational resources at a time.

Therefore, the COP of placing reused RC modules is tackled with well established methods of trajectory-based algorithms,
namely Simulated Annealing (SA) and Tabu Search (TS), which have been shown to perform well for a similar COP27.

2.5.2 Formulation of the Optimization Problem

Based on the problem stated in section 2.3, the goal is to combine a structure from three modules, mounted on four supports. For
this purpose, a construction kit of 100 modules from 5 module types is sampled (cf. Appendix A). The aim is to find an optimal
placement of three out of 100 sampled modules.
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A placement of modules is represented by the solution vector S. The length of S is restricted to N = 3 individual modules S1,
S2, and S3 from the sampled kit:

S = [S1, S2, S3] (10)

The quality of a solution S is measured by the objective function f (S) which describes a minimization problem. Aiming for
maximum bending utilization, f (S) is reformulated to the difference between 1 and the mean of the three modules maximum
bending moment utilization factors ηM,Sm (Eq. 11). Small objective function values correspond to larger mean utilization factors
and vice versa. For each module Sm, it is ensured that the maximum bending moment Mmax,Sm or the maximum shear force
Vmax,Sm does not exceed the associated capacities MRd,Sm or VRd,Sm . These restrictions are implemented by means of inequality
constrains via Eqs. 12 and 13. The internal moments and forces are evaluated using parametric finite element modelling in the
parametric design language “ANSYS Mechanical APDL”.

min f (S) = 1 –

(
1
N

N∑
m=1

ηM,Sm

)
(11)

s.t.: ηM,Sm =

∣∣Mmax,Sm

∣∣
MRd,Sm

≤ 1 (12)

ηV ,Sm =

∣∣Vmax,Sm

∣∣
VRd,Sm

≤ 1 (13)

with: m ∈ [1, 2, 3]

Defining a neighborhood structure is essential for constructing efficient metaheuristic search procedures. Starting from a
solution Si, a neighboring solution Sj is generated using one of two kinds of Action Type (AT):

1. Replace an entry of Si with another arbritrary module from the sampled construction kit (AT1),
2. Swap two entries within Si (AT2).

Thereby, an Action List (AL) is formed that contains all possible actions of AT1 (replacements) and AT2 (swapping) which
can generate all possible neighborhoods of module combinations. In the use case with 100 modules in the construction kit, the
AL comprises 302 entries. 300 are accounted for by AT1 and 2 by AT2, since each configuration consists of three modules.
Excluding symmetry, there are 3 options to arrange the three modules of a configuration. For AT2, 2 relevant swaps remain: first
and second position, or second and third position. The remaining one is again irrelevant for reasons of symmetry. Symmetry
exists here in particular due to the specific arrangement of supports and an always equal surplus on both sides. In addition, the
AL is restricted to the combinations of the feasible geometric preselection obtained in section 2.4. Practically, for each module
type combination of the preselected combinations a specific AL is defined incorporating the specific modules of the chosen
types. Both algorithms SA and TS are using this AL as reduced solution space.

2.5.3 Simulated Annealing

The local search algorithm SA40, inspired by physics, works analogous to temperature cooling processes of solids. Particles
of a melted solid behave randomly. If the solid is cooled down gradually and slow enough, the particles order in their ground
state where they form a lattice structure. The energy of the solid’s ground state is minimal38. Transferring this concept to the
metaheuristic search algorithm, the energy E is interpreted as the objective function value f (Si), whereby Si represents a certain
state of the solid. When a neighboring solution is generated and its evaluated energy f (Sj) is smaller than the previous one
f (Si), the neighbor solution Sj is accepted as new current solution Si. Subsequently, new neighboring solutions are generated,
transitioning from the current solution Si. In the alternative case with f (Sj) > f (Si), SA makes use of the Metropolis criterion41

(Eq. 14). If it holds true, it effects the acceptance of a worse solution as the current solution. This concept of building the search
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trajectory facilitates overcoming local minima while searching the solution space.

r < e
∆E
T (14)

with: r = rand[0, 1]

∆E = f (Si) – f (Sj)

The Metropolis criterion checks whether a random number r between zero and one is smaller than an exponential term dependent
on the energy difference ∆E and a current temperature T . The temperature parameter T controls the algorithm’s cooling process
and is gradually reduced by factor αT until it reaches an end temperature Tend. If the cooling schedule is slow enough, the
algorithm converges to the global minimum. αT is typically chosen between 0.7 and 0.99 for a so called geometric cooling
schedule37:

T := αT · T (15)

At each cooling step characterized by a current temperature T , nsub neighbor solutions are evaluated. Higher temperatures effect
higher acceptance probabilities of these solutions. Thus, at the beginning of the search procedure the solution space is explored
more widely. Lower temperatures lower the acceptance probability and the search trajectory exploits regions where the objective
function value is closer to the global minimum. If the Metropolis criterion holds true (see Eq. 14), ∆E must be negative. Hence,
larger absolute values of ∆E correspond with lower acceptance probabilities while lower absolute values of ∆E correspond with
higher acceptance probabilities.

The implemented SA algorithm is illustrated in the iteration scheme in Fig. 6. It is initialized with a random, yet feasible
solution S0 as the best-known solution S∗ that is updated throughout the algorithm’s evaluations. Moves to build the search
trajectory are randomly picked from the specific AL. Thereby, the code prevents the same move from being applied twice
to the same solution. When the SA algorithm terminates by reaching temperature Tend, the approximate global minimum,
respectively the true minimum is the last found solution S∗. The relevant parameters for the stated optimization problem are
found heuristically and summarized in Tab. 2. Tstart is scaled to the domain of f (S) between zero and one. Tend as well as αT

are chosen such that the cooling schedule is slow and long enough, whilst ensuring that the algorithm terminates in a given
timespan. Selecting nsub with around 10 percent of the ALs size is reasoned in a trade-off between computational time and
sufficient exploitation at a temperature step.

T A B L E 2 Chosen parameters for the implemented SA algorithm.

initial temperature [K] end temperature [K] cooling rate [-] subiterations [-]
Tstart Tend αT nsub

0.5 10–3 0.95 30

2.5.4 Tabu Search

The TS42 represents a local search procedure with the possibility of escaping local minima similar to SA. In contrast, the TS
generates a memory structure which prevents the algorithm to loop back to previous solutions39. TS builds its search trajectory
based on constructing nN neighborhoods N(Si) for a start solution Si. The amount of examined neighboring solutions within
N(Si) is fixed by the number nsub. While a larger nN goes along with more exploration, increasing nsub effects more exploitation.
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F I G U R E 6 Iteration scheme for implemented SA algorithm.

After generating a full neighborhood the best solution Sj is chosen from N(Si) to be the new start solution Si:

Sj := argmin
S∈N(Si)

f (S) (16)

At this point, the concept of a memory structure organized as Tabu List (TL) determines the acceptance of Sj. Accepted solutions
Sj of previously investigated neighborhoods have a distinct Action Index (AI) that has led to their generation. This AI is
associated to a value on the TL which, if non-zero, blocks the acceptance of solution Sj as new start solution Si. Furthermore, the
value specifies the amount of upcoming neighborhoods, where solutions generated by the associated AI are tabu. Firstly, it is
set to a predefined Tabu Duration (TD). Subsequently, for each upcoming neighborhood N(Si), the value of TD is reduced by
one until it becomes zero. Thus, Sj is chosen to be the best solution from N(Si), provided that the AI that led to its generation
is associated with a TD of zero. If Eq. 16 is enhanced by this condition, Eq. 17 results. It can only be ignored if an aspiration
criterion43 is met. This criterion becomes active if Sj is the global best-known solution S∗, then Sj is accepted as Si in any case.

Sj := argmin
S∈N(Si),TD(AI(S))=0

f (S) (17)

Figure 7 illustrates the implemented TS in detail. Since TS is restricted to nN neighborhoods it may lag on exploration of the
solution space. Therfore, a diversification strategy43 is introduced. One part of diversification is to implement a global stagnation
criterion. If S∗ is not improving for a fixed number of investigated neighborhoods (so-called diversification limit) the new start
solution Si becomes a random feasible solution. This allows other regions of the solution space to be explored. Another part of
diversification is that in contrast to the SA algorithm not only random actions are applied to generate neighboring solutions. While
for the SA it is randomly possible that e.g. only AT1 is applied, rather all actions of AT2 are ensured to be used for constructing
N(Si) in the TS. Analogous to SA, the parameters in Table 3 are found heuristically and adapted to the specific problem.
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F I G U R E 7 Iteration scheme for implemented TS algorithm.

T A B L E 3 Chosen parameters for the implemented TS algorithm.

investigated neighborhoods [-] neighborhood size [-] tabu duration [-] diversification limit [-]
nN nsub TD DL
49 75 10 10

3 RESULTS

3.1 Preselection of geometrically feasible combinations

Figure 8 shows those 18 module type combinations that achieve the minimum target length of 12 m with three modules and at
the same time comply with the total length of 14 m at maximum (a maximum surplus of 1 m per side for a set of three modules
is tolerated). This set was identified during preselection with Agent-based Modeling (ABM) (cf. Section 2.4). The visualisation
employs histograms that were generated with the minimum, maximum and mean module lengths of each type from Table 1
for convenience. The width of the histograms indicates that certain module type combinations offer a higher degree of length
flexibility than others. Some fall completely within the permissible range, others merely touch it.

Among the feasible 18 combinations are 6 with three different, 2 with three identical and 10 with two identical module
types. If the order in a combination is also taken into account via the associated case-specific numbers of possible permutations
according to Equation 18, the total number increases to 68 = 6 · 6 + 2 · 1 + 10 · 3 (ordered combinations or permutations).

3 different: 6 =
(

3
1

)(
2
1

)(
1
1

)
= 3 · 2 · 1 = 3!

3 identical: 1 =
(

1
1

)
=
(

3
3

)
= 1! (18)

2 identical: 3 =
(

3
2

)
=

3!
(3 – 2)! · 2!
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F I G U R E 8 Feasible combinations of module types in the acceptable range (green area)

If the associated options for picking modules from the 5 types according to Equation 19 are considered, too, the transition from
the type level to the module level can be performed. Just there, the efficiency of preselection can be evaluated through quotas.

3 different: 10 =
(

5
3

)
=

5!
(5 – 3)! · 3!

3 identical: 5 =
(

5
1

)
=

5!
(5 – 1)! · 1!

(19)

2 identical: 20 =
(

5
1

)(
4
1

)
=

5!
(5 – 1)! · 1!

· 4!
(4 – 1)! · 1!

or
5!

(5 – 2)!

According to the laws of combinatorics, among the total number of module type permutations from Equation 9 PMTC = 125 =
5 · 1 + 20 · 3 + 10 · 6 are 5 with three identical, 60 with three different and another 60 with two identical module types. With this
split, both PMTC and the by preselection reduced number of combinations can be transferred to the module level, taking into
account the likewise case-specific associated options of picking 3 modules from 20 according to Equation 20.

3 different:
(

20
1

)
· 1! ·

(
20
1

)
· 1! ·

(
20
1

)
· 1! = 20 · 20 · 20 = 8000

3 identical:
(

20
3

)
· 3! =

20!
(20 – 3)! · 3!

· 3! = 20 · 19 · 18 = 6840 (20)

2 identical:
(

20
2

)
· 2! ·

(
20
1

)
· 1! =

20!
(20 – 2)! · 2!

· 2! · 20!
(20 – 1)! · 1!

· 1! = 20 · 19 · 20 = 7600

Thus, PMC from Equation 8 is drastically reduced from initially 970, 200 to 529, 680 = 6 · 6 · 8000 + 2 · 1 · 6840 + 10 · 3 · 7600
remaining combinations, which form the solution space for the metaheuristics. This indicates the efficacy of preselection using the
Agent-based Modeling (ABM) method, which allows around 45% of all permutations to be excluded from further consideration.
By the way, the efficacy should not be assessed from the remaining fraction of type combinations PMCT (68/125 ≈ 0, 54) which is
here by chance numerically similar to the module one but generally neglects the true frequencies of the three portions of the split.

Figure 9 shows the resulting length of remaining combinations for individual modules. The graph depicting the top 100
module combinations by total length illustrates the efficacy of the ABM in converging towards the target span of 12 meters. It
reveals a notable clustering of combination lengths around the target, with a gradual increase in the surplus material, indicating
a nuanced exploration of the solution space. The diversity of solutions found confirms the model’s ability to adapt and find
multiple viable options, essential for accommodating varying design requirements and material constraints. The close grouping
of many combinations near the minimum length suggests that the most successful combinations within the given set of girder
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F I G U R E 9 Length distribution of 100 best fitting individual module combinations.

types have been found. However, the presence of outliers beyond to the 13-meter mark emphasises the importance of a precise
pre-selection when building with reused modules in order to avoid gross deviations in the resulting structure. These findings
underscore the model’s potential as a tool for preselection in designing with reused RC, offering a spectrum of solutions that
balances geometrical precision with possible deviations.

3.2 Load-bearing capacity-based placement using Metaheuristics

3.2.1 Solution space and action list

It is required that all remaining solutions must be connected by means of the neighborhood structure in order to exploit the
(reduced) solution space. Since all defined actions of AT1 and AT2, which built up the neighborhood, operate on module
combinations and not on type combinations, it needs to be checked weather all type combinations can be generated by a trajectory
of consecutive actions. Therefore, the preselected type combinations are organized as nodes with connections that represent
possible actions of AT1 only (Fig. 10). The resulting graph is fully connected and thus the generated trajectories are able to
exploit the entire solution space. With AT2 in addition, the graph’s connectivity increases even more.

3.2.2 Comparison of the Metaheuristics

To compare the two metaheuristics the evolution of the objective function f (S) which equals the bending utilization versus the
number of iterations is shown in Figure 11 for the SA (a) and TS (b). The maximum number of iterations is 3630. It is obtained
from the parameters of SA in Table 2 multiplying nsub and the 121 cooling steps required to reach Tend when starting from Tstart.
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F I G U R E 10 Neighborhood structure of reduced type combinations.

In case of TS the number of iterations is approximately the same. It follows from multiplication of nN and nsub according to
Table 3 to 3675. These two parameters were chosen to balance the computational effort of both metaheuristics and to ensure
comparability of their solution processes. To gain more search depth at each neighborhood during TS, nsub has been set 2.5 times
bigger than for SA. nN follows accordingly. Each calculation is depicted as dot in the figure. The dots are colorized with respect
to their compliance of load-bearing capacity. Blue dots meet the restrictions acc. to Eqs. 12 and 13, while red ones do not. The
black line indicates the best solution throughout the optimization procedure, while for the dotted blue line distinction between
the algorithms must be made. For SA, it corresponds to the currently accepted solution and, for TS, to the start solution of the
current, examined neighborhood N(Si).

It is evident that the SA-trajectory of f (Si) (Fig. 11a)) initially behaves more randomly and then step by step, locates to one
range of f (S). Furthermore, f (S) scatters more widely at first. After about 1000 iterations, 3 regions of f (S) form. This is attributed
to one fixed module type combination, whereby the scattering results from different module combinations of the same type.

The trajectory of f (Si) for the TS (Fig. 11b)) is constant for each investigated neighborhood N(Si). Peaks are observed as
a consequence of generating a new start solution to diversify the search trajectory. Besides that, the scattered evaluation data
mostly remains in noticeable ranges for several sequential iterations, which is reasoned in the local search behaviour throughout
the whole procedure.

Both algorithms terminate with the same optimum solution, that is S∗ = (17, 16, 61) and thus a corresponding module type
combination of (1, 1, 4). The objective function yields f (S∗) = 0.1188 or a bending moment utilization of about 88% on average.
In Figure 12, the utilization for S∗ in contrast to an arbitrary, viable solution S = (3, 37, 78), i.e. type combination (1, 2, 4), is
shown with their corresponding courses of the internal forces MEd and VEd. The capacity ranges of each module MRd and VRd are
highlighted in grey.

For both solutions, the maximum shear forces and the maximum hogging moments are located at the center right support. The
maximum sagging moment is in the first span. However, the distribution of internal forces strongly depends on the placement
and length of the individual modules and in general on the type of connections and the length in between.
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F I G U R E 11 Course of the objective function for the a) SA and b) TS algorithm.

The utilizations of the single modules of S∗ are 85.6%, 92.2%, and 86.6% for bending and 23%, 29%, and 19.2% for the
shear force capacity. Though, the type combinations of S and S∗ differ only in the center module, the bending utilization of
S is 57.8% on average and thus much lower. This also holds true for the individual module utilizations of 19.4%, 23.6%, and
14.2% regarding shear. For all feasible solutions, the utilization of the bending capacity is much bigger than the corresponding
utilization of the shear capacity.

The two also differ with respect to the support locations. For S∗, module 17 exhibits two supports, one near the hinge between
the modules 17 and 16. Another support is located in the domain of center module 16 and the last one in that of module 61 at the
right. The surplus amounts to 0.11 m on each side. The arbitrary solution S has two supports in the domain of the center module
37 and one support in the domains of the other modules 3 and 78. In addition, the arbitrary solution possesses a bigger surplus of
0.79 m per side.

4 DISCUSSION

The preselection method using ABM enables rapid exploration of possible geometric solutions, supporting decision-making and
feasibility evaluation early on. As agents adjust their strategies based on past module selections, the overall outcome of actions
improves over time. This iterative process of refining actions based on feedback is a fundamental characteristic of learning,
allowing the model to discover more effective solutions over time. The preselection using ABM demonstrates significant
potential in supporting the selection process of designing structures using reused RC modules. The ability to quickly analyse
the feasibility of geometric solutions and thus make a preselection for further structural design is a valuable contribution to
the holistic planning of new structures from existing modules. Further development should focus on incorporating this method
into more complex design tasks, leveraging more advanced learning algorithms, and further software and workflow integration.
To fully realize the potential of concrete component reuse in building design, computational frameworks need to be extended
and validated for a wide range of structural typologies, such as frames, slabs, shells, and 3D spatial assemblies. This requires
further research into the geometric representation and manipulation of diverse module libraries, as well as the formulation of
appropriate structural analysis and optimization methods.

The implemented metaheuristics provide a tool to find an optimal placement of reuse modules with an acceptable number of
numerical calculations. Thereby, the preselection of geometrically possible module type combinations drastically reduces the
solution space increasing the efficacy. The best solution found has a mean utilization of 88%. The corresponding utilization of
the single modules is almost evenly distributed, with one module being utilized at a level of 92 % and two beams being utilized
at a level of about 86% (cf. Figure 12). Although this is a desirable result, it is conceivable to additionally adapt the optimization
problem by adding restrictions, e.g. limiting the difference of utilization of the modules, to steer the optimization to equally
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.

balanced solutions. Also, a higher utilization can be achieved when the number of modules is not restricted to 3. This increases
the versatility of solutions and thus leads to a relaxation of the problem. However, if more than 3 modules are permitted the
statical determination must be ensured by means of rigid connections influencing the statical system.

It can be seen that for both algorithms the best module arrangements are localized in the type combination (1,1,4). Once the
search trajectory reaches that region the metaheuristics cause only small improvements of the best-known solutions due to local
search. The overall range of improvement of f (S) varies with the given construction kit or specific problem. To have more insight
on the metaheuristic’s performance or to even optimize the algorithms themselves, parameter studies and statistical evaluations
should be made on a larger scale. Those were neglected in this study, due to the high computational afford that goes along with it.

The presented structural system is modelled as an idealized continuous beam. As the best-found solution shows, the
arrangement contains modules with difference in height and connections are idealised as moment hinges. For actual structural
designs the algorithm should be extended with a strategy to fulfill nominal measures of the floor or ceiling level. Furthermore,
connections must be designed and modelled in more detail, since they affect not only the structural system but also the
load-bearing capacity of the single modules edges, which is simplified in this approach as constant over its total length.
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5 CONCLUSIONS

The proposed two-stage optimization method, combining an ABM for geometric preselection and metaheuristic algorithms for
maximizing structural utilization, shows promise in enabling the reuse of arbitrary reinforced concrete modules in new structures.
The case study demonstrates the approach can find optimized placements for a kit of modules in a simple three-span beam
configuration. The main findings are:

• By means of a geometrical preselection the solution space of module combinations is reduced to 55% of the initial solution
space. Thereby, some combinations that barely met the geometric demands are still considered. Despite the preselection,
the neighboring structure, which describes the possible solution space for the metaheuristics, is still connected. Thus, the
metaheuristics become more efficient.

• Both metaheuristics, SA and TS, find the same best solution of the module type combination (1,1,4) with the corresponding
modules (17,16,61). The reused modules are utilized about 88% on average with respect to bending. The module utilizations
thereby varies between 85.6% (module 17) and 92.2% (module 16). The shear resistance is generally less utilized than the
corresponding bending resistance for all calculations.

• The surplus for the best solution exhibits only 11 cm and therefore stays within the tolerance range. It also accounts to one
of the best geometrical solutions that does not need additional cut offs or reworking. However, not only the surplus but also
differences in height between the modules should be integrated in future enhancements of the geometrical evaluation criteria.

• For a higher utilization, hybrid approaches, i.e. combination of reused and new RC modules, could be applied, especially if
the placement leads to modules with a low utilization.

In conclusion, this paper lays the foundation for a computational optimization method to enable the equivalent reuse of RC
components in new buildings. Future work should focus on expanding the scope of the framework, integrating it with established
design tools, and validating it on a diverse range of case studies, therefore, harnessing the full potential in supporting the design
of low-carbon, circular buildings.
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APPENDIX

A DATA OF CONSTRUCTION KIT

length height As1,2 d1 d2 fyk fck Ecm MRd VRd

# [m] [cm] [cm²] [cm] [cm] [N/mm2] [N/mm2] [MPa] [kNm] [kN]

ty
pe

1

1 4.59 20.2 3.77 3.9 3.8 500 28 32308 29.3 92.4
2 4.69 20 3.77 4.3 4.2 500 32 33346 29.6 93.3
3 4.60 20.1 3.77 4.0 4.1 500 31 33093 29.8 93.9
4 4.51 21.1 3.77 3.8 4.1 500 31 33093 31.9 99.1
5 4.48 20.2 3.77 3.8 4.1 500 31 33093 30.5 95.4
6 4.56 20.5 3.77 3.6 4.4 500 35 34077 32.2 100.9
7 4.42 20.0 3.77 3.8 3.7 500 27 32036 28.6 91.3
8 4.48 19.0 3.77 4.4 4.1 500 31 33093 27.5 87.7
9 4.57 19.7 3.77 3.7 4.0 500 30 32837 29.5 92.7

10 4.63 20.1 3.77 4.2 4.0 500 30 32837 29.3 92.1
11 4.43 19.4 3.77 3.7 3.8 500 28 32308 28.1 89.6
12 4.56 20 3.77 4.3 4.2 500 32 33346 29.5 93.2
13 4.50 19.5 3.77 4.1 3.8 500 28 32308 27.9 89.0
14 4.36 19.8 3.77 3.8 3.8 500 27 32036 28.4 90.3
15 4.42 19.4 3.77 4.2 4.3 500 33 33594 28.9 91.7
16 4.34 19.9 3.77 4.2 3.5 500 25 31476 27.0 87.4
17 4.65 20.3 3.77 3.7 3.6 500 25 31476 28.5 91.1
18 4.57 20.4 3.77 3.8 4.0 500 29 32575 30.3 94.6
19 4.63 20.7 3.77 4.1 3.6 500 26 31759 29.0 92.2
20 4.68 20.3 3.77 3.9 4.5 500 37 34545 31.7 100.3

ty
pe

2

21 5.35 24.8 5.13 4.2 3.5 500 35 34077 47.7 125.7
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22 5.43 24.4 5.13 3.9 4.0 500 39 34999 49.7 129.1
23 5.64 24.5 5.13 4.0 3.7 500 37 34545 48.5 127.2
24 5.67 24.3 5.13 3.7 4.2 500 43 35867 51.2 133.0
25 5.21 24.4 5.13 3.6 3.3 500 32 33346 47.0 123.4
26 5.33 23.9 5.13 4.3 3.7 500 36 34313 46.3 122.9
27 5.24 23.4 5.13 3.6 4.0 500 39 34999 48.3 126.5
28 5.62 23.5 5.13 4.3 3.8 500 38 34774 46.2 122.8
29 5.73 24.5 5.13 3.9 4.4 500 45 36283 51.6 135.0
30 5.37 23.1 5.13 4.0 3.9 500 39 34999 46.6 123.2
31 5.62 24.1 5.13 3.9 4.0 500 40 35220 49.3 128.8
32 5.28 24.5 5.13 3.5 3.8 500 38 34774 50.0 129.6
33 5.42 24.8 5.13 4.1 4.0 500 40 35220 50.6 130.5
34 5.70 24.0 5.13 3.9 4.0 500 40 35220 49.1 128.5
35 5.62 23.3 5.13 4.1 4.5 500 46 36487 48.9 129.2
36 5.62 24.0 5.13 4.2 4.1 500 41 35439 49.0 128.4
37 5.71 23.6 5.13 4.1 4.3 500 43 35867 48.7 128.3
38 5.38 23.7 5.13 4.0 3.7 500 36 34313 46.5 123.5
39 5.59 25.0 5.13 4.2 4.0 500 39 34999 50.2 130.0
40 5.38 23.5 5.13 3.6 3.6 500 35 34077 46.3 123.2

ty
pe

3

41 6.8 28.4 7.54 5.4 5 500 55 38214 84.7 167.5
42 6.93 26.5 7.54 4.7 4.8 500 52 37659 79.6 160.5
43 6.88 27.9 7.54 4.9 5.0 500 54 38031 84.2 166.4
44 6.26 28.2 7.54 5.1 5.3 500 58 38751 86.2 170.3
45 6.88 27.1 7.54 5.1 5.1 500 56 38395 82.0 164.6
46 6.51 27.9 7.54 5.2 5.4 500 61 39271 85.7 171.1
47 6.55 27.5 7.54 4.8 4.9 500 54 38031 83.4 165.6
48 6.93 28.1 7.54 4.9 4.9 500 54 38031 85.1 167.4
49 6.31 27.6 7.54 4.8 5.2 500 57 38574 84.7 168.2
50 6.45 27.9 7.54 4.5 5.3 500 59 38926 87.2 172.0
51 6.64 28.6 7.54 5.1 5.1 500 56 38395 86.7 170.1
52 6.79 26.5 7.54 4.9 4.8 500 52 37659 79.2 159.9
53 6.51 28.2 7.54 4.5 4.9 500 54 38031 86.4 169.2
54 6.64 27.7 7.54 4.9 4.8 500 53 37846 83.4 165.2
55 6.51 28.5 7.54 4.7 4.8 500 53 37846 86.3 168.6
56 7.12 27.7 7.54 4.6 5.1 500 57 38574 85.6 169.5
57 6.86 27.9 7.54 5.1 4.9 500 53 37846 83.4 165.0
58 6.38 28.8 7.54 4.4 5.5 500 61 39271 91.5 177.8
59 6.85 28.5 7.54 5.3 5.3 500 58 38751 86.7 170.9
60 6.24 28.6 7.54 4.6 5.1 500 56 38395 88.3 172.0

ty
pe

4

61 3.23 16.2 1.88 3.3 2.6 500 25 31476 11.6 63.6
62 2.88 15.7 1.88 3.1 2.8 500 28 32308 11.8 66.4
63 3.08 15.4 1.88 3.2 2.8 500 27 32036 11.4 62.9
64 3.08 16.9 1.88 3.1 3.0 500 30 32837 12.9 74.8
65 2.88 16.5 1.88 3.6 3.2 500 32 33346 12.3 71.8
66 3.05 15.5 1.88 2.8 3.3 500 34 33837 12.4 73.5
67 2.76 15.9 1.88 3.1 2.5 500 25 31476 11.5 63.0
68 3.18 16.0 1.88 2.8 3.2 500 33 33594 12.7 75.0
69 3.23 16.3 1.88 2.6 3.3 500 33 33594 13.1 77.7
70 3.09 16.6 1.88 3.1 3.0 500 30 32837 12.6 73.2
71 2.73 17.0 1.88 3.0 2.9 500 29 32575 12.9 74.3



Combinatorial optimization approach for the efficient reuse of RC components 23

72 3.26 16.3 1.88 3.2 2.6 500 26 31759 11.9 66.2
73 2.73 16.2 1.88 2.6 2.8 500 27 32036 12.4 69.7
74 2.85 16.5 1.88 2.6 3.1 500 31 33093 13.1 76.7
75 2.93 15.8 1.88 3.1 3.1 500 31 33093 12.2 70.5
76 2.95 16.6 1.88 3.2 3.1 500 31 33093 12.7 74.2
77 2.80 16.4 1.88 2.8 3.0 500 29 32575 12.7 72.6
78 3.27 16.7 1.88 3.0 3.2 500 32 33346 13.0 76.4
79 2.78 15.9 1.88 3.0 3.0 500 30 32837 12.1 69.7
80 3.15 15.3 1.88 3.1 3.3 500 34 33837 11.9 70.4

ty
pe

5

81 3.59 17.2 2.57 2.7 2.9 500 39 34999 18.2 89.3
82 3.87 17.7 2.57 3.2 3.1 500 41 35439 18.6 92.2
83 3.95 17.8 2.57 3.1 3.2 500 42 35654 18.9 94.5
84 3.71 18.4 2.57 3.1 3.1 500 41 35439 19.4 97.1
85 3.82 17.6 2.57 2.8 3.1 500 41 35439 18.7 93.4
86 3.98 17.9 2.57 2.9 3.5 500 46 36487 19.6 100.9
87 3.82 18.3 2.57 3.2 3.0 500 40 35220 19.0 94.2
88 3.95 18.5 2.57 3.1 2.9 500 38 34774 19.2 94.1
89 3.84 18.1 2.57 2.9 2.8 500 37 34545 18.8 91.5
90 3.99 18.7 2.57 2.9 2.8 500 38 34774 19.6 96.5
91 3.77 18.7 2.57 2.8 3.0 500 39 34999 19.8 98.2
92 3.60 18.2 2.57 3.0 3.0 500 40 35220 19.1 94.8
93 4.01 18.7 2.57 3.0 3.3 500 44 36076 20.1 102.6
94 3.76 18.6 2.57 2.6 2.9 500 38 34774 19.8 97.6
95 3.81 17.8 2.57 2.8 2.9 500 38 34774 18.8 91.8
96 3.90 19.3 2.57 3.0 3.1 500 41 35439 20.5 103.6
97 3.58 18.6 2.57 3.0 2.8 500 38 34774 19.3 95.1
98 3.72 17.8 2.57 3.0 2.8 500 37 34545 18.4 89.2
99 3.95 18.4 2.57 2.7 2.5 500 34 33837 18.7 90.5

100 3.55 17.8 2.57 2.7 3.0 500 40 35220 19.0 94.1
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