Influence of Turbulent Gaseous Jet Configuration on Entrainment – Experimental Study

Ben Binyamin Ben David Holtzer and Leonid Tartakovsky
Technion – Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Recently published studies report on significant Particulate Matter (PM) formation, comprising organic carbon aerosols, in hydrogen- and hydrogen-rich reformate-fed Internal Combustion Engines. There is a lack of the knowledge about the hollow-cone jet entrainment characteristics at different stages of the jet development, jet interaction with a lubricated cylinder wall, and the entrainment characteristics comparison with the round-jet. The method of shadowgraphy imaging accompanied by the smoke-wire visualization of the ambient entrainment by the jet is suggested and employed for the first time for entrainment and jet structure investigation. We show that the hollow-cone jets exhibit different vapor front entrainment behavior, compared to the round jet. In contrast to the round jet. The phenomenon of a twofold impact of the leading vortex on the far-field ambient with repulsing the ambient downstream the leading vortex and pulling it toward the trail-jet region upstream the vortex is found in the hollow-cone jets after the collapsing. We demonstrate that in contrast to the round jet, the hollow-cone one entrains the ambient in the near field through the inner TNTI.

Keywords: Direct Injection; Gaseous Jet; Vapor Entrainment;
Leading Vortex; Jet Collapse; Turbulent Non-Turbulent Interface.

Introduction

The major challenges of climate change, air pollution and energy security lead to a global quest for sustainable low carbon-intensity fuels, like hydrogen, alcohols, among other [1]. Hydrogen can be produced onboard through waste heat recovery and primary fuel reforming [2,3]. Recently published studies reported on significant Particulate Matter (PM) formation,
comprising organic carbon aerosols, in hydrogen- and hydrogen-rich reformate-fed Internal Combustion Engines (ICEs) [4–11]. The optical-imaging investigations [12–18] observed visible yellow-orange bright luminescence flames during hydrogen combustion in ICEs. Those emphasize the involvement of a lubricant oil in the combustion process. Beside the pollution problem, there are evidences of lubricant degradation, oil-water emulsification and wear of the engine components as a result of hydrogen and hydrogen-enriched fuels combustion in engines [19–21].

Studies dealt with transport of liquid-phase lubricant oil, i.e., as droplets or thin films [22–25], describe the pathways of lubricant flow through the piston rings grooves and gaps, chargers (if available), and valve seats into the combustion chamber. A number of mechanisms, like reverse blow-by, throw-off, up-scraping/scrape off and evaporation, were suggested to describe these phenomena. These studies mentioned the severer influence of lubricant transport into the chamber bulk in case of a hydrogen engine, as a source of abnormal combustion, in comparison to hydrocarbon fuels [22,23].

Thawko et al. [26,27] and Ben David Holtzer & Tartakovsky [28] studied hydrodynamical mechanisms of lubricant transport into the charge bulk in the cases of directly injected gaseous fuels. The jet-wall interaction was found in these studies as a major factor governing lubricant entrainment into the combustion chamber. Various aspects of the gaseous impinging jet development and mixture formation in direct injection (DI) ICEs were investigated numerically [29–32] and experimentally using optical imaging techniques, such as PLIF (Planar Laser-Induced Fluorescence): [29,30,33], PIV (Particle Image velocimetry): [34] and Schlieren imaging [30].

For injection-pressure values typical for DI gaseous-fuel ICEs, the choked flow of a gaseous fuel via round-hole injector produces an underexpanded turbulent round jet. A widely used model describing an incompressible round turbulent jet was suggested by Turner [35] and modified later by Witze [36]. As the jet develops, it is composed of a leading vortex sphere that
is trailed by a quasi-steady turbulent jet. Hill and Ouellette [37] showed that the effects of compressibility at under-expansion conditions right out of the nozzle are negligible and the flow can be described mathematically as an incompressible turbulent jet, whereas its virtual origin is shifted a little from the nozzle exit plane. A short time after the beginning of the injection, the round jet develops a self-similarity preservation [37,38].

The described structure of the free jet allows approximation of the induced ambient flow field by a pulsed jet as a superposition of the two structures in an inviscid incompressible fluid – the leading vortex and the trailing tail. This combination of the two flow fields, which has been suggested by Witze, was observed in previous experimental studies via static and dynamic pressure measuring [36,37]; PLIF imaging [15,41–46]; PIV [26,47–54]; LDA (Laser Doppler Anemometry) [47–49]; Schlieren [26,39,52–57]; smoke-wire technique [39] and Shadowgraphy [28].

Previous studies showed that trailing tail entrains the ambient medium via the turbulent non-turbulent interface (TNTI). The leading vortex contributes to the entrainment by inducing the Biot-Savart-like flow field which forces the ambient toward the trailing tail [58–64]. The entrainment velocity vector at the TNTI is mostly perpendicular to it, and it’s about two orders of magnitude lower than the jet centerline velocity in the corresponding cross-section [63–65]. The entrainment characteristics of the transient round jets with emphasis on DI of gaseous fuels in ICE were studied by Tomita et al. [47,48,52], Tanabe et al. [39], Sato et al. [40] and Hyun et al. [49].

Outward-opening injectors, which produce a hollow-cone jet, are a promising opportunity to overcome the inherent limitations of converting the conservative inward-opening pintle injectors of liquid fuels to gaseous fuels supply. The inward-opening injectors may suffer from gas leakage and low cross-section area [66]. The latter requires high injection pressures to supply enough energy into the engine cylinder with gaseous fuels of low volumetric energy density. The outward-opening injector configuration provides more flexibility in terms of
injection duration and timing, which is crucial for achieving charge stratification [67–69].

The hollow-cone jet characteristics were studied previously, for various gaseous fuel supply applications, experimentally [70–75] and numerically [76–80]. The high injection-pressure hollow-cone jet, just like the round jet, forms right out of the nozzle compressible flow structures of underexpanded jet comprising shock waves, expansion fans, shock cells and Mach disks [81–83]. Downstream of the shock cells, the hollow jet is led by toroidal vortex coils inward. After certain time the hollow-cone jet collapses toward the injector axis, the jet leading toroidal vortex changes its shape into spheroid and coils outward, like the spherical leading vortex of the round jet [84–86]. To remind, the reason of the jet collapse is the low-pressure zone formation in the internal region of the hollow jet [87–90]. After the jet collapsing, in addition to its compressible structure changes, the near field of the jet exhibits confined recirculation zone and hollow outer shear layer, both are separated by a stagnation zone [74,87]. Further downstream, the outer hollow shear layers merge. Its momentum later on transferred to the entire downstream jet [89,91]. Characteristics of the mentioned above hollow-jet development highly depend upon the geometrical injector properties, including seat radius and angle, pintle lift and surface smoothness [68,92,93]. The flow configuration of the jet is also highly depends on the injector outlet configuration relative to the mounting wall [92,94–96]. There are three jet evolution configurations for recess and flush-mounting. Highly recessed configuration produces the round-like jet, but with asymmetric leading vortex [99]. Moderate recessed mounting, which maintains the open injector exit near the wall, produces a flow along the mounting wall due to the Coanda effect [76,92,94,96]. The flush-mounting produces the collapsing hollow jet as was discussed above [76,92,94].

Despite the arising interest in outward-opening injectors and hollow-cone jets followed by studies of self-similarity preservation regimes [83,84,87], internal flow field structures, collapsing phenomenon etc., still there is a lack of the knowledge about the hollow-cone jet entrainment characteristics at different stages of the jet development, jet interaction with a
lubricated cylinder wall, and the entrainment characteristics comparison with the round-jet. This knowledge is crucial for understanding factors governing mixture formation in ICEs fed with gaseous fuels and the jet-lubricant interaction mechanism that defines particle formation in H₂-fed engines. In this article an experimental study of the ambient medium entrainment for three gaseous jet configurations is discussed. A comparison between the different vapor front propagation and entrainment velocities is provided. To further understand the hollow-cone jet entrainment characteristics, examination of the jets structure was performed for the first time and discussed.

Methodology

Experimental Setup

Helium was chosen as a working substance because of safety considerations and proximity of its physical properties to those of hydrogen. Three jet configurations generated by three different injectors were investigated at the pressure ratio (PR) of 4 typical for DI ICEs, in open ambient. The following jet configurations were studied:

1. **Round jet** produced by a customized commercial outward-opening injector with a single round-hole nozzle.

2. **Narrow hollow-cone jet (NHCJ)** produced by a commercial outward-opening injector.

3. **Wide hollow-cone jet (WHCJ)** produced by an in-house developed wide cross-section outward-opening injector.

The properties of the WHCJ injector are described in detail in our previous publication [97]. The effective cross-section areas (multiplication of the discharge coefficient, C_D, and the throat cross-section area of the nozzle, A_n) of the NHCJ injector and the round jet injector were found to be approximately the same and equal to $1.3mm^2$. The assessment of the effective cross-section area was done experimentally with IN-FLOW F-111AI mass flow meter. The relevant properties of
each injector are summarized in Table 1, [93,98,99]. The injectors are shown in Figure 1.

Table 1: Selected relevant injectors properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Single round hole injector</th>
<th>Narrow outward-opening injector</th>
<th>Wide outward-opening injector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet type</td>
<td>Round jet</td>
<td>NHCJ</td>
<td>WHCJ</td>
</tr>
<tr>
<td>Cross section area</td>
<td></td>
<td>$C_D A_n \approx 1.3 \text{ mm}^2$</td>
<td>4.16 mm^2</td>
</tr>
<tr>
<td>Discharge Coefficient</td>
<td>-</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>Valve lift [μm]</td>
<td>-</td>
<td>155</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 1: From left to right: Wide outward-opening injector, Narrow outward-opening injector, and Single round hole injector.

The smoke-wire technique [100,101] was employed for entrainment characteristics measurement and for visualization of the hollow-cone jet structures. The Nichrome wire of 0.5 mm diameter was positioned horizontally or vertically relatively to the injector axis.

Experimental procedure

The apparatus was located in open ambient. The wire was smeared with glycerol and was
connected to 3.7V lithium-ion battery. The wire-battery circuit was closed manually a short time before the injection and the camera trigger action, which is set to be the time reference. The injection and evaporation events were measured with Phantom v7.3 fast camera and Z-type shadowgraph apparatus like in the previous study of the authors [28]. For the entrainment characteristics measurement, the nichrome wire was positioned vertically, parallel to the injector axis, to simulate evaporated vapor from the cylinder lubricated surface. In the hollow-cone jet structure investigation experiments, the nichrome wire was positioned horizontally 2.1 cm right under the injector tip. A schematic outline of the experimental setup is shown in Figure 2, with the horizontally positioned nichrome wire.

![Schematic outline of the experimental apparatus](image)

Figure 2: schematic outline of the experimental apparatus – 1, helium cylinder; 2, gas pressure regulator; 3, flowmeter; 4, injector; 5, nichrome smoke-wire; 6, Li-Ion battery; 7, light source; 8, concave mirrors; 9, fast camera; 10, injector controller; 11, computer.

The authors found it inconvenient to distinguish between the three phases of the injected helium, the heated glycerol vapor and the ambient air, using the Schlieren imaging. Therefore, it was decided to employ the shadowgraphy imaging technique, which enables distinguishing between the different phases, on expense of the lower sharpness compared to the Schlieren imaging.
Post-Processing

The images were converted to gray scale and subtracted from the background image. The vapor decreases the intensity and make the image darker. An averaging filter and a threshold of 15% of the highest intensity were employed for overcoming the image noise and detecting the vapor front which flows toward the injector axis. The radial location of the vapor front was identified along the vertical axis of the injector for each pixel, from its tip height, downstream to far field fixed point height. An example of the result of the vapor front detection is presented in Figures 3-4.

Figure 3: Example of the vapor raw image.
Figure 4: Example of the vapor front detection.

Figure 5: Example of continuous vapor fronts detection of the same injection.
The vapor front was identified along fixed vertical interval from the injector tip toward fixed point at the far field each image, as demonstrated in Figure 5. The vapor front profiles enable assessment of the averaged radial velocities of the vapor front along the vertical interval by subtracting following front images and dividing by the time interval between the two.

Notably, the employed shadowgraphy and smoke-wire techniques do not allow a comparison of the vorticity and velocity fields in the investigated hollow-cone and round jets (PIV apparatus was not available for this study). Influence of these jet characteristics on the entrainment is planned to be investigated in a future research.

Results and Discussion

The utilization of combined shadowgraphy and smoke-wire techniques allowed us to distinguish between the different jet zones and the phases inside it, to measure the ambient entrainment characteristics and to further investigate the jet collapsing phenomenon which affects the unsteady entrainment profile of the hollow-cone jet. Figure 6 (a)-(f) show the vapor front location and the front radial velocity variation for the three compared jet types with the vertical distance from the injector’s tip at different distances from the injector’s axis and times from the start of injection.
The round jet entrainment behavior (Figure 6 (a), (b)) features a monotonic increase of the vapor front radial velocity (VFRV) towards TNTI with a rise of the longitudinal distance from the injector’s tip. This result is different from the entrainment characteristics of a free jet behavior in a confined space [26], but are supported by the results of the analytic analysis of Schneider [102,103] focused, as in the reported study, on the gaseous jet development in the unconfined space. Indeed, a turbulent jet in open ambient doesn’t induce just axisymmetric radial ambient flow field, but the latter always includes the axial velocity components. The apparent discrepancy of the obtained results with the previously reported data [63–65], follows from the different view on mechanistic jet ambience description. Contrary to the Eulerian description of
the ambient entrainment velocity in [63–65], in the reported study we monitor the visual Lagrangian trajectory of the induced vapor flow. The round jet entrainment characteristics were compared in this study with the hollow-cone jet entrainment performance.

Both investigated outward-opening injectors (Figure 6 (c)-(f)) producing the hollow-cone jets exhibit different vapor front propagation behavior, compared to the round jet. As seen from Figure 6 (c), (e), a locus of the fastest vapor front propagation toward the jet TNTI is approximately 0.4-1 cm downstream of the injector’s tip. The same - for the velocity profiles. This is in contrast to the round jet – see the discussion above. Notably, the hollow-cone jets maintain higher radial vapor front velocities by a factor up to 5 compared to the round jet – Figure 6 (b).

Examination of the highest VFRV’s location reveals that it occurs in the vicinity of the hollow-cone jet collapse region when the jet starts maintaining quasi-steady flow and self-preservation. It is caused by the combined influence of the vortexes upstream and downstream, between them the collapse occurs, whereas both direct the flow inward the TNTI, as reported in the literature [66,88,94]. Figures 7-10 show the images where the vapor front tip reaches the jet, and images where the vapor is observed to be entrained radially which seems to be caused by the collapse phenomenon.
Figure 7: 65.4 ms after the beginning of injection of the NHCJ, when the vapor front reach the TNTI.

Figure 8: 67.2 ms after the beginning of injection of the NHCJ. Radial entrainment of vapor is detectable.

Figure 9: 19.2 ms after the beginning of injection of the WHCJ, when the vapor front reach the TNTI.

Figure 10: 20.4 ms after the beginning of injection of the WHCJ. Radial entrainment of vapor is detectable.

Figure 11 shows the evolution in a far field of the WHCJ after the collapsing. The jet front tip is located in a vicinity of the injector axis. As seen from Figure 11, the horizontal vapor layer is pushed and stretched relatively to the injector axis, and becomes thinner while forming round shape like the leading vortex front. Sometime after the jet reaches the smeared hot wire,
the upper layer of vapor can be noticed above the wire which is a result of outward induced recirculation of the leading vortex. The latter pushes and recirculates the ambient toward the tail region. Elongated and stretched eddy can be seen on the left side of the jet in frames $5400\mu s - 6450\mu s$, which seems to be induced by the leading vortex. The last frames of Figure 11 show the vapor suction toward the trailing tail. This is a known ambient medium entrainment behavior typical for round jets – see Introduction section.

The pushed downward horizontal vapor layer also demonstrates the repulsive influence of the leading vortex of the hollow-cone jet after the collapse on the ambient downstream the jet. Indeed, as seen in Figure 11 (frames $600\mu s - 4500\mu s$), noticeably the leading vortex repulsed the vapor away from the jet. Another evidence of this phenomenon can be observed from the vapor front location and velocity profiles of the WHCJ (first two profiles of 900 and $3150\mu s$) – Figure 6 (e), (f). As seen, the vapor in the far field (vertical distance from the injector tip >13 mm) at first is pushed radially away from the injector axis (profiles $900\mu s - 3150\mu s$), and later on – is pulled toward the jet axis. The mentioned phenomenon is reflected in the appropriate sign change of the radial front velocity – Figure 6 (e) The similar phenomenon of the twofold impact of the leading vortex on the ambient (repulsing the ambient downstream the leading vortex and pulling it toward the trail-jet region upstream the vortex) was described by Tomita et al. [47,52]
for round jets. Notably, this phenomenon is not observed in the NHCJ (Figure 6 (c), (d)) due to the smaller cross-section area of the injector and, as consequence, a smaller jet momentum flux, which induces a weaker velocity field – Figure 12.

The far field of the NHCJ, similarly to the WHCJ, is featured by the vapor repulsed downward and stretched due to the induced repulsive flow field of the leading vortex after the jet collapsing – Figures 11 and 12. However, in contrast to the WHCJ, the momentum of the NHCJ is relatively low, and consequently the jet doesn’t intensively push, stretch and entrain the vapor.

![Figure 12: Visualization of the far field of NHCJ.](image)

The previous analysis was focused on the entrainment behavior of the hollow-cone jets after the jet collapsing. The entrainment characteristics of the hollow-cone jet before the collapsing were studied as well and are discussed below. In this aspect, the WHCJ was examined solely because its collapsing occurs further downstream, compared to NHCJ, along a wider volume, which allows a more distinguishable and clearer entrainment visualization.

Figure 13 shows the WHCJ evolution in the near field before and just after the jet collapsing. In this series of experiments the injection start was delayed, thus allowing the vapor to propagate toward the injector. This configuration enables detecting the differences in the jet through its development. The inward toroidal vortex is clearly noticeable at an early stage of
the jet evolution before its collapse - frames $1500\mu s - 2100\mu s$. The bright region in these frames is formed by the vortex core due to the pushing the vapor out of this region by the injected gas. Approximately at $2400\mu s$ after start of injection the jet collapse process begins. During the jet collapse, the vorticity sign of the leading vortex changes from the inward to outward coiling.

Figure 13: Visualization of the near field of the WHCJ evolution above the smoke-wire.

Figure 14 shows the vapor entrainment in the WHCJ near field. As seen from Figure 13, the vapor in a vicinity of the wire is pushed away downstream the jet by the toroidal leading vortex under the vortex core (see the frames from $1650\mu s$). Approximately at the same stage of the jet development ($1650\mu s$) it becomes to be noticeable that the inward vortex pulls the vapor near the injector axis upward, toward the injector’s tip. The “pulled” vapor is entrained by the hollow jet through the inner TNTI – frames $2100\mu s - 2550\mu s$.
Figure 14: Visualization of the near field of the WHCJ and the push-pull interaction with the vapor above the smoke-wire.

Conclusions

- The method of shadowgraphy imaging accompanied by the smoke-wire visualization of the ambient entrainment by the jet was suggested and employed for the first time for entrainment and jet structure investigation. It demonstrated the ability to distinguish between three gaseous phases: injected gas (helium), ambient air and glycerol vapor tracer.

- We found that the hollow-cone jets exhibit different vapor front entrainment behavior, compared to the round jet. In contrast to the round jet, the locus of the fastest vapor front propagation toward the jet TNTI is approximately 0.4-1 cm downstream of the injector’s tip. The same - for the velocity profiles. The highest VFRV’s location occurs in the vicinity of the hollow-cone jet collapse region when the jet starts maintaining quasi-steady flow and self-preservation.

- The phenomenon of a twofold impact of the leading vortex on the far-field ambient with repulsing the ambient downstream the leading vortex and pulling it toward the trail-jet region upstream the vortex was observed in the hollow-cone jets after the collapsing.
We showed that in contrast to the round jet, the hollow-cone one entrains the ambient in the near field through the inner TNTI.

In a future research, the various jets entrainment behavior is planned to be investigated in a confined space.

Bibliography

[56] Dong Q, Li Y, Song E, Fan L, Yao C, Sun J. Visualization research on injection characteristics of

Acknowledgments

The authors would like to express a deep appreciation to Mr. Ido Yohai Ben-Hamo for his valuable advices technical support.