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High dimensional systems, such as large civil infrastructure, exhibit fundamental patterns in space and time which

can be exploited for efficient data acquisition, reconstruction, identification and damage detection. This study

numerically investigates the applicability of compressed sensing (CS) theory to reconstruct the static displacement

field of a multi-storey building using a small number of displacement samples. A full-scale Finite Element (FE) model

of the building, developed using Opensees software, is used to capture its static displacement field and vibratory

mode shapes, which serve as a tailored physics-guided basis. A sample of displacement data was then randomly

selected, aiming to reconstruct the entire displacement field. The results demonstrate that achieving a reliable full-

scale reconstruction is feasible with only approximately one percent of the total degrees of freedom in the original

model. This highlights the effectiveness of the CS paradigm in accurately reconstructing various measurement

fields within buildings, emphasizing its potential to enhance the efficiency of information extraction from spatially

distributed sensor networks.

1. Introduction

Structural systems are often large in scale and exhibit a complex

interaction with the surrounding environment, which is challenging

to both measure accurately or model reliably. Measurements

are used jointly with machine learning techniques to extract

information relevant to identify the performance of a structure

and the onset of damage, also known as Structural Health

Monitoring (SHM) Farrar and Worden (2007). On the other hand,

experimentally validated models can be used to aid this task Jesus

et al. (2019, 2017) or also to predict the state of the structure at any

future point in time; and ultimately to estimate its remaining useful

life Le et al. (2016).

The ability to capture how such systems behave globally from

a set of local measurements is known in signal processing

and machine learning literature as reconstruction. For example,

reconstructing the displacement or stress fields within a structure

helps minimise the required number of sensors while allowing for

the identification of potentially vulnerable areas. Environmental

conditions influencing a structure, such as temperature and moisture

content, are also extremely relevant to reconstruct given their large

influence in mechanical properties and their wide spatio-temporal

variability.

One of the most efficient and recent reconstruction techniques

that has gathered considerable interest in the scientific community

is compressed sensing (CS) Candes and Wakin (2008). Its

efficiency stems from the fact that it allows to reliably reconstruct

many signals with a sub-Nyquist sampling rate, which has been

the traditional standard for perfect signal reconstruction. Since

its establishment, numerous applications have been proposed,

such as reconstruction of acceleration time-series for low-

power wireless sensor network deployment in operational modal

analysis applications (OMA) Gkoktsi and Giaralis (2019, 2017);
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Tau Siesakul et al. (2015). Wireless accelerometers are affordable

and operationally convenient for OMA, but require high sampling

rates and most of their energy is spent quickly during the act of

signal acquisition when at the Nyquist samping rate.

Other examples of SHM applications using CS can be seen

in Mascareñas et al Mascareñas et al. (2013) or Jana and

Nagarajaiah Jana and Nagarajaiah (2022). In these works signals

are reconstructed in the time domain using a generic Fourier or

wavelet basis, or alternatively using the underlying physics to form

an analytical reduced order model basis. The former is widely

applicable but requires a larger number of measurements, whilst the

latter requires less measurements but is limited in its applicability

to full-scale structures, since a continuous analytic structural model

typically only exists for simple components, e.g. slabs, beams,

columns, etc.

Another technique commonly used with CS, which forms a suitable

basis when the target field is difficult to model analytically, is

proper orthogonal decomposition (POD). Two such examples are

reconstruction of a temperature field of a steam turbine based on

finite element simulations, as in Jiang et al. Jiang et al. (2022), or

reconstruction of temperature and pressure field during fluid flow

using POD, as investigated by Matulis and Bindra Matulis and

Bindra (2024). The POD is also used to simplify highly nonlinear

hygrothermal fields Hou et al. (2019), although its reconstruction

remains unexplored.

The contribution of this work is to demonstrate how a full-

scale static displacement field can be reconstructed through CS.

To achieve this, a structure’s vibratory mode shapes, readily

obtained from an FE model, serve as the basis for reconstruction.

Static displacement field reconstruction has been demonstrated

previously, as evidenced by Yan et al. Yan et al. (2022) or

Rapp et al. Rapp et al. (2009) for two-dimensional plates.

However, these reconstructions are not full-scale and unlike the

aforementioned work we are not using POD, but rather the actual

mode shapes obtained directly from FE, resulting in a reduced

computational effort and fewer number of required measurements.

Additionally, the optimal number of modes and measurements

are parametrically analysed, along with their interaction with the

associated reconstruction error.

In this study, a five-storey reinforced concrete (RC) building

is modeled in FE Opensees software. Both modal and static

linear analyses are conducted on the building FE model. A

CS reconstruction method is then developed to reconstruct the

displacement field under gravity load, followed by numerical tests

to assess the reconstruction performance in terms of both accuracy

and computational efficiency.

2. Compressed sensing for full-scale field
reconstruction

2.1. Sparse signal representation and recovery
using convex optimisation

This section describes the formulation of the proposed framework,

considering the applicability of compressed sensing theory for full-

scale field reconstruction.

Consider a signal y ∈ RN×1, which is discretised in space. The

signal is assumed to be K-sparse/compressible in an orthonormal

basis matrix Ψ ∈ RN×N , which describes a field of a quasi-static

process within a structure, e.g. displacement, temperature, stress or

moisture content. The sparse representation of the signal is given

by

(1) y = Ψs

where s is a sparse vector collecting the K non-zero coefficients

of the considered signal, where K ≪ N , in the established basis.

According to compressed sensing theory Donoho (2006); Candes

and Wakin (2008), under certain conditions these coefficients can

be estimated from a set of randomly sampled measurements of

y, denoted as z ∈ RM with size M ≪ N and K < M . Further,

CS asserts that for an increasing number of measurements the

original signal can be recovered with overwhelming probability.

The observation equation, establishing the samples that will be

acquired, is expressed as

(2) z = Cy,

where C ∈ RM×N is the so-called measurement matrix, which

has to be carefully chosen to be as incoherent with respect to

Ψ as possible. In this work C is based on a uniformly random

selection of the N available entries of the original signal y, noting

that each measurement is unique, i.e. no multiple measurements

of the same entry are allowed. This is a common choice in CS
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applications with proved incoherency for a diverse number of

bases Sankaranarayanan and Baraniuk (2014); Candes and Wakin

(2008).

Combining Eqs. (1) and (2) results in the following undetermined

linear system of equations

(3) z = CΨs = Θs.

There are infinitely many solutions to the above set of equations,

i.e., vectors s that provide a good match with the measurements z,

and finding the correct one was traditionally a combinatorially hard

optimisation problem.

A particular solution, that faithfully reconstructs the original signal

y without an exponential increase of computational requirement, is

to obtain the sparsest coefficient vector s, i.e. with the smallest sum

of the absolute values of the vector, that is consistent with Eq. (3).

In practice, this is enforced by using the ℓ1 norm.

Such particular solution is obtained by solving a convex

optimisation problem, defined for the noiseless case as

(4) ŝ = argmin ||s||1 subject to z = Θs

where || · ||1 denotes the ℓ1 norm and ŝ is an estimate of the

coefficients. There are several methods capable of efficiently

solving (4) including when in the presence of noisy measurements,

e.g. LASSO or orthogonal basis matching pursuit Tibshirani

(1996); Chen et al. (1998) . The open source package

CVXPY Diamond and Boyd (2016) is used in this work to

solve this problem using the numerical splitting conic solver

(SCS) O’Donoghue et al. (2016).

2.2. Basis vectors from FE modelled vibratory mode
shapes

In the formulation discussed in the previous section, choosing an

appropriate basis matrix Ψ plays a critical role, as it needs to be

able to represent y sparsely, and it needs to be orthonormal. Most

of existent literature adopt one of two strategies:

use of a universal basis, including Fourier, wavelet or discrete-

cosine bases, which are generic and adaptable to a number of

problems, such as reconstruction of vibration time series, audio

signals or 2D images;

use of a tailored basis, obtained from POD of a problem’s partial

differential equations or via the singular value decomposition

(SVD) of relevant data (if available). This type of basis is less

flexible but results in a physically interpretable spatio-temporal

decomposition and reconstruction of a target field with less

measurements than with a universal basis.

In this work, the latter type of basis is used, considering vibratory

mode shapes of a structure as a basis of its displacement field,

since they represent the spatial dependency of the motion of a

structure, and allow for an approximation of the true solution for

an increasing number of modes. In the following text the mode

shapes are contextualised within structural dynamics and their

orthonormalisation process is detailed, although it is stressed that

they will be used to approximate a static displacement field.

The equations of motion for an undamped unforced multiple degree

of freedom (MDOF) system can be written in matrix form as

(5) Mÿ(t) +Ky(t) = 0,

where M, and K are Rn mass and stiffness matrices, ÿ and y are

Rn×1 time-dependent vectors of acceleration and displacement at

each of the n degrees of freedom (DOF), respectively. Commonly,

a solution to the equation of motion is obtained by coordinate

transformation into modal space and truncation of the number of

modes m ≤ n

(6) y(t) = Φq(t),

where Φ ∈ Rn×m is a mode shape matrix containing m mode

shapes Φ = [Φ1,Φ1, . . . ,Φm] and q(t) ∈ Rm×1 is a modal

coordinate vector. This separation of the response into a pattern in

space and time, combined with truncation and subsequent modal

superposition is intuitive and appealing from a physical point of

view.

Mode shapes are typically normalised so that they are orthogonal

with respect to the mass matrix or unity normalised. In the context

of the CS framework presented in Section 2 they need to be

orthonormal, and this can be achieved by taking the SVD of the

truncated mode shape matrix

(7) Φ = UΣVT
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where U ∈ Rn×n and V ∈ Rm×m are real orthogonal matrices,

and Σ =
[
Σ̂ 0

]T
∈ Rn×m is a rectangular diagonal matrix,

whose singular values Σ̂ in the diagonal are to be replaced with

ones. The resulting basis matrix is then given by

(8) Ψ = U

Im
0

VT

where Im is the mth identity matrix.

3. Five storey RC building FE model
3.1. Geometry, boundary conditions and modelling
aspects

To validate the proposed compressed sensing framework, an

Opensees FE model of a 5-storey plan-irregular building, modelled

after an actual building located in Turkey, has been developed and

is presented in this section. The plan view and elevation of the

building are shown in Fig. 1. Fibre-section displacement based

(a)

(b)

Figure 1. Plan (a) and elevation (b) view of a 5 storey RC
building, adapted from Hussain (2016).

beam-column elements are used to model the beams and columns

of the building, respectively, whilst the floors are modelled as rigid

diaphragms. The columns are discretised into five elements and

the beams into a minimum of three elements, depending on their

lengths. Their section views are represented in Fig. 2 and Fig. 3

Figure 2. Column sections, dimensions in m and reinforcement
in mm. Figure reproduced from Hussain (2016).

Figure 3. Beam sections, dimensions in m and reinforcement in
mm. Figure reproduced from Hussain (2016).

A brief synopsis of the material properties of concrete and steel is

provided in Tables 1 and Table 2.

Material parameters Unit Concrete
Concrete compressive strength at 28 days kPa -17502
Concrete tensile strength kPa 1394
Density kg/m3 2400

Table 1. Concrete material properties
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Material parameters Unit Reinforcing Steel
Steel yield strength kPa 371000
Initial elastic tangent kPa 200000000
Strain hardening parameter kPa 1394
Density kg/m3 7850

Table 2. Reinforcing steel material properties

and the corresponding Opensees model and deflected shape are

shown in Fig. 4. The deflected shape is obtained from a linear static

analysis under the building self-weight.

Figure 4. 5 storey RC building Opensees model and deformed
shape, dimensions in m with a scaling factor of 20.

3.2. Modal analysis

A modal analysis has also been performed and the first three mass-

normalised mode shapes of the building, lateral in both directions

and torsional, are shown in Fig. 5. In total, m = 56 modes have

been extracted from Opensees, each with n = 3234 translational

degrees of freedom, and been made orthonormal as detailed in

Section 2.2.

To ensure that this number suffices to reconstruct the displacement

field, the modal participation mass ratios in each axis are plotted

in Fig. 6. As it can be observed, above 30 modes the mass ratios

are over 90% in all three directions, thus capturing most of the

(a)

(b)

(c)

Figure 5. First three mass-normalised mode shapes, scaling
factor of 20.

available energy, and with 56 modes more than 96% of all mass is

mobilised.
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Figure 6. Modal participation mass ratios in translational
directions.

Additional information regarding section profiles, material prop-

erties and other constructive details of the building can be found

elsewhere Hussain (2016); Bhatt and Bento (2014).

4. Numerical verification

To compare the performance of the full-field reconstruction, two

metrics have been assessed against an increasing number of

samples: the mean absolute error (MAE) and the mean squared

error (MSE). The MAE and MSE are defined as

(9) MAE =

∑n
i=1 |ŷi − yi|

n
MSE =

∑n
i=1(ŷi − yi)

2

n

where ŷi and yi are the displacements of the ith DOF, reconstructed

and actual, respectively.

Next, the capability to reconstruct the displacement field of

the building has been parametrically analysed, considering a

number of samples from 6 up to 56 in increments of 5, i.e.,

within a range of M = [6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56].

The selected number of samples correspond to the following

compression ratios M/N = 0.18%, 0.34%, 0.49%, 0.64%,

0.80%, 0.95%, 1.11%, 1.26%, 1.42%, 1.57%, and 1.73%

and 10 reconstructions were performed at each compression ratio,

to account for the variability of the procedure. The results are shown

in Fig. 7, where the red circles and blue crosses represent runs in

which the optimisation process has converged or not, respectively.

If the solver does not converge it returns the best 19 results attained

(a)

(b)

Figure 7. Mean absolute (a) and squared (b) reconstruction
errors. Red circles and blue crosses are successful and
unsuccessful optimisation runs, respectively, and the black solid
line is the average trendline for successful optimisation runs.

during the optimisation, whose average is plotted as a blue cross in

the figures.

As can be observed, increasing the number of samples decreases

the reconstruction errors, although when the number of samples

approaches the maximum number of available modes the variance

of the error tends to increase, and there are some unsuccessful

optimisation runs. The reason is that when, M ≈ N , Eq. (3) is a

determinate rather than undetermined system, as typically assumed

in CS. In this case, the solution could instead be obtained by
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computing the inverse or the pseudo-inverse of matrix Θ and

multiplying it by the sampled measurement vector.

Regarding the performance of the reconstruction, and as shown in

Fig. 7(a), the average absolute error is between half and a tenth of

a millimeter for only 6 up to 56 samples, or a compression ratio

between 0.18% and 1.73%. This is a consequence of the suitable

basis that has been used, combined with the efficiency of the CS

technique.

Next, the reconstruction of the displacement field of the building

at a 0.95% compression level is illustrated in Fig. 8. The original

displacement signal in each of the three directions is shown in

Fig. 8(a) as well as the samples (red circles). The coefficients in

the vector s are shown in the bar chart of Fig. 8(b), where it is

clear that the obtained solution is sparse. A 3D visualisation of the

original and reconstructed field is shown in Fig. 9. In this figure, a

large scaling factor has been used to overexaggerate the differences

between the two fields, most notably at the top of the building.

Finally, the computational time of the above 50 runs is reported as

48.305 s which is exceptionally fast: on average each optimisation

run took less than 1 s.

5. Conclusions and future work

In this study, a full-scale reconstruction of the displacement

field, based on the compressed sensing technique, of a reinforced

concrete building has been analysed. The vibratory mode shapes,

which can be typically obtained from a simple FE modal analysis,

have been used as a physics-guided basis for reconstruction of

the field. The conclusions of the present work and future research

avenues can be summarised as follows:

Under the assumption of noiseless measurements and no

modelling error, it is possible to obtain a faithful reconstruction,

with compression ratios at around one percent and errors at the

tenth of a millimeter scale;

The computational effort is negligible, with each optimisation

requiring on average less than a second. It should be noted,

however, that in some instances the optimisation might not

converge, particularly when the number of measurements is

close to the number of modes;

(a)

(b)

Figure 8. Original displacement field signal (a) with 31 samples
(red circles), and corresponding sparse coefficient vector (b).

The framework is simple to implement and showcases how

reconstruction using compressed sensing for a full-scale

structure can be achieved;

Future work includes expanding the framework to account for

noisy measurements, validation with experimental data, and the

ability to reconstruct more challenging full-scale fields where

a spatio-temporal physics-guided basis might not be readily

available, such as temperature and moisture content transport

and ingress. This could be achieved using an SVD basis.
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University.

Prepared using PICEAuth.cls 7



Proceedings of the Institution of Civil Engineers Spatial Compressed Sensing for Field

Reconstruction in Full-Scale Structural

Systems

Jesus and Mojtabaei

Figure 9. 3D view of original and reconstructed displacement
field (c), scaling factor of 1000.

Data availability

The source code, raw and processed data required to reproduce
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