Supplementary Material for the Paper:

Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications

Reza Fayaz1,5,6, Fabio La Mantia2,5,6, Michael Baune1,6, Antoine Carissimo1,5,6, Guillaume Pillot1,5,6, Md Izzuddin Jundullah Hanafi2,4,5, Thorsten M. Gesing4,5, Sven Kerzenmacher3,5,6 & Jorg Thöming1,5,6

1University of Bremen, Chemical Engineering Group (CVT), Leobener Strasse 6, 28359 Bremen, Germany
2University of Bremen, Energy Storage and Conversion Systems, Wiener Strasse 12, 28359 Bremen, Germany
3University of Bremen, Environmental Process Engineering Group (UVT), Leobener Strasse 6, 28359 Bremen, Germany
4University of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Strasse 7, 28359 Bremen, Germany
5University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstrasse 1, 28359 Bremen, Germany
6University of Bremen, Center for Environmental Research and Sustainable Technology (UFT), Leobener Strasse 6, 28359 Bremen, Germany

List of Figures:

Figure S1. The iron-reducing bacterium was C. ferrireducens as a terminal electron acceptor for anaerobic respiration. (a) A full magnetic response was observed after two days of iron oxide/hydroxide bio-mining. (b) Black magnetic particles from C. ferrireducens cultures (2 days) were observed with transmitted white light, revealing the presence of microbial cells all over the particles. ... 2

Figure S2. X-ray powder data Rietveld (XRPD) plots of iron oxide/hydroxide as the starting material, the biologically produced magnetite (bio-magnetite), and that after calcining (bio-hematite). XRPD data confirms that bio-mining has successfully converted a quantum-crystalline ferrihydrite with an average crystallite size (ACS) of 2.7(1) nm into a micro-crystalline bio-magnetite (ACS = 16.2(2) nm). Heat treatment increased the ACS further to 238(6) nm for bio-hematite. ... 3

Figure S3. The PDF EnvACS method to determine the ACS of iron oxide/hydroxide........... 4

Figure S4. The first cycle of cyclic voltammetry test in 10 M NaOH for iron oxide/hydroxide as starting material, the biologically produced magnetite (bio-magnetite), and after heat treatment (bio-hematite) at 363 K and the obtained iron yields. No redox peaks appear as the materials are not yet electrochemically activated. ... 5

Figure S5. Visualization of the inverse relationship between specific surface area (logarithmic scale) and current efficiencies for iron oxide/hydroxide as starting material, the biologically produced magnetite, and after heat treatment (bio-hematite) after conducting 20 h chronoamperometry at -1.4 V vs. Ag/AgCl in 10 M NaOH at 363 K. The numbers in brackets are the estimated standard deviations of the obtained values in the last digit......................... 6

Figure S6. Elemental map data of a reduced bio-hematite after 20 h of electrolysis at -1.4 V vs. Ag/AgCl in 10 M NaOH at 363 K shows areas where Fe is inclusively present. Note that silver appears as a binder during pelletizing and that the presence of oxygen stains from the ambient atmosphere in the SEM chamber is unavoidable. ... 7

Figure S7. EDX analysis reveals traces of carbon in the bio-magnetite, probably from dead microorganisms or the partial formation of siderite (FeCO₃). ... 8
Figure S1. The iron-reducing bacterium was *C. ferrireducens* as a terminal electron acceptor for anaerobic respiration. (a) A full magnetic response was observed after two days of iron oxide/hydroxide bio-mining. (b) Black magnetic particles from *C. ferrireducens* cultures (2 days) were observed with transmitted white light, revealing the presence of microbial cells all over the particles.
Figure S2. X-ray powder data Rietveld (XRPD) plots of iron oxide/hydroxide as the starting material, the biologically produced magnetite (bio-magnetite), and that after calcining (bio-hematite). XRPD data confirms that bio-mining has successfully converted a quantum-crystalline ferrihydrite with an average crystallite size (ACS) of 2.7(1) nm into a micro-crystalline bio-magnetite (ACS = 16.2(2) nm). Heat treatment increased the ACS further to 238(6) nm for bio-hematite.
Supplementary Material for the Paper:

Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications

Figure S3. The PDF EnvACS method to determine the ACS of iron oxide/hydroxide.
Supplementary Material for the Paper:

Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications

Figure S4. The first cycle of cyclic voltammetry test in 10 M NaOH for iron oxide/hydroxide as starting material, the biologically produced magnetite (bio-magnetite), and after heat treatment (bio-hematite) at 363 K and the obtained iron yields. No redox peaks appear as the materials are not yet electrochemically activated.
Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications

Figure S5. Visualization of the inverse relationship between specific surface area (logarithmic scale) and current efficiencies for iron oxide/hydroxide as starting material, the biologically produced magnetite, and after heat treatment (bio-hematite) after conducting 20 h chronoamperometry at -1.4 V vs. Ag/AgCl in 10 M NaOH at 363 K. The numbers in brackets are the estimated standard deviations of the obtained values in the last digit.
Figure S6. Elemental map data of a reduced bio-hematite after 20 h of electrolysis at -1.4 V vs. Ag/AgCl in 10 M NaOH at 363 K shows areas where Fe is inclusively present. Note that silver appears as a binder during pelletizing and that the presence of oxygen stains from the ambient atmosphere in the SEM chamber is unavoidable.

Supplementary Material for the Paper:

Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications
Supplementary Material for the Paper:

Electrochemical Iron Recovery from Biologically Produced Magnetite via Iron Oxide/Hydroxide Conversion: First Steps towards Terrestrial and Martian Applications

Figure S7. EDX analysis reveals traces of carbon in the bio-magnetite, probably from dead microorganisms or the partial formation of siderite (FeCO₃).