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Abstract 

We present a theory of expected utility with state-dependent linear utility functions for 
monetary returns, that incorporates the possibility of loss-aversion. Our results relate to “first 
order stochastic dominance”, “mean-preserving spread”, “increasing-concave linear utility 
profiles” and “risk aversion”. As an application of the expected utility theory developed here, 
we analyze the contract that a monopolist would offer in an insurance market that allowed for 
partial coverage of loss.  
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1. Introduction: 

A common argument against linear utility function for monetary returns is, that an agent with 
such a utility function would have no incentive to insure himself against possible “loss”. 
However, this argument seems to collapse if the linear utility function for monetary returns is 
state dependent and the “probability of the gain or loss” is spelt out as the “probability of the 
state of nature (SON) in which there is the gain or loss” with the constant marginal utility of 
monetary returns in the “worse” state being more than the constant marginal utility of money 
in the “better” state. In what follows we will refer to states of nature (SONs). 

The seminal contribution of Kahneman and Tversky (Kahneman and Tversky 1979) noted the 
experimentally verified observation that agents tend to have a marginal utility of loss that is 
no less- if not higher-than the marginal utility of gain, so that a typical utility function for 
monetary returns u:ℝ ℝ may be of the form u(x) = u+max{x,0} + u-min{x,0} with u-  u+ > 
0. This phenomenon is known as “loss aversion”. Thus, any utility function of this form can 
be represented by a pair of real numbers (u-, u+) where u-  u+ > 0. Allowance is made for the 
possibility of u- = u+. It is generally assumed that under normal circumstances u- - u+ is a non-
decreasing function of initial wealth, thereby implying that wealthier individuals are more 
“risk averse” than those individuals who are less wealthy. 

The dominant interpretation of probability in expected utility theory, is the one due to 
Ramsey and de Finetti. Brief discussions along with intuitive motivation of such probabilities 
are available in two recent papers (Lahiri 2023a, Lahiri 2023b). The Ramsey-de Finetti 
subjective probability of an “event” or “state of nature” (say E) that is assessed by an agent is 
the price (say p) that the agent would we willing to pay for a simple bet that returns one unit 



of money if state of nature ‘E’ occurs and nothing otherwise, so that the expected monetary 
value of the simple bet to the agent is zero. Thus, if the average utility of money in state of 
nature E is a constant, say  > 0, then for one unit of money in state of nature E, the agent 
will be willing to forego p units of utility and for  units of money in state of nature E the 
agent will be willing to forego p units of utility, the latter being the utility the agent 
willingly forgoes for  simple bets of the type we have just discussed.  simple bets, each of 
which returns one unit of money if E occurs and nothing otherwise, is identical to a bet that 
returns  unit of money if E occurs and nothing otherwise. Thus, Ramsey-de Finetti 
subjective probability fits comfortably with “expected utility theory” based on constant 
average state dependent utility. On the other hand, if the average utility in state of nature E is 
“non-constant”, then there exists  such that the average utility of  units of money is not 
equal to the average utility of p units of money. For a bet that returns  units of money in 
state of nature E and nothing otherwise, the agent will be “willingly foregoing” the utility of 
p units of money and not ‘p’ times the utility of  units of money, the latter being the 
expected utility of the bet to the agent. Hence, on the face of it, there seems to be a mismatch 
between Ramsey-de Finetti subjective probability and expected utility theory based on such 
an interpretation, if state-dependent average utility of money is “non-constant”.  

In this paper we attempt a reconciliation of Ramsey-de Finetti subjective probability with the 
kind of loss aversion that Kahneman and Tversky had suggested, by allowing an agent to sell 
a “simple bet on an event” at a higher price than what the agent would be willing to pay to 
buy it. Perhaps this price wedge reflects a “transaction cost” that the seller incurs. After all, 
transaction costs are not incurred in “thought experiments”- including the ones used for the 
purpose of evaluating Ramsey-de Finetti subjective probabilities. Alternatively, it could be 
the “normal profit” or “the opportunity cost of the seller’s labour time” as in 
microeconomics. Whether justified or not, such an argument is one way in which the conflict 
between “loss aversion” and Ramsey-de Finetti subjective probabilities can be resolved. This 
requires invoking “state-dependent linear utility functions for monetary gains and losses” 
while allowing for the average utility of losses to exceed the average utility of gains. This 
allows, decision analysis based on expected utility to fit meaningfully with the concept of 
expected utility based on Ramsey-de Finetti probabilities as well as loss aversion, keeping in 
mind the “caveat” for the price wedge in terms of transaction costs or normal profits that we 
discussed earlier. A comprehensive exposition of the early stages of the analysis of decision 
making under uncertainty with state dependent preferences is available in the work of Karni 
(Karni 1985).    

In the next section of the paper, we provide a motivation for our discussion in the subsequent 
sections, by considering a “toy model” of insurance against a risky loss. We apply expected 
state dependent linear utility analysis in this model and show that insurance is possible under 
state-dependent “risk neutrality”. In the third section, we present the formal framework for 
“expected utility theory with state-dependent linear utility functions for monetary returns”. 
Using concepts introduced in this section, in subsequent sections we introduce “first order 
stochastic dominance”, “mean-preserving spread”, “increasing-concave linear utility profiles” 
and “risk aversion”. As an application of the expected utility theory developed here, we 
analyze the contract that a monopolist would offer in an insurance market that allowed for 
partial coverage of loss.  



In what follows we often refer to “monetary gains and losses” as “monetary returns”. All 
proofs of major results are relegated to an appendix of this paper. We hope that with this 
paper, we are able to provide an incremental impetus for further development for decision 
analysis with linear utility functions for money.               

2. Motivation- Insuring Against Risky Loss: 

Consider a situation with 2 states of nature 1,2, where an agent with initial wealth w > 0 may 
face a loss of L(0, w) units of money in the second SON. Let p(0,1) be the probability of 
loss. Suppose that his utility function for monetary returns in SON i, is a function of the 
above form with (𝑢

ି, 𝑢
ା) being the slopes for losses and gains respectively in SON ‘i’.  

There are two ways in which insurance can be introduced in this setting. First is a variation of 
the traditional textbook setting where we assume 𝑢ଶ

ି > 𝑢ଵ
ି. Even an individual who is not 

affected by the loss, would react to the news of the loss- by leaning closer towards caution 
and hence a higher marginal utility of money- than in the absence of such news, however 
small the difference in the marginal utilities may. If one hears about frequent bicycle thefts in 
the neighbourhood that one lives in, then the same person is likely to be concerned more 
about the safety of his/her bicycle than he/she would be in the absence of such news, 
regardless of whether the person has been a victim of such theft or not. For an agent with a 
stake in the loss, the difference gets more pronounced.    

In the absence of an insurance policy the expected utility of the agent is – p𝑢ଶ
ିL. 

An insurance policy that provides complete coverage is available for a premium  which if 
“actuarily fair” would satisfy  = pL. 

The expected utility from buying this policy is -[(1-p) 𝑢ଵ
ି + p𝑢ଶ

ି] = -p[(1-p) 𝑢ଵ
ି + p𝑢ଶ

ି]L. 

Since 𝑢ଶ
ି > 𝑢ଵ

ି> 0 and p(0,1), (1-p) 𝑢ଵ
ି + p𝑢ଶ

ି < 𝑢ଶ
ି and so -p[(1-p) 𝑢ଵ

ି + p𝑢ଶ
ି]L > – p𝑢ଶ

ିL.   

Actually, it would be more realistic to consider three SONs: 1-where there is no loss, 2- 
where there is a loss and the agent “has not” bought the insurance policy and 3- where there 
is a loss and the agent “has” bought the insurance policy, with 𝑢ଶ

ି > 𝑢ଷ
ି > 𝑢ଵ

ି> 0, since having 
bought the insurance policy, the agent is somewhat more relaxed than what it would be had it 
not purchased the insurance policy, but since recovering the insurance payment involves 
some transaction cost (e.g. paper work, etc.) the agent’s disutility from expenditure incurred 
on buying the premium could be expected to be higher than what it would be had there been 
no loss.      

A second way in which insurance can be introduced in this context, which may be more 
realistic is to assume that the seller of the insurance policy has recourse to an investment 
opportunity, which for some r > 0, returns 1 + r units of money for every unit of money 
invested in the current period. In this case, we can weaken the restriction on the slopes of the 
utility functions and assume 𝑢ଶ

ି  𝑢ଵ
ି, i.e., allow for 𝑢ଶ

ି = 𝑢ଵ
ି. 

In this case an insurance policy that provides complete coverage for a premium , yields an 
expected return of (1+ r) - pL to the seller of the insurance policy which is non-negative if  

 


ଵା
. Since r > 0, 



ଵା
 < pL, so that the seller of the policy can make a profit by selling it for 

a premium (


ଵା
, pL).  



In this case, the expected utility from buying this policy for a premium of  is -[(1-p) 𝑢ଵ
ି + 

p𝑢ଶ
ି] and -[(1-p) 𝑢ଵ

ି + p𝑢ଶ
ି] > – p𝑢ଶ

ିL, since 0 < (1-p) 𝑢ଵ
ି + p𝑢ଶ

ି  𝑢ଶ
ି and  < pL.    

Now let us consider an agent whose initial monetary wealth is w > 0 and an investible 
amount I(0,w) can either be diversified equally between two-risky investment opportunities 
or invested entirely in one investment opportunity, with each investment opportunity having a 
probability p(0,1) of failing. 

This is a situation where there are three states of nature denoted by 1,2,3 with (𝑢
ି, 𝑢

ା) being 
the slopes for losses and gains respectively in SON ‘i’ > 0 SON 1 is the situation where 
neither investment opportunity fails, SON 2 is the situation where 50% of the invested 
amount is lost and SON 3 is the situation where the entire invested amount is lost. 

Suppose 0 < 𝑢ଵ
ି < 𝑢ଶ

ି < 𝑢ଷ
ି. 

Even if the agent was not an investor, the news of an investment opportunity crashing would 
very likely have the effect of increasing its disutility of expenditure and such disutility would 
further increase if it were to hear the news of two investment opportunities crashing 
simultaneously. In the case of an investor, the effect of such news could only be expected to 
be more pronounced.    

If the agent invests the entire amount I in exactly one investment opportunity, then his 
expected utility is – p𝑢ଷ

ିI. 

If the agent spreads his investment opportunity equally between the 2 investment 

opportunities, then his expected utility is -2p(1-p) 𝑢ଶ
ି ூ

ଶ
 - p2𝑢ଷ

ିI = -p[(1-p) 𝑢ଶ
ି + p𝑢ଷ

ି]I. 

Since 𝑢ଷ
ି > (1-p) 𝑢ଶ

ି + p𝑢ଷ
ି, we have -p[(1-p) 𝑢ଶ

ି + p𝑢ଷ
ି]I > – p𝑢ଷ

ିI, and hence there is always 
an incentive for “spreading risks”.  

3. The Framework of Analysis:  

Let us now set up the general framework of analysis with state-dependent linear utility 
functions for monetary returns. For a more general framework of analysis, one may refer to 
the book by Bonanno (Bonanno 2019). 

For some positive integer L  2, let {1, 2, …, L} denote the finite set of states of nature. As 
mentioned in the introduction, we will refer to a state of nature as SON and its plural as 
SONs.  

A (column) vector xℝ where for each j{1, …, L}, the jth coordinate of x denotes the 
monetary return in SON j, is said to be a return vector. 

A (column) vector pℝାା
  satisfying ∑ 𝑝


ୀଵ  = 1, such that for j{1, …, L}, pj is the 

probability of occurrence of SON j, is a probability vector.  

Given x, yℝ, let yTx denote ∑ 𝑦𝑥

ୀଵ . 

A portfolio of risky assets (briefly referred to as PORA) is a pair (x, p) where x is a return 
vector and p is a probability vector. In what follows we will refer to portfolios of risky 
assets as PORAs.   



Given a PORA (x, p) with X denoting the random monetary return for (x, p) and ℝ, let {X 
= } denote the event that the realized SON yields a monetary return of , {X  } denote 
the event that the realized SON yields a monetary return less than or equal to , {X  } 
denote the event that the realized SON yields a monetary return greater than or equal to , {X 
< } denote the event that the realized SON yields a monetary return less than , {X > } 
denote the event that the realized SON yields a monetary return greater than . 

Thus, for all ℝ, Probability of {X  } = 1- Probability of {X > }  

The expected value of a PORA (x, p) denoted E(x, p) is pTx = ∑ 𝑝

ୀଵ 𝑥. 

A generalization of the concept of portfolio of risky assets that can be inferred from the 
solution proposed by Gilboa and Schmeidler (see Gilboa and Schmeidler 1989) as a response 
to the Ellsberg Paradox is the following.  

A generalized portfolio of risky assets (G-PORA) is a pair (, p) where pℝାା
  is a 

probability vector and for each j{1, …, L}, j is a non-empty closed and bounded set in ℝ 
denoting the set of possible returns in SON j, exactly one from which is realized if SON j 
occurs.  

Unless j is a singleton, there is no known prior probability distribution over j.    

In order to incorporate “ambiguity aversion” one may associate with (, p), the min portfolio 
of risky assets (MIN-PORA) (min, p) which is defined as follows: for each j{1, …, L}, 



 = min{| j}. For any x ℝ satisfying xjj for all j{1, …, L}, the expected value 

of the PORA (x, p) can be defined as before, i.e., E(x, p) = pTx = ∑ 𝑝

ୀଵ 𝑥. 

Thus, E(min, p) = ∑ 𝑝

ୀଵ 


.        

A linear utility profile is an L-tuple u = (u1, …, uL)(ℝାା
ଶ )L where for each j{1, …, L}, uj 

is a real valued function on ℝ determined by an ordered pair (𝑢
ି, 𝑢

ା) ℝାା
ଶ  satisfies 𝑢

ି  

𝑢
ା > 0, with interpretation that for all j{1, …, L} and ℝ, uj() = 𝑢

ିmin{, 0} + 

𝑢
ାmax{, 0} is the (Bernoulli) utility for  units of monetary returns (gains or losses) in 

SON j. 

We allow for the set {j|𝑢
ି= 𝑢

ା} to be {1, …, L} or a proper subset of it, including the null 

set . 

A similar definition of a linear utility profile has been used in Lahiri (2024) for the purpose of 
extending the “Arbitrage Theorem” from its usual framework to a one in which state-
dependent linear utility functions may allow loss aversion.   

Given a linear utility profile u(ℝାା
ଶ )L, we will use u- to denote the vector (𝑢ଵ

ି, …, 𝑢
ି) 

ℝାା
  and u+ to denote the vector (𝑢ଵ

ା, …, 𝑢
ା) ℝାା

     

Given a linear utility profile u and a PORA (x, p) the expected utility of (x, p) for u, denoted 
by Eu(x, p) is ∑ 𝑝[𝑢

ି min
ୀଵ {𝑥, 0} + 𝑢

ାmax{𝑥, 0}]. 



Clearly Eu(x, p) = p1(u1(x1) – u2(x2)) + (p1 + p2)(u2(x2) – u3(x3)) + (p1 + p2 + p3)(u3(x3) – 
u4(x4)) + … + (p1 + … + pL-1)(uL-1(xL-1) – uL(xL)) + (p1 + p2 + … + pL)uL(xL

) =  

∑ (∑ 𝑝)

ୀଵ (𝑢(ିଵ

ୀଵ 𝑥) − 𝑢ାଵ(𝑥ାଵ) ) + (∑ 𝑝)
ୀଵ uL(xL) = ∑ (∑ 𝑝)


ୀଵ (𝑢(ିଵ

ୀଵ 𝑥) −

𝑢ାଵ(𝑥ାଵ) ) + uL(xL). 

Given a linear utility profile u and a PORA (x,p) the certainty equivalent of (x,p) for u, 
denoted by CE(u, x, p) is the scalar that satisfies ∑ 𝑝[𝑢

ି min
ୀଵ {𝐶𝐸(𝑢, 𝑥, 𝑝), 0} + 

𝑢
ାmax{CE(u,x,p), 0}] = Eu(x, p), i.e. CE(u,x,p) = 

ா௨(௫,)

∑ ೕ௨ೕ
శ ಽ

ೕసభ

 = 
ா௨(௫,)

௨శ  if Eu(x, p)  0 and 

CE(u,x,p) = 
ா௨(௫,)

∑ ೕ௨ೕ
ష ಽ

ೕసభ

 = = 
ா௨(௫,)

௨ష
 if Eu(x, p) < 0.  

Suppose that (x, p) is a PORA satisfying xj < xj+1 for all j{1, …, L-1}.Then, for all k{1, 
…, L-1} and , (xk, xk+1), Probability of {X > } = Probability of {X > xk} = Probability 
of {X > } and Probability of {X  } = Probability of {X  xk} = Probability of {X  }. 

4. First Order Stochastic Dominance: 

Given two PORAs (x, p) and (y, q) with X denoting the random monetary return for (x, p) 
and Y denoting the random monetary return for (y, q), we say that (x, p) stochastically 
dominates (y, q) in the first order, denoted by (x, p) >FSD (y,q) if for all ℝ, Probability of 
{X > }  Probability of {Y > } and for some ℝ, Probability of {X > } > Probability 
of {Y > }. 

The intuitive interpretation of (x, p) >FSD (y,q) is that given any monetary return , the 
probability that the monetary return from (x, p) is greater than  is greater than or equal to the 
probability that the monetary return from (y, q) is at greater , and for some monetary return 
the first probability is strictly greater than the second probability i.e., (x, p) is consistently 
“more likely” to yield better rewards better than (y, q).    

We know that for a linear utility profile and a PORA (x, p), Eu(x, p) = 

∑ (∑ 𝑝)

ୀଵ (𝑢

ିଵ
ୀଵ (𝑥) − 𝑢ାଵ(𝑥ାଵ) ) + uL(xL). 

Proposition 1: Let (x, p) and (x, q) be two PORAs satisfying xj < xj+1 for all j{1, …, L-1}. 
Then (x, p) >FSD (x, q) if and only if [Eu(x, p) > Eu(x, q) for all linear utility profile u 
satisfying uj(xj) < uj+1(xj+1) for all j{1, …, L-1}]. 

5. Mean-preserving Spread and Increasing-Concave Linear Utility Profiles: 

For this section assume L  3. 

Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, a linear utility profile u is 
said to be increasing-concave with respect to x, if for all j{1, …, L-1}, uj(xj) < uj+1(xj+1) 
and for all i, j, k{1, 2, …, L} with i < j < k, uj(xj) > (1-)ui(xi) + uk(xk) where (0,1) 
satisfies xj = (1-)xi + xk. 

Clearly,  = 
௫ೕି௫

௫ೖି௫
  and 0 < xj – xi < xk – xi. 

Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, PORA (x, q) is said to be 
obtained by a mean-preserving spread from PORA (x, p), denoted (x, p) MSP (x, q), if 



E(x, p) = E(x, q) and there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < 
pj, qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}. 

[E(x, p) = E(x, q) and there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < 
pj, qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}] if and only if [there exists i, j, k{1, 2, …, 
L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and 
(pj-qj)xj = (qi- pi)xi + (qk – pk)xk]  

[there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk and ph = 
qh for h{1, 2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] is equivalent to [there 
exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh for 

h{1, 2, …, L}\{i,j,k} and xj = 
ି

ೕିೕ
 xi + 

ೖିೖ

ೕିೕ
xk]. 

Thus, (x, p) MSP (x, q) if and only if [there exists i, j, k{1, 2, …, L} satisfying i < j < k 

such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 
ି

ೕିೕ
 xi + 

ೖିೖ

ೕିೕ
xk].  

Proposition 2: Let (x, p) and (x, q) be two PORAs satisfying xj < xj+1 for all j{1, …, L-1}. 

(a) If (x, p) MSP (x, q) then [Eu(x, p) > Eu(x, q) for all linear utility profile u which is 
increasing-concave with respect to x]. 

(b) If L = 3, p2  q2 and [Eu(x, p) > Eu(x, q) for all linear utility profile u which is increasing-
concave with respect to x] then (x, p) MSP (x, q).  

6. Risk Aversion: 

Given a PORA (x, p), an agent with linear utility profile u is said to be: 

(i) Risk Averse relative to (x,p) if E(x, p) > CE(u, x, p);  

(ii) Risk Neutral relative to (x,p) if E(x, p) = CE(u, x, p); 

(iii) Risk Loving/Seeking relative to (x, p) if E(x, p) < CE(u, x, p). 

Example 1: Let L = 2, u1 = (1, 1) and let u2 = (2, 2). 

Let (x, p) = ((2,0), (
ଵ

ଶ
, 

ଵ

ଶ
)). Thus, E(x, p) = 1. 

In this case, Eu(x,p) = 1 and pTu+ = 
ଷ

ଶ
, so that CE(u, x, p) = 

ଶ

ଷ
 < 1 = E(x,p).  

Thus, the agent is risk averse relative to ((2,0), (
ଵ

ଶ
, 

ଵ

ଶ
)). 

Now let (x, p) = ((0,2), (
ଵ

ଶ
, 

ଵ

ଶ
)). Once again, E(x, p) = 1.  

Now, Eu(x,p) = 2 and since pTu+ = 
ଷ

ଶ
, we have CE(u, x, p) = 

ସ

ଷ
 > 1 = E(x, p). 

Thus, the same agent is risk loving/seeking relative to ((0,2), (
ଵ

ଶ
, 

ଵ

ଶ
)).  

Now suppose (x, p) = ((1,1), (
ଵ

ଶ
, 

ଵ

ଶ
)). Once again, E(x, p) = 1. 



Now, Eu(x,p) = 
ଷ

ଶ
 and since pTu+ = 

ଷ

ଶ
, we have CE(u, x, p) = 1 = E(x, p).  

Thus, the same agent is now risk neutral relative to ((1,1), (
ଵ

ଶ
, 

ଵ

ଶ
)).  

Given a PORA (x,p) and a linear utility profile u, the risk premium relative to (x,p) denoted 
R(u, x, p) = E(x, p) – CE(u, x, p). 

Thus, ∑ 𝑝𝑢

ୀଵ (𝐸(𝑥, 𝑝) − 𝑅(𝑢, 𝑥, 𝑝)) = ∑ 𝑝𝑢


ୀଵ (𝐶𝐸(𝑢, 𝑥, 𝑝)) = Eu(x, p). 

If the agent is: 

(i) Risk Averse relative to (x, p), then R(u, x, p) > 0; 

(ii) Risk Loving/Seeking relative to (x, p), then R(u, x, p) < 0; 

(iii) Risk Neutral relative to (x, p), then R(u, x, p) = 0.  

Given two linear utility profiles u, v and two PORAs (x, p), (y, q) we say that u relative to (x, 
p) is more risk averse than v relative to (y, q) if R(u, x, p) > R(v, y, q).   

7. Insurance contracts with the possibility of partial coverage:  

As before consider a situation with 2 states of nature 1,2, where an agent with initial wealth w 
> 0 may face a loss of L(0, w) units of money in the second SON. Let p(0,1) be the 
probability of loss. Suppose that the agent’s linear utility profile is (u1, u2) is such that with 0 
< 𝑢ଵ

ି < 𝑢ଶ
ି. 

The expected value of the “risk” is -pL 

In the absence of an insurance policy the expected utility of the agent is – p𝑢ଶ
ିL. 

If CE1 is the certainty equivalent in the absence of any insurance policy, then [(1-p) 𝑢ଵ
ି + 

p𝑢ଶ
ି]CE1 = -p𝑢ଶ

ିL. 

Thus, CE1 = 
ି௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష = -pL
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష 

An insurance policy with a deductible d[0,L) (i.e., in case of loss, the insurer pays L-d to 
the agent) is available for a premium . 

Hence the expected profit of the insurer is  - p(L-d).  

For the insurer to voluntarily sell the insurance, it must be “profitable”, i.e.,  - p(L-d)  0. 

Thus, profitability is equivalent to the condition - pL  - ( + pd). 

The expected value of this policy to the agent is – ( + pd). 

The expected utility of the agent from buying this policy is -(1-p) 𝑢ଵ
ି - p𝑢ଶ

ି ( + d) = -[(1-p) 

𝑢ଵ
ି + p 𝑢ଶ

ି] - p𝑢ଶ
ିd. 

For the agent to voluntarily buy the insurance, it must be the case that -[(1-p) 𝑢ଵ
ି + p 𝑢ଶ

ି] - 

p𝑢ଶ
ିd  – p𝑢ଶ

ିL, i.e., - -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష pd  CE1. 



- -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష pd = – ( + pd) + pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష]. 

Thus the agent will voluntarily buy the insurance policy if and only if  - ( + pd) + pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష]  CE1.  

A profit maximizing insurer will choose an insurance contract, i.e., a pair (, d) that 
maximizes  - p(L-d), subject to  - p(L-d)  0, -[(1-p) 𝑢ଵ

ି + p 𝑢ଶ
ି] - p𝑢ଶ

ିd  – p𝑢ଶ
ିL and 

d[0,L). 

The above problem is equivalent to choosing a pair (, d) that maximizes  + pd, subject to  
+ pd  pL, [(1-p) 𝑢ଵ

ି + p 𝑢ଶ
ି] + p𝑢ଶ

ିd   p𝑢ଶ
ିL and d[0,L). 

It is easy to see that at an optimal solution, [(1-p) 𝑢ଵ
ି + p 𝑢ଶ

ି] + p𝑢ଶ
ିd =  p𝑢ଶ

ିL. 

Thus,  = 
௨మ

ష(ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Thus,  + pd = p[
௨మ

ష(ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష + d] = pd[1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Since 𝑢ଶ
ି > 𝑢ଶ

ଵ, we have 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష > 1 and hence 1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష < 0. 

Thus, pd[1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష is maximized at d = 0, thereby implying  = 

௨మ
ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Since 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష = (
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష)pL and  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష > 1, we have  > pL. Since d = 0, 

 + pd > pL. 

Hence, the optimal contract is the pair (
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష, 0), with the “expected profit of the 

insurer” being 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష – pL = pL(
௨మ

షି(ଵି୮)௨భ
షି ୮ ௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష ) = 
(ଵି)(௨మ

షି௨భ
ష)

(ଵି)௨భା௨మ
ష  > 0.   

Note:  = 
௨మ

ష(ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష implies - -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pd = - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష = CE1. 

We know that - -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pd = - ( + pd) + pd[ 1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష]. 

Thus, at an optimal solution - ( + pd) + pd[ 1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] = CE1. 

“Strict Profitability” is equivalent to the condition - pL > - ( + pd) which now reduces to  

-pL + pd[ 1- 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] > CE1 = - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Thus strict profitability is equivalent to -pL[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] > 0, i.e. 

p(d-L)[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష]  0.  

Since d[0, L), this is possible if and only if 1- 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష < 0, i.e. 1 < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష 



Multiplying throughout by pL which is strictly positive, we get 1 < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష if and only 

if  pL < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

షpL, the latter being equivalent to - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

షpL < -pL. 

Since CE1 = - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pL and -pL is the expected value of the “risk”, the agent is risk 

averse relative to ((-L, 0), (p, 1-p)).  

Thus “Strict Profitability” is equivalent to the requirement that the agent is risk averse 
relative to ((-L, 0), (p, 1-p)).   

Let us now consider the somewhat more realistic situation with three SONs: 1-where there is 
no loss, 2- where there is a loss and the agent “has not” bought the insurance policy and 3- 
where there is a loss and the agent “has” bought the insurance policy, with 𝑢ଶ

ି > 𝑢ଷ
ି > 𝑢ଵ

ି > 0. 

Then, the expected utility of the agent from buying this policy is -(1-p) 𝑢ଵ
ି - p𝑢ଷ

ି ( + d) = -
[(1-p) 𝑢ଵ

ି + p𝑢ଷ
ି] - p𝑢ଷ

ିd. 

Since 𝑢ଶ
ି > 𝑢ଷ

ି, - (1-p)𝑢ଵ
ି - p𝑢ଷ

ି( + d) > - (1-p) 𝑢ଵ
ି - p𝑢ଶ

ି( + d). 

A profit maximizing insurer will choose an insurance contract, i.e., a pair (, d) that 
maximizes  - p(L-d) subject to  - p(L-d)  0, -[(1-p) 𝑢ଵ

ି + p𝑢ଷ
ି] - p𝑢ଷ

ିd  – p𝑢ଶ
ିL and 

d[0,L]. 

The above problem is equivalent to choosing a pair (, d) that maximizes  + pd subject to  
+ pd  pL, [(1-p) 𝑢ଵ

ି + p𝑢ଷ
ି] + p𝑢ଷ

ିd  p𝑢ଶ
ିL and d[0,L]. 

It is easy to see that at an optimal solution, [(1-p)𝑢ଵ
ି + p𝑢ଷ

ି] + p𝑢ଷ
ିd = p𝑢ଶ

ିL. 

Thus,  = 
(௨మ

షି௨య
షௗ)

(ଵି୮) ௨భ
ష ା ୮௨య

ష. 

Thus,  + pd = p[
(௨మ

షି௨య
షௗ)

(ଵି୮) ௨భ
ష ା ୮௨య

ష+ d] = pd[1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష] + 
௨మ

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష.  

Since 𝑢ଷ
ି > 𝑢ଷ

ଵ, we have 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష > 1 and hence 1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష < 0. 

Thus, pd[1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష] + 
௨మ

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష is maximized at d = 0, thereby implying  = 

௨మ
ష

(ଵି୮)௨భ
ష ା ୮௨య

ష > 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష , since 𝑢ଶ
ି > 𝑢ଷ

ି. 

Since d = 0,  + pd = 
௨మ

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష > pL. 

Hence, the optimal contract is the pair (
௨మ

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష, 0), with the “expected profit of the 

insurer” being 
௨మ

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష – pL > 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష – pL.   

Thus, the expected profit of the insurer is higher in this more realistic situation than in the 
earlier situation. 

Acknowledgment: I would like to that Itzhak Gilboa for comments and queries about an 
earlier version. I would also like to apologise to R. Chandrasekar (Sekar) for claiming his 



valuable respite from “real-world finance” during weekends, to glance through the work of 
“dreamers(?)”. I hope practitioners of finance will find less dreaming here than in the eternal 
truth here: “https://www.youtube.com/watch?v=hWWvTTbCGTI”.   
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Appendix 

Proof of Proposition 1: Eu(x, p) – Eu(x, q) = [∑ (∑ 𝑝)

ୀଵ (𝑢

ିଵ
ୀଵ (𝑥) − 𝑢ାଵ(𝑥ାଵ) ) + 

uL(xL)] – [∑ (∑ 𝑞)

ୀଵ (𝑢

ିଵ
ୀଵ (𝑥) − 𝑢ାଵ(𝑥ାଵ) ) + (∑ 𝑞)

ୀଵ  uL(xL)] = ∑ (∑ 𝑝 −

ୀଵ

ିଵ
ୀଵ

∑ 𝑞

ୀଵ ) (𝑢 (𝑥) − 𝑢ାଵ(𝑥ାଵ) ), since ∑ 𝑝 = 1 = ∑ 𝑞


ୀଵ


ୀଵ . 

Suppose (x, p) >FSD (x, q). Then, ∑ 𝑝 − ∑ 𝑞

ୀଵ


ୀଵ   0 for all j{1, …, L}, with strict 

inequality for at least one j{1, …, L-1}, since ∑ 𝑝 = 1 = ∑ 𝑞

ୀଵ


ୀଵ .  

If u is a linear utility profile satisfying uj(xj) < uj+1(xj+1) for all j{1, …, L-1}, then 

∑ (∑ 𝑝 − ∑ 𝑞

ୀଵ )


ୀଵ (𝑢

ିଵ
ୀଵ (𝑥) − 𝑢ାଵ(𝑥ାଵ) ) > 0. 

Thus, Eu(x, p) – Eu(x, q) > 0, i.e., Eu(x, p) > Eu(x, q). 

Now suppose that it is not the case that (x, p) >FSD (x, q). 

Thus, {j{1, …, L-1}| ∑ 𝑝 − ∑ 𝑞

ୀଵ


ୀଵ  > 0}  . Let  = min{∑ 𝑝 − ∑ 𝑞


ୀଵ


ୀଵ | 

∑ 𝑝 − ∑ 𝑞

ୀଵ


ୀଵ > 0}. 

Let u1 = (1, 1). Having defined uj = (𝑢
ି, 𝑢

ା) ℝାା
ଶ  satisfying 𝑢

ି = 𝑢
ା > 0, let uj+1 = (𝑢ାଵ

ି , 

𝑢ାଵ
ା ) ℝାା

ଶ  satisfying 𝑢ାଵ
ି  = 𝑢ାଵ

ା   > 0 be such that uj+1(xj+1) – uj(xj) = 
ଶ


 if ∑ 𝑝 −


ୀଵ

∑ 𝑞

ୀଵ  > 0 and 

ଵ

ଶ
 > uj+1(xj+1) – uj(xj) > 0, otherwise. This is possible, since xj+1 > xj implies 

that it is not possible for both xj+1 and xj to be zero.  



Thus, Eu(x, p) – Eu(x, q) = - 
ଶ


∑ ∑ 𝑝 − ∑ 𝑞


ୀଵ


ୀଵ{{୨{ଵ,…,ିଵ}| ∑ ೖି∑ ೖ

ೕ
ೖసభ

ೕ
ೖసభ

 வ }
 + 

∑ (∑ 𝑝 − ∑ 𝑞)
ୀଵ


ୀଵ൜{୨{ଵ,…,ିଵ}| ∑ ೖି∑ ೖ

ೕ
ೖసభ

ೕ
ೖసభ   ൠ

(𝑢(𝑥)- 𝑢ାଵ(𝑥ାଵ)) =  

−
ଶ


∑ ∑ 𝑝 − ∑ 𝑞


ୀଵ


ୀଵ{{୨{ଵ,…,ିଵ}| ∑ ೖି∑ ೖ

ೕ
ೖసభ

ೕ
ೖసభ

 வ }
 + 

∑ (∑ 𝑞 − ∑ 𝑝)
ୀଵ


ୀଵ൜{୨{ଵ,…,ିଵ}| ∑ ೖି∑ ೖ

ೕ
ೖసభ

ೕ
ೖసభ   ൠ

(𝑢ାଵ(𝑥ାଵ) - 𝑢(𝑥)) -2 + (L-1) 
ଵ

ଶ
 

 -2 +  
ଵ

ଶ
 = -  

ଷ

ଶ
 < 0. 

Thus, [Eu(x, p) > Eu(x, q) for all linear utility profile u satisfying uj(xj) < uj+1(xj+1) for all 
j{1, …, L-1}] implies (x, p) >FSD (x, q). Q.E.D. 

Proof of Proposition 2: (a) Suppose (x, p) MSP (x, q) and let u be an increasing-concave 
linear utility profile with respect to x. 

Hence, there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk 
and ph = qh for h{1, 2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] is equivalent to 
[there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh 

for h{1, 2, …, L}\{i,j,k} and xj = 
ି

ೕିೕ
 xi + 

ೖିೖ

ೕିೕ
xk. 

However, xj = (1-)xi + xk where  = 
௫ೕି௫

௫ೖି௫
(0, 1). 

Further pi + pj + pk = qi + qj + qk implies pj – qj = (qi – pi) + (qk – pk). 

Thus, 
ି

ೕିೕ
 + 

ೖିೖ

ೕିೕ
 = 1 with 

ି

ೕିೕ
 > 0 and 

ೖିೖ

ೕିೕ
 > 0.  

Hence, 
ೖିೖ

ೕିೕ
 =  and 

ି

ೕିೕ
 = 1- . 

Since u is increasing-concave uj(xj) > (1-)ui(xi) + uk(xk). 

Thus, (pj – qj)uj(xj) > (qi – pi)ui(xi) + (qk – pk)uk(xk), i.e., piui(xi) + pjuj(xj) + pkuk(xk) > qiui(xi) 
+ qjuj(xj) + qkuk(xk). 

Since, ph = qh for h{1, 2, …, L}\{i,j,k}, we get Eu(x, p) > Eu(x, q). 

(b) Now suppose L = 3 and x1 < x2 < x3 and p2  q2. 

We have p1 + p2 + p3 = q1 + q2 + q3 = 1. 

Suppose, E(x, p) = E(x, q). Thus, p1x1 + p2x2 + p3x3 = q1x1 + q2x2 + q3x3. 

Suppose, Eu(x, p) > Eu(x, q) for all linear utility profiles satisfying u1(x1) < u2(x2) < u3(x3) 
and u2(x2) > (1-)u1(x1) + u3(x3), where x2 = (1-)x1 + x3. 

Since p2 – q2  0, (p2-q2)x2 = (q1 – p1)x1 + (q3 – p3)x3 implies x2 = 
భିభ

మିమ
x1 + 

యିయ

మିమ
x3 = 

భିభ

మିమ
x1 

+ 
(ଵିభିమ)ି(ଵିభିమ) 

మିమ
x3 = 

భିభ

మିమ
x1 + 

(మିమ)ି(భିభ) 

మିమ
x3 = x3 - 

భିభ

మିమ
(x3 – x1), i.e., x2 = x3 - 

భିభ

మିమ
(x3 – x1). 

x2 < x3 and x3 > x1 implies 
భିభ

మିమ
 > 0. 



Similarly, x2 = 
భିభ

మିమ
x1 + 

యିయ

మିమ
x3 = 

(ଵିమିయ)ି(ଵିమିయ) 

మିమ
x1 + 

యିయ

మିమ
x3 = 

(మିమ)ି(యିయ) 

మିమ
x1 + 

యିయ

మିమ
x3 = x1 + 

యିయ

మିమ
(x3 – x1). 

x2 > x1 and x3 > x1 implies 
యିయ

మିమ
 > 0. 

Thus, x2 = 
భିభ

మିమ
x1 + 

యିయ

మିమ
x3, x2 = (1-)x1 + x3,  > 0, 1-  > 0, 

యିయ

మିమ
 > 0, 

భିభ

మିమ
 > 0 and x1 < 

x2 < x3 implies  = 
యିయ

మିమ
 and 1-  = 

భିభ

మିమ
. 

Thus, u2(x2) >
భିభ

మିమ
 u1(x1) + 

యିయ

మିమ
 u3(x3). 

If p2 < q2, then (p2-q2)u2(x2) < (q1- p1)u1(x1) + (q3 – p3)u3(x3) and thus, Eu(x, p) = p1u1(x1) + 
p2u2(x2) + p3u3(x3) < q1u1(x1) + q2u2(x2) + q3u3(x3) = Eu(x, q), leading to a contradiction. 

Thus, it must be the case that p2 > q2. 

Hence, 
భିభ

మିమ
 > 0 implies q1 > p1 and 

యିయ

మିమ
 > 0 implies q3 > p3. 

Thus, we have (x, p) MSP (x, q). Q.E.D. 

Note: The proof of part (b) in Proposition 2, can very likely be extended to L > 3.    

 

 

 

 


