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Abstract—This paper investigates fully distributed leaderless
formation control over a directed sensing topology. For for-
mation maneuvering, generally, a leader-follower approach is
adopted. Leaderless formation maneuvers have no designated
leaders, unlike traditional approaches. Some of the leaderless
approaches proposed recently in literature considered undirected
sensing graphs, which means the agents need to sense in both
directions. Also, in these approaches, although the control law
implementation is distributed in nature, the design of the control
laws requires a stabilizing diagonal matrix design, which makes
the design of the control law centralized and knowledge of exact
interaction among the agents is required for this design. When an
agent’s sensing capabilities are limited, directed sensing topology
becomes crucial. First, we propose control laws for leaderless
formation maneuvers in 2-D by manipulating the weights of
complex-laplacian for single integrators with directed sensing
graphs, and GAS (Global Asymptotic Stability) is established
for it. In this approach, only translational, scale, and rotational
formation maneuvers are possible. Then, we propose control
laws for leaderless affine formation maneuvering for single
integrators with directed sensing graphs for 2-D and 3-D, where
translational, rotational, scale, and sheer formation maneuvering
is possible. Also, an extension for the higher-order integrators
is provided using a back-stepping-based design. Constant dis-
turbances are also considered in the system dynamics. Finally,
simulations are provided to validate the results.

Index terms: Formation control, affine formation, leader-
less maneuvers, cooperative control

I. INTRODUCTION

Controlling robotic swarms has emerged as a prominent
area of research within the control and robotics community
[1]. Multi-agent formations have a wide range of applications.
These include satellite formation flying, search and rescue
operations, source seeking, underwater ocean data retrieval,
and estimating the gradient of a field, etc. [2], [3], [4], [5].

Achieving and maintaining a specific geometric pattern
using distributed control laws, and performing maneuvers
maintaining the desired formation shape are two important
aspects of formation control. Traditional formation control
techniques rely on position measurements of agents, but dis-
tributed formation control aims to achieve formation control
using onboard sensors of the agents and relative measurements
of their neighbors. This approach allows for the establishment
of formations even in environments where GPS signals are
unavailable [6], [7], [8]. Different types of distributed forma-
tion control approaches are classified as displacement-based,
distance-based, and bearing-based depending on whether the
desired formation shape is specified in terms of displace-
ment, distance, or bearing constraints [7], [9], [10]. With
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displacement-based control, only translational maneuvers were
possible because the displacement constraints exhibit transla-
tion invariance [11], [12]. Distance-based formation control
enables the execution of both translational and rotational
maneuvers [13]–[15], while a bearing-based approach allows
for translation and scaling formation maneuvers [9]. [16]–[18]
proposed complex laplacian-based formation control where
the constraints specifying the formation are translational,
rotational, and scale-invariant, which enabled translational,
rotational, and scale formation maneuvers. However, this ap-
proach is limited to 2-D. Affine formation control is another
noteworthy approach to formation control [19]–[23], where
the primary goal is to acquire a geometric shape that is an
affine transformation of the intended reference shape. In this
methodology, the interactions between agents are encapsulated
through the utilization of a stress matrix, commonly referred
to as a weighted Laplacian or signed Laplacian. Specifi-
cally, every agent within the system endeavors to ensure that
the weighted aggregate of their neighboring agents’ relative
positions remains equal to zero. In [19] the necessary and
sufficient conditions for affine formation stabilization in Rd

were established. It is possible to achieve translational, scal-
ing, shear, and rotational maneuvers through the control of
leaders within the framework of the affine formation control
paradigm, as all of these alterations can be regarded as affine
transformations [20]–[23]. [20] focused on investigating affine
maneuvering strategies for the double integrator and unicycle
agents operating within an undirected interaction topology.
[21] considered higher-order integrator agents with a directed
interaction topology. In [22] the authors put forth a layered
affine formation control strategy, wherein various layers de-
lineate the transmission of information among the leaders and
the followers. [23], also proposed a layered affine formation
strategy for higher order integrator systems, which did not
require any acceleration information (control input for double
integrator systems) which were necessitated in [20].

However, to accomplish formation maneuvers, past method-
ologies have entailed the independent control of a small
number of leaders, with the followers employing distributed
control laws to fulfill the objectives of formation control. This
particular approach necessitated an additional control layer and
required the leaders to access their position measurements via
GPS for autonomous navigation or to be remotely controlled
by human operators. Consequently, it is imperative to explore
strategies that facilitate formation maneuvering without the
presence of a leader, thereby eliminating the requirement
for GPS control or position measurements. [24] proposed a
method for performing leaderless maneuvers with rigid forma-
tions, based on distance measurements. The design parameter
used was a mismatch in distance measurements and ensured
a constant translational velocity of the formation and rotation



about its centroid. In [25], the positions of the agents were
represented using complex numbers from the set C, and by
perturbing the weights of the complex Laplacian maneuvering
forces were generated to achieve translational, scaling, and
rotational leaderless maneuvers for planar formations. In [26],
the weights of the stress matrix were perturbed to generate
affine formation maneuvers in Rd, d = 2, 3. However, the
control algorithms proposed in [24], [26], and [25] were for
single integrators, and an undirected sensing graph was consid-
ered. A directed sensing graph among agents is of paramount
importance in order to accommodate the constraints imposed
by an agent’s sensing capabilities. Also, although the control
laws proposed in [25], [26] can be implemented in a distributed
manner, the design of the laws requires a stabilizing diagonal
matrix whose computation requires information on the overall
interaction graph topology, hence making the design of the
control laws centralized.

Motivated by the aforementioned factors, we put forth
a control strategy aimed at achieving leaderless formation
maneuvers completely distributed way without the need for
any stabilizing diagonal matrix for its implementation. Also,
this strategy takes into account the directed sensing topology
between agents, a topic that has yet to be thoroughly investi-
gated in existing literature. First, we propose control laws for
translational, scale, and rotational formation maneuvering by
manipulating the weights of a complex Laplacian for planar,
i.e., 2-D, agents taking into account a directed interaction
topology among the agents. Then control laws for affine for-
mation maneuvering are proposed for Rd, d = 2, 3 agents with
directed sensing graphs. Unlike [25], [26], we do not need any
stabilizing diagonal matrix in our laws, making the design and
implementation both decentralized. Also, our analysis takes
into account the existence of persistent constant disturbances
in the dynamics of agents, in contrast to the setups examined in
previous works such as [24]–[26]. Such disturbances can arise
from uncertainties in modeling or the presence of external
disturbances within the environment. Furthermore, we expand
upon the findings obtained for single integrator dynamics to
encompass the inclusion of agents represented as higher-order
integrators. Although [20] did consider double integrators and
unicycles, and [22] addressed higher-order systems, the topol-
ogy examined in both studies was undirected. [20] required
d + 1 leaders for formations in Rd, while [22] required at
least one leader to possess absolute position information for
maneuvering. In contrast, our approach is leaderless. [21]
did consider a directed graph topology with higher-order
integrator systems, but it also necessitated d + 1 leaders in
Rd. In contrast, our approach considers leaderless digraphs.
In [20]–[22] a stabilizing diagonal matrix is needed which
will require centralized information while our algorithm can
be implemented without such need.

Remark 1. Although a preliminary version of this work
is published in [27] which considered directed graphs, the
control laws in [27] also required a stabilizing diagonal
matrix, and hence the design of the laws required centralized
computation, whereas the laws proposed in this article have
both design and implementation are distributed. Also, we have

(a) Reference Shape (b) Affine motions in 2-D

Fig. 1. (a) Example of a reference shape in 2-D. p∗ = (16 ⊗ pc.m.) +
[p∗c1

T p∗c2
T . . . p∗c6

T ]T . (b) Different affine motions are possible in 2-D.
Brown arrows represent 2 translations, green arrows represent scale change,
yellow arrows are for rotation and red arrows represent 2 types of shear
motion.

included the complex laplacian-based leaderless formation
maneuvering, which was not there in [27]. In addition, for the
design of higher order systems to avoid computational and
noise amplification issues, we have adopted a command filter-
based back-stepping design here, whereas in [27], a direct
derivative of the virtual control laws was considered.

Notations: I is used to represent the identity matrix. 1n

represents a vector composed entirely of ones. ||.|| is employed
to indicate the induced 2-norm for a matrix and the 2-norm for
a vector. The symbol |.| is used to denote the absolute value
of a real or complex number. The spaces L2 and L∞ refer
to the space of square-integrable functions and the space of
bounded functions, respectively. AH , A ∈ Cn×n, represents
the transpose of complex conjugate of matrix A. Ker{A}
and Im{A} represents the null space and image of matrix A,
respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

The interaction between the agents is represented through
a graph G(V, E), where the node set is denoted as V =
{1, 2, . . . , n}, and the edge set is denoted as E ⊆ V×V . In the
case of a directed graph, the edge set consists of directed edges
(j, i), where node j is the tail node and node i is the head node.
Node j is referred to as the in-neighbor of node i, while node
i is referred to as the out-neighbor of node j. The in-neighbor
set for agent i is denoted as Ni := {j|(j, i) ∈ E}. It should
be noted that in a directed graph, the presence of (j, i) ∈ E
does not necessarily imply the presence of (i, j) ∈ E . For a
directed graph, the definitions of κ-reachable, κ-rooted, and
κ-spanning tree are taken from [19].
Definition 1.1: (κ-reachable) A node v is called κ-reachable
from a non-singleton set of nodes, U , if there exist κ disjoint
paths from a node in U to node v.
Alternately stated, the above definition implies that we can
find a path from a node in U to node v even after removing
any κ− 1 nodes from the graph, except node v.
Definition 1.2: (κ-rooted) A digraph is called κ-rooted if there
exists a subset of nodes, called root nodes, from which all other
nodes are κ reachable.
Definition 1.3: (κ-spanning tree) For a digraph G(V, E) with a
set U = {u1, u2, . . . , uk} ⊂ V , a spanning κ-tree is a subgraph



T (V, E0), such that
(1) Every node u ∈ U has no in-neighbours
(2) Every node v ̸∈ U has κ in-neighbours.
(3) Every node v ̸∈ U is κ-reachable from U .

We now state an important existing result.

Lemma 1. [19, Lemma 2.1] A digraph G(V, E) is κ-rooted
if and only if it has a κ-spanning tree.

B. Preliminaries for Complex Laplacian-based control

We have n planar agents for complex Laplacian-based
formation control, i.e., agents are in 2-D. The symbol ι
represents the unit complex number.

1) Complex Laplacian matrix: A Complex Laplacian ma-
trix L ∈ Cn×n is a matrix whose entries are complex numbers.
Let wij ∈ C ̸= 0, be the weight associated with the edge
(i, j) ∈ E , then we have the complex laplacian L whose
entries are given by L(i, j) = −wij for (i, j) ∈ E , otherwise
L(i, j) = 0 for (i, j) ̸∈ E , and L(i, i) =

∑
k∈Ni

wik. Also,
note that L1n = 0.

2) Desired shape: The 2-D position of every agent i ∈ V
is a complex number pi ∈ C, where the real and imaginary
parts describe the two coordinates of the Euclidean plane. All
the positions pi of the agents are stacked in a single vector
p ∈ Cn, which is called a configuration. The pair (G, p), is
called a framework F , where the position of each agent pi is
attached with the node i ∈ V.

The reference shape p∗ is an arbitrary configuration of
interest, which is given by

p∗ = pc.m.1n + p∗c , (1)

where pc.m. ∈ C is the position of the center of mass of
the configuration, and p∗c gives the shape/ appearance to the
formation starting from pc.m.. For simplicity and without loss
of generality, we have pc.m. = 0, and hence p∗ = p∗c .

Now, we define the desired formation shape in the case of
Complex Laplacian-based formation control.

Definition 1. (Desired formation shape) The formation or the
framework is at the desired shape when we have

p ∈ M := {p = k11n + k2p
∗|k1, k2 ∈ C}. (2)

Here, k1 accounts for the translation, and k2 accounts for the
scaling and rotation of the reference shape p∗. However, in
our case, we are not interested in a static formation shape as
in [16]. Rather, we are interested in formation maneuvering,
which refers to a trajectory in M.

Remark 2. For the static complex Laplacian-based formation
control reported in [16], the weights wij of the complex
laplacian must satisfy Lp∗ = 0, making p∗ to be in the null
space of L. Note that this condition is satisfied if and only if the
graph is 2-rooted [16]. As 1n and p∗ are in the null space of
L, we have L has two zero eigenvalues and the corresponding
eigenvectors are given by 1n and p∗.

(a) 3-rooted graph (b) 3-rooted directed regu-
lar graph

Fig. 2. (a) Example of a 3-rooted graph. All nodes are 3-reachable from root
set: R = {r1, r2, r3}. (b) Example of a directed graph which is 3-rooted.
Any three nodes can be considered as root nodes, and every node has 3 in-
neighbours

C. Preliminaries for Affine formation control

1) Signed-laplacian: A signed-Laplacian matrix (or stress
matrix) associated with graph G is denoted by L ∈ Rn×n

whose entries can be positive and negative real numbers. If
wij ̸= 0 is the weight associated with an edge (j, i), the (i, j)-
th entry of the signed-Laplacian L is given by L(i, j) = −wij

if j ∈ Ni, otherwise it is 0. The diagonal entries are given
by L(i, i) =

∑
k∈Ni

wik. For a digraph, L is usually not a
symmetric matrix, but it still satisfies the condition L1n = 0,
like its undirected counterpart.

2) Desired affine trajectory: Let us consider a set of n
agents in the Euclidean space Rd, where d can be either 2
or 3. The position of each agent i ∈ V is denoted as pi ∈ Rd.
We can collect all the positions pi in a vector p ∈ Rnd,
which is referred to as the configuration. A framework F is
defined as the pair (G, p), where G represents the underlying
control/sensing topology among the agents. A shape of interest
or a reference shape p∗ ∈ Rnd (as depicted in Figure 1(a)) can
be arbitrarily given:

p∗ = (1n ⊗ pc.m.) + p∗c

where the center of mass is denoted as pc.m. ∈ Rd, and the
shape of the formation is denoted as p∗c ∈ Rnd, with respect to
pc.m.. The desired shape is constructed based on the reference
shape p∗, as described by the following definition:
Definition 2: (Desired affine trajectory) The desired shape
is achieved when p ∈ S := {p = (In ⊗ A)p∗ + (1n ⊗
b)|A ∈ Rd×d, b ∈ Rd}, i.e., the desired shape is an affine
transformation of the reference shape p∗, hence it is called
affine formation control. Affine maneuver indicates the desired
shape is not a static one as in [19]; rather, it can be a trajectory
in S.
Definition 3: (Generic Configuration) A configuration, p,
is generic if there does not exist a non-zero polyno-
mial g(y1, . . . , xnd), having integer coefficients, such that
g(p11, . . . , p

d
1, . . . , p

1
n, . . . , p

d
n) = 0 where plk is the l-th element

of pk [19].
Physically interpreted, generic configurations do not have any
degeneracy, i.e., points on a line in R2 and planar formations
in R3 are examples of non-generic configurations.

Remark 3. For static affine formation control as reported in
[19], the weights wij of the signed Laplacian, L, are designed
in a way so that (L⊗Id)p

∗ = 0, thereby making the reference



shape p∗ an eigenvector of L ⊗ Id corresponding to the zero
eigenvalue. When p∗ is an eigenvector, the desired affine shape
p ∈ S becomes an eigenvector of L⊗Id with zero eigenvalue,
implying that S is the null space/kernel of L ⊗ Id [19].

D. Problem formulation

1) Complex Laplacian-based formation maneuvering: Sin-
gle integrator kinematics of the agents is given by:

ṗi = ui + δi, i ∈ V, (3)

where δi ∈ C is the constant disturbance input to agent i, and
ui ∈ C is its control input.
Assumption 1:
(a)The desired configuration (p) is generic.
(b)The directed sensing graph (G(V, E)) among the agents is
d-rooted with each root node having at least d in-neighbors
where d is the dimension of the ambient space.

Problem 1: With agents whose dynamics are represented by
(3), sensing over a directed graph, and subject to Assumption
1, the objective is to design a control input ui for agent i ∈ V
such that a desired trajectory can be achieved asymptotically.
In other words, we aim for p(t) to converge to M as t
approaches infinity.

2) Affine formation maneuvering: Single integrator kine-
matics of the agents is given by:

ṗi = ui + δi, i ∈ V, (4)

where δi ∈ Rd is the constant disturbance input to agent i,
and ui ∈ Rd is its control input, d = 2 or 3 is the dimension
of ambient space.
Dynamics of ρ-th order integrator is given by:

ẏi,l = yi,l+1 + δi,l, l ≤ ρ− 1

ẏi,ρ = ui + δi,ρ, i ∈ V (5)

where ui ∈ Rd is the control input for i-th agent, and δi,l ∈ Rd

are the disturbances terms. We are now well placed to state
the main problem addressed in this paper, along with the key
assumptions.
Assumption 2:
(a) The desired configuration (p) is generic.
(b) The directed sensing graph (G(V, E)) among the agents
is d+ 1-rooted with each root node having at least d+ 1 in-
neighbours where d is the dimension of the ambient space.
(c) The number of agents, n, satisfies n ≥ d+ 2.

Remark 4. For static affine formation control over a digraph,
the necessary and sufficient condition was that the digraph
should be d + 1-rooted [19]. It is important to note that for
a d + 1-rooted graph, the root nodes need not have any in-
neighbours. The extra condition of d + 1 in-neighbors of the
root nodes is imposed to solve the problem of affine maneu-
vering over a directed topology. Part (c) of the assumption is
used so that part (b) can be satisfied.

Remark 5. Note that the additional condition does not change
the d+1- rooted structure of the graph because from Definition

1.3 and Lemma 1, it is clear that if graph G(V, E) is d + 1-
rooted, it contains a d + 1-spanning tree T (V, E0) and after
addition of extra edges to the root nodes, the new graph
G(V, Ē) will also contain the same d + 1-spanning tree
T (V, E0), thereby ensuring that it is d+ 1-rooted.

Remark 6. The assumption used here is weaker than that used
in [26] for solving the undirected case, i.e., the assumption
of a universally rigid interaction topology. Universally rigid
configurations ensure d + 1 connectedness and hence are
always d + 1-rooted [19, Remark 2.1], while the converse is
not always true.

Problem 2: With agents whose dynamics are represented
by (4) or (5), sensing over a directed graph and subject to
Assumption 2, the objective is to design control input ui for
agent i to achieve an asymptotic convergence of the desired
affine trajectory, i.e., p(t) → S as t → ∞.

III. MAIN RESULTS

In this section, we first provide the key idea used that
makes the leaderless formation maneuvers for directed graphs
tractable. Then, we propose the control laws to solve Problem
1 and Problem 2 and analyze the stability.

A. Key idea used for the directed leaderless maneuvers

Here, we first provide an intuitive idea of why the control
laws presented in [25], [26] for agents sensing over undirected
graphs will not work for the directed sensing graph. In [25],
the formation maneuvers are generated by perturbing the edge
weights for complex Laplacian. Similarly, in [26], the signed
Laplacian/stress matrix weights were perturbed in order to
induce affine motions. The assumption of only a d-rooted
graph, which is the necessary and sufficient condition for static
formation control based on complex-laplacian [16], [18], and
the assumption of only a d + 1-rooted graph, which is the
necessary and sufficient condition for static affine formation
control [19] is not sufficient for generating formation ma-
neuvers adopting a similar approach of perturbing the edge
weights as in [25], [26]. This is because the alteration of
weights leads to changes in the forces acting on an agent,
which are in equilibrium, thereby causing it to move in a
particular direction [25], [26]. However, in a directed graph,
sensing is unidirectional, resulting in some nodes not having
any in-neighbors. Unlike the case for a d-rooted undirected
graph considered in [25], for a directed d-rooted graph, the
root nodes do not have any in-neighbors, so they will not
experience any force by modification of the edge weights
in case of complex-laplacian. Hence, we need to modify
the assumption, and we have added another condition to
the d-rooted graph, i.e., each root node will also need to
have at least d in neighbors. Similarly, for affine formation
maneuvering, a d+ 1-rooted graph where the root node must
have at least d + 1 in-neighbors assumption is used. This
condition entails the addition of extra edges to the sensing
graph, thus enabling a solution to the problem of directed
sensing topology. In Fig.2(a), the root nodes do not possess
any in-neighbors. Consequently, perturbing edge weights will



not impact the force exerted on these root nodes, leading to a
lack of movement. Directed 3-regular graphs, exemplified in
Fig.2(b), inherently satisfy these requirements as each agent
can access measurements from three neighbors. The topology
in Fig.2(a) does not facilitate affine maneuvers, whereas the
one in Fig.2(b) does. Importantly, the stipulated condition does
not restrict the graph to a regular digraph like the one depicted
in Fig.2(b); any arbitrary d + 1-rooted digraph meeting the
additional conditions specified by Assumption 1 will suffice.

B. Leaderless formation maneuvers by manipulating complex
laplacian

In this section, we solve Problem 1, i.e., we discuss how
to generate only translational, rotational, and scale leaderless
formation maneuvers by manipulating weights of complex
Laplacian for directed graphs. Unlike the case in [25], where
such motions can be generated by manipulating weights of
complex Laplacian for undirected graphs, directed graphs
are considered here. Also, we do not need to know global
interaction topology among the agents as our proposed law
does not use the stabilizing diagonal matrix K as used in
[25].

1) Control strategy for single-integrators: The following
control law is proposed for complex laplacian-based formation
maneuvering (∀i ∈ V, j ∈ Ni)

ui = −
∑
j∈Ni

w̄ijζi +
∑
i∈Nj

w̄jiζj −
1

h

∑
j∈Ni

ŵij(pj − pi)− δ̂i,

ζ̇i = −aζi +
∑
j∈Ni

wij(pj − pi) (6a)

˙̂
δi =

∑
j∈Ni

w̄ijζi −
∑
i∈Nj

w̄jiζj +
1

h

∑
j∈Ni

ŵij(pj − pi) + vi,

(6b)

where w̄ij is the complex conjugate of wij . It is important
to observe that here we have ζi, pi ∈ C, ∀i ∈ V, and ζi ∈ C
is an auxiliary state variable. Also, the information wjiζj has
to be transmitted from the out-neighbors of agent i, which are
sensing the agent i. The velocity information, i.e., vi, can be
obtained by integrating acceleration measurements obtained by
accelerometer sensors.

The complex weights wij s are calculated from the fol-
lowing equation [16],which was required for static formation
control, ∑

j∈Ni

wij(p
∗
i − p∗j ) = 0. (7)

For calculating ŵij the following equation is used∑
j∈Ni

ŵij(p
∗
i − p∗j ) = v∗i , (8)

where v∗i is the desired velocity of the i-th agent. The
perturbation weight ŵij is responsible for generating maneu-
vering force. Note that as we have at least 2 neighbors for
each agent i, the solution of (8) always exists. The desired
velocity (v∗) can be split into translation, rotation, and scale
components, i.e., v∗ = v∗t 1n + γp∗ + iwp∗, where v∗t ∈ C
is the common translational velocity, γ ∈ R > 0 keeps track

of whether the formation grows or contracts, i.e., it controls
the scale, and w ∈ R controls the angular speed and hence
controls the rotational motion of the formation. All agents’
desired reference velocities are stacked together to obtain
v∗ := [v∗1 . . . v∗n]

T .
Now, we define a new state variable x := [pT ζT ]T ∈ C2n.

In the compact form (6) can be written as:

ẋ =

[
ṗ

ζ̇

]
=

[
0 −LH

L −aIn

]
︸ ︷︷ ︸

A

[
p
ζ

]
− 1

h

[
L̂ 0
0 0

]
︸ ︷︷ ︸

Â

[
p
ζ

]
+

[
δ̃
0

]
︸︷︷︸
∆̃

,

=⇒ ẋ = Ax− 1

h
Âx+ ∆̃ (9a)

˙̂
δ = LHζ +

1

h
L̂p+ v, (9b)

where δ̂ = [δ̂T1 δ̂T2 . . . δ̂Tn ]
T , δ = [δT1 δT2 . . . δTn ]

T , δ̃ =
δ − δ̂, u = [uT

1 uT
2 . . . uT

n ]
T , v = [vT1 vT2 . . . vTn ]

T , and

A :=

[
0 −LH

L −aIn

]
and Â :=

[
L̂ 0
0 0

]
, and ∆̃ :=

[
δ̃
0

]
. Here,

LH denotes the transpose of complex conjugate of the matrix
L. We may rewrite L̂ = L̂t + L̂r + L̂s, where L̂t, L̂r, and L̂s

denotes the translational, rotational, and scale component of
L̂.

Lemma 2. The eigenvalues of A are given by λ =
−a±

√
a2−4σ
2 , where σ is an eigenvalue of LHL, and A

has two zero eigenvalues whose corresponding eigenvectors
are [ΩT 0T ]T ∈ C2n where Ω ∈ Cn is the eigenvector
corresponding to the zero eigenvalue of LHL.

Proof. Let [ΩT Ω̄T ]T ∈ C2n be an eigenvector of A, and
λ be the corresponding eigenvalue. Hence, A[ΩT Ω̄T ]T =[
0 −LH

L −aIn

] [
Ω
Ω̄

]
= λ

[
Ω
Ω̄

]
. Hence, −LHΩ̄ = λΩ, and

LΩ − aΩ̄ = λΩ̄, implies −LHLΩ = −λ(λ + a)Ω, implies
Ω ∈ Cn is an eigenvector of LHL and the corresponding
eigenvalue is σ := −λ(λ+a). Hence, λ = −a±

√
a2−4σ
2 . Note

that eigenvalues of LHL are real and non negative. As, the
nullity and null space of LHL is same as that of L, we have 2
zero eigenvalues of A. Also, when λ = 0, LΩ = 0, implying
Ω̄ = 0.

2) Stability analysis: Here, we present our main theorem
regarding the leaderless translation, scale, and rotation forma-
tion maneuvering. From 2, we have [ΩT Ω̄T ]T ∈ C2n is an
eigenvector corresponding to the zero eigenvalues of A, and
we have Ω ∈ M = span{1n, p∗}. The following Lemma will
be useful in our future analysis.

Lemma 3. For a vector v = [vT1 vT2 ]
T ∈ C2n, when v1 ∈ M,

we have Âv = [vT3 0T ]T where v3 ∈ M.

Proof. As we have v1 ∈ M, we can write v1 = c11n + c2p
∗,

where c1, c2 ∈ C. Now we have

Âv =

[
L̂ 0
0 0

] [
v1
v2

]
=

[
L̂v1

0

]
=

[
v3
0

]
(10)

Now we have L̂v1 = c1L̂1n+ c2L̂p∗ = 0+ c2(L̂tp
∗+ L̂rp

∗+
L̂sp

∗) = c2(v
∗
t 1n + γp∗ + ιωp∗) = c2v

∗
t 1n + c2(γ+ ιω)p∗ :=

v3 ∈ M.



Theorem 1. For a group of single integrators described by (4)
and the control law (19), subject to Assumption 1, when the
control gain parameter, h, is sufficiently high, then p(t) → M
and ṗ(t) → − 1

h L̂p(t) → M as t → ∞.

Proof. Let us consider the subspace M⊥ to be the orthogonal
complement of M. The dimensions of M and M⊥ are 2
and n − 2, respectively, over the complex field. Here, M =
Ker{L}. Also, we have Ker{L} = Ker{LHL}, and hence,
M = Ker{LHL}. Now, we add zeros to these subspaces to
extend them and get

M̂ := Im
([

BM
0n×2

])
, M̂⊥ := Im

([
BM⊥

BW

])
.

where {BM}, {BM⊥}, and {BW} are a set of basis for M,
M⊥, and W , respectively. Here, W ⊂ C having a dimension
of n − 2. Hence, M̂,M̂⊥ ⊂ C2n, having dimension of 2
and 2n− 2, respectively. We may observe that these two sub-
spaces are mutually orthogonal, i.e., for any vector s ∈ M̂ and
s̄ ∈ M̂⊥ we have ⟨s, s̄⟩ = 0. Also, M̂ ⊕ M̂⊥ = C2n. Now
the projection matrix for a vector v ∈ C2n to the subspace M̂
is denoted by PM̂ :=

[
PM 0
0 0

]
, where PM is the projection

for a vector v
′ ∈ Cn to the subspace M. Also, from Lemma

2, it is clear that M̂ is the kernel of A. Now, we can rewrite
x = [pT ζT ]T ∈ C2n and ∆̃ as

x = PM̂x+ PM̂⊥x = x∥ + x⊥,

∆̃ = PM̂∆̃ + PM̂⊥∆̃ = ∆̃∥ + ∆̃⊥,

where x∥ and x⊥ are the components of x ∈ C2n along M̂
and M̂⊥, respectively. Hence, p and δ̂ are written as

p = PMp+ PM⊥p = p∥ + p⊥ (11a)

δ̂ = PS δ̂ + PS⊥ δ̂ = δ̂∥ + δ̂⊥, (11b)

where p∥, δ̂∥, p⊥, δ̂⊥ are the components of p, δ̂ ∈ Cn along
M and M⊥, respectively. Observe that x∥ = [pT∥ 0T ]T ∈
C2n, and x⊥ = [pT⊥ ζT ]T ∈ C2n. From (9), the closed loop
dynamics is

ẋ = Ax− 1

h
Âx+ ∆̃, (12a)

˙̂
δ = −LHζ +

1

h
L̂p+ v. (12b)

We consider (12a) as a nominal system with input with ∆̃
being the input. First, we show that the error term, ∆̃, goes to
zero exponentially. From (12b) and (12a) , δ̃ has dynamics:

˙̃
δ = δ̇ − ˙̂

δ = − ˙̂
δ = −LHζ − 1

h
L̂p− v

= −δ̃ =⇒ δ̃(t) = exp(−In×nt)δ̃(t0). (13)

From (13), it is clear that δ̃ goes to zero exponentially, and
hence ∆̃ goes to zero exponentially. Now, the dynamics of x⊥
is given by:

ẋ⊥ = PM̂⊥Ax− 1

h
PM̂⊥Âx+ ∆̃⊥

= PM̂⊥A(x∥ + x⊥)−
1

h
PM̂⊥Â(x∥ + x⊥) + ∆̃⊥ (14)

We will now consider only the nominal system (without input
∆̃⊥) and show that x⊥(t) → 0 and as t → ∞. As x∥ is in
the Null space of A, we have Ax∥ = 0. Also,

PM̂⊥Âx∥ =

[
PM⊥ 0
0 0

] [
L̂ 0
0 0

] [
p∥
ζ∥

]
=

[
PM⊥L̂p∥

0

]
.

Also, from Lemma 3 we have L̂p∥ ∈ M. Hence, PM⊥L̂p∥ =

0, implying PM̂⊥Âx∥ = 0. Hence, (14) becomes

ẋ⊥ = PM̂⊥Ax⊥ − 1

h
PM̂⊥Âx⊥ (15)

Now, let a basis for M̂ be given by the columns of BM̂ :=
[v1 v2] ∈ C2n×2. We can obtain a set of vectors orthog-
onal to the columns of BM̂, which form a basis for the
space M̂⊥ and let these vectors be given by the columns
of BM̂⊥ = [u1 u2 . . . u2n−2]. Now we define T−1 =
[BM̂ BM̂⊥ ] ∈ C2n×2n, also these basis vectors are chosen

such that TPM̂⊥T−1 =

[
02×2 0
0 I2n−2×2n−2

]
. Now, we

apply change of coordinates, T , to x, i.e.,

[zT1 zT2 ]
T = Tx = T (x∥ + x⊥).

Here, z1 ∈ C2 and z2 ∈ R2n−2. Observe that Tx∥ = [zT1 0T ]T

and Tz⊥ = [0T zT2 ]
T . Also, TAT−1 =

[
A11 0
0 A22

]
, where

A11 ∈ C2×2 sharing the zero eigenvalues of A, and A22 ∈
C2n−2×2n−2 which shares all eigenvalues of A with negative
real parts. Applying the same co-ordinate change to (15) and
obtain

d
dt

[
0
z2

]
= TPM̂⊥AT−1

[
0
z2

]
− 1

h
TPM̂⊥ÂT−1

[
0
z2

]
(16)

Now, form (27) and using the fact TPM̂⊥AT−1 =

(TPM̂⊥T−1)(TAT−1) =

[
0 0
0 A22

]
, we have

ż2 = A22z2 −
1

h
(TPM̂⊥ÂT−1)†z2, (17)

where the † symbol indicates the last 2n − 2 × 2n − 2
block is taken because it is compatible with the size of z2.
Now, consider the Lyapunov candidate V = zT2 Qz2, where
Q is positive definite and satisfies the Lyapunov equation
QA22 +AT

22Q = −2I2n−2. Since all the eigenvalues of A22

are negative, such a matrix Q always exists. Now, taking the
derivative of V along the trajectories of the dynamics of z2
using (28), we get:

V̇ ≤ −2||z2||2 +
2

h
||Q(TPS⊥ÂT−1)†||||z2||2

=⇒ V̇ ≤ −2||z2||2 +
2

h
||Q||||(TPM̂⊥ÂT−1)†||||z2||2

We have ||(TPM̂⊥ÂT−1)|| = ||(TPM̂⊥ÂT−1)†|| and ||Q|| ≤
1

||A22|| ≤
1

|λ(A22)|max
= 1

|λ(A)|max
≤ 1

a , because from Lemma
2, we have a ≤ |λ(A)|max.Hence,

V̇ ≤ −2||z2||2 +
2||Â||
ha

||z2||2 (∵ ||PS⊥ || ≤ 1)

=⇒ V̇ ≤ −2
||z2||2

h

(
h− ||L̂||

a

)
(∵ ||Â|| = ||L̂||) (18)



Also, from (18) we obtain V̇ ≤ −kV where k :=
h−α

hλmax(Q) , α := ||L̂||
a . Hence, with sufficiently large h, the

nominal system is exponentially stable. Now, the system (14)
is globally Lipschitz with respect to x⊥ and input ∆̃ and hence
is input to state stable [28, Lemma 4.6]. Using (13), as the
input ∆̃ goes to zero exponentially, x⊥ → 0 exponentially.
Hence, from (12a), we obtain

x(t) → x∥(t) = PM̂x =

[
PM 0
0 0

] [
p
ζ

]
=⇒ p(t) → p∥ ∈ M t → ∞.

As, ζ̇ = Lp − aζ, ζ̇ → −aζ, as t → ∞, hence ζ → 0, as
t → ∞. Hence, ṗ(t) → − 1

h L̂p(t) → − 1
h L̂p(t)∥ ∈ M, t →

∞.

Remark 7. Note that we have to choose h > α := ||L̂||
a ,

and by choosing a sufficiently large h, global information on
the interaction topology can be avoided. In [25], [26] also
a sufficiently large perturbation parameter, h, was chosen,
however, in addition, [25], [26] required a stabilizing diagonal
matrix whose design requires the knowledge of exact interac-
tion among the agents, which is not required here.

Remark 8. From Theorem 1, we know that using the control
law (19), we have ṗ(t) → − 1

h L̂p(t) → M. We provide an
analytical solution for p(t) in the next Theorem.

Theorem 2. The following two mutually exclusive cases hold
when h is sufficiently high,
(a) (i) When we have at least one of the speeds ω or γ
is nonzero, then the matrix Ã := A − 1

h Â has an eigen-
value 0, and the corresponding eigenvector is [1T

n 0T
n ]

T , one
eigenvalue is − 1

h (γ+ ιω) whose corresponding eigenvector is
[(

v∗
t

γ+ιω1n+p∗)T 0Tn ]T , where v∗t is the designed translational
velocity. The other eigenvalues have a negative real part. (ii)
Also, p(t) → l11n + l2

(
v∗
t

γ+ιω

)
∈ M as t → ∞, where

l{1,2} ∈ C are determined by the initial condition p(0).
(b) (i) When ω = γ = 0 and v∗t ̸= 0, then the matrix
has a zero eigenvalue with algebraic multiplicity two, but
the geometric multiplicity equals 1, and the chain of gen-
eralized (complex) associated with the zero eigenvalues are
{[− 1

hv
∗
t 1T

n 0Tn ]T , [(p∗)T 0Tn ]T } and the other eigenvalues have
negative real part. (ii) Also, ṗi(t) → − 1

h l2v
∗
t , ∀i ∈ V, as

t → ∞, where l2 ∈ C, is determined by the initial condition,
i.e., p(0).

Proof. From Lemma 2 and Remark 2, we have A has two
zero eigenvalues having algebraic and geometric multiplicity
equals to two. The eigenvectors are [1Tn 0T ]T and [(p∗)T 0T ]T ,
respectively. Also, from Theorem 1, we already know that
Ã has 2n − 2 eigenvalues with negative real parts. Now, we
analyze the first case, i.e., case (i). For A− 1

h Â, we have

(A− 1

h
Â)[1T

n 0Tn ]
T = 0− 1

h

[
L̂ 0
0 0

] [
1n
0n

]
=

[
− 1

h L̂1n
0n

]
= 0.

Also,

(A− 1

h
Â)

[
v∗
t

γ+ιω1n + p∗

0n

]
=

[
− 1

h L̂p
∗

0n

]
=

[
− 1

h L̂tp
∗ − 1

h L̂rp
∗ − 1

h L̂sp
∗

0n

]
=

[
− 1

hv
∗
t 1n − 1

h (γ + ιω)
0n

]
= − 1

h
(γ + ιω)

[
v∗
t

(γ+ιω)1n + p∗

0n

]
.

Hence, (i) of (a) is established. Hence, we can write the

solution of ẋ = Ãx in the following form x(t) = l1

[
1n

0n

]
+

l2

[
v∗
t

(γ+ιω)1n + p∗

0n

]
e−

1
h (γ+ιω)t +

∑2n
m=3 fmeλmt, where the

eigenvalues λm are such that Re(λm) < 0,m ≥ 3, and the
functions fm(t, lm, gm, gm−1, . . . , gm−ϱ), ϱ ∈ N, depending
on the algebraic and geometric multiplicity of λm and takes the
form of a linear combination, i.e., lm(gm+gm−1t+gm−2

t2

2! +
· · ·+gm−ϱ tϱ

ϱ!
). Now, as fm will be a polynomial function in t,

hence fmeλm → 0 as t → ∞, and p(t) → l11n + l2

(
v∗
t

γ+ιω

)
.

Now, we analyse the case (b), which corresponds to γ = 0
and ω = 0, hence we have,

(A− 1

h
Â)p∗ = − 1

h
Âp∗ =

[
− 1

h L̂p
∗

0n

]
=

[
− 1

hv
∗
t 1n

0n

]
and

(A− 1

h
Â)

[
− 1

hv
∗
t 1n

0n

]
= − 1

h
v∗t Ã

[
1n

0n

]
= 0.

Hence, we have (Ã)2[p∗T 0T ]T = 0, but (Ã)[p∗T 0T ]T ̸= 0,
which proofs (i) if part (b). Now, we can write the solution
x(t) in the following form

x(t) = − l1v
∗
t

h

[
1n

0n

]
+ l2

[
(p∗ − l1v

∗
t

h 1nt)
0n

]
+

2n∑
m=3

fmeλmt,

where the eigenvalues λm are such that Re(λm) < 0,m ≥
3, and the functions fm(t, lm, gm, gm−1, . . . , gm−ϱ), ϱ ∈ N,
depending on the algebraic and geometric multiplicity of λm.
Hence, p(t) → − 1

hv
∗
t (l1+ l2t)1n+ l2p

∗ and ṗ(t) → − l2
h v

∗
t 1n

as t → ∞.

Remark 9. Different from the affine formation maneuver
case, which will be discussed in Section III-C, for the com-
plex laplacian-based maneuvering discussed in Section III-B
although affine formation maneuvers are not possible, i.e.,
the sheer maneuvering is not possible, the assumption of
d + 1 rooted graph is not required. Only a d-rooted graph
assumption is required here. Hence, each agent only needs
to sense a minimum of d in-neighbors instead of d + 1 in-
neighbors, reducing the sensing requirements for each agent
compared to the affine formation maneuvering case.

C. Leaderless Affine formation maneuvers

In this subsection, we present the proposed control laws
for solving the Problem 2.



1) Control strategy for single integrators: We propose
the following control law for affine maneuvering of single
integrators (∀i ∈ V, j ∈ Ni,)

ui = −
∑
j∈Ni

wijζi +
∑
i∈Nj

wjiζj −
1

h

∑
j∈Ni

ŵij(pj − pi)− δ̂i,

ζ̇i = −aζi +
∑
j∈Ni

wij(pj − pi), (19a)

˙̂
δi =

∑
j∈Ni

wijζi −
∑
i∈Nj

wjiζj +
1

h

∑
j∈Ni

ŵij(pj − pi) + vi,

(19b)

where ζi ∈ Rd is an auxiliary state variable, a > 0 is a
constant, and vi is the measured velocity of the i-th agent.
In the control law (19), the information wjiζj has to be
transmitted from the out-neighbors of i; hence inter-agent
communication is required. The term, δ̂i, in (19) is an integral
term that is used for tackling constant disturbance affecting
the dynamics.

The weights wij and ŵij are calculated from the following
equations: ∑

j∈Ni

wij(p
∗
i − p∗j ) = 0 ∀i ∈ V, (20a)∑

j∈Ni

ŵij(p
∗
i − p∗j ) = v∗i , (20b)

where the desired velocity of the i-th agent is denoted as v∗i .
Note that as we have d+1 unknowns with d equations in (20b)
for each agent i, the solution of (20b) will be the summation
of a particular solution and any vector in the null space, i.e.,
the solution of eqn. (20a) which is one-dimensional vector
space in Rd+1. Based on Assumption 1, it is evident that each
agent has d+1 in-neighbors. Additionally, we have a generic
desired configuration. Therefore, for each agent with index i, it
is always possible to find d vectors in Rd of the form p∗ij , j ∈
Ni, which are linearly independent. (According to Lemma 1
and Definition 1.3, in a d+1 rooted digraph, all nodes except
the root nodes have d + 1 in-neighbors, and our additional
assumption on root nodes ensures that the root nodes also
have d+ 1 in-neighbors.) Consequently, solutions (which are
not unique) to (20a) and (20b) always exist. It is essential to
observe that the solution to (20b) is the perturbation weights
that are responsible for the generation of maneuvering force,
and as the modified interaction topology ensures each root-
node also has d + 1 in-neighbors, the solution for (20b) for
root nodes also exists.

Now, define new state variable x := [pT ζT ]T ∈ R2nd. In
compact form (19) can be written as:

ẋ =

[
ṗ

ζ̇

]
=

[
0 −L̄T

L̄ −aInd

]
︸ ︷︷ ︸

Ā:=A⊗Id

[
p
ζ

]
− 1

h

[ ¯̂L 0
0 0

]
︸ ︷︷ ︸
¯̂A:=Â⊗Id

[
p
ζ

]
+

[
δ̃
0

]
︸︷︷︸
∆̃

,

=⇒ ẋ = Āx− 1

h
¯̂Ax+ ∆̃

˙̂
δ = L̄T ζ +

1

h
¯̂Lp+ v, (21a)

where δ̂ = [δ̂T1 δ̂T2 . . . δ̂Tn ]
T , δ = [δT1 δT2 . . . δTn ]

T , δ̃ =
δ − δ̂, u = [uT

1 uT
2 . . . uT

n ]
T , v = [vT1 vT2 . . . vTn ]

T , and
L̄ := L ⊗ Id,

¯̂L := L̂ ⊗ Id, Ā := A ⊗ Id,
¯̂A := Â ⊗ Id

with A :=

[
0 −LT

L −aIn

]
and Â :=

[
L̂ 0
0 0

]
, and ∆̃ :=

[
δ̃
0

]
.

For designing L̂, the desired velocity (v∗) can be split into
translation, rotation, scale and shear components, as shown
in Fig.1(b), i.e., v∗ = v∗t1 + v∗t2 + v∗r + v∗s + v∗s1 + v∗s2, and
weights can be designed for each component by solving (20b)
independently i.e., for R2 L̂ = L̂t1+L̂t2+L̂r+L̂s+L̂s1+L̂s2 ,
where the subscripts {t1, t2} stand stands for two translational
directions, {r} for rotational, {s} for scale and {s1, s2} for
shear components which form a basis for all affine transfor-
mations in R2. The following lemma is about the eigenvalues
and eigenvectors of the matrix Ā.

Lemma 4. The eigenvalues of A are given by λ =
−a±

√
a2−4σ
2 , where σ is an eigenvalue of LTL. Ā has d(d+1)

zero eigenvalues and the corresponding eigenvectors are given
by [ΩT 0T ]T ∈ R2nd, where then Ω = ω ⊗ Id, and ω ∈ Rn

lies in the null space of LTL.

Proof. The proof is similar to the proof of Lemma 2.

2) Stability analysis for single integrator: Next, stability
analysis with formation control law (19) for single integrators
is carried out. The following lemma will be useful in our
analysis.

Lemma 5. For an affine transformation p̂ = (In ⊗ A)p∗ +
(1n ⊗ b), with arbitrary A ∈ Rd×d and b ∈ Rd, we
have ¯̂Lp̂ = (In ⊗ A)v∗ ∈ S, where ¯̂L = L̂ ⊗ Id and
v∗ = [v∗1

T v∗2
T . . . v∗n

T ]T is the vector containing desired
velocities of the agents.

Proof. The following identities are true for Kronecker prod-
ucts of matrices: (M1⊗M2)(M3⊗M4) = (M1M3⊗M2M4),
implies (M1⊗I)(I⊗M2) = (M1⊗M2) = (I⊗M2)(M1⊗I),
with appropriate sizes of identity matrices. It then follows that

¯̂Lp̂ = (L̂ ⊗ Id)((In ⊗A)p∗ + (1n ⊗ b))

= (L̂ ⊗ Id)(In ⊗A)p∗ + (L̂ ⊗ Id)(1n ⊗ b)

= (L̂ ⊗A)p∗ + (L̂1n ⊗ b)

= (In ⊗A)(L̂ ⊗ Id)p
∗ (∵ L̂1n = 0)

= (In ⊗A)v∗ (from (20b), we have v∗ = (L̂ ⊗ Id)p
∗)

As, we have chosen v∗ ∈ S so (In ⊗ A)v∗ ∈ S, and ¯̂Lp̂ ∈
S.

Next, we state the main theorem for single integrators.

Theorem 3. For a group of single integrators described by
(4) and the control law (19), subject to Assumption 1, if the
control gain parameter, h, is sufficiently large then p(t) → S
and ṗ(t) → 1

h
¯̂Lp(t) → S as t → ∞.

Proof. Let us consider the subspace S⊥ to be the orthogonal
complement of S. The dimensions of S and S⊥ are d(d+ 1)
and d(n−d−1) [19, Theorem 4.1,Theorem 4.2], respectively.
Here, S = Ker{L̄}. Also, we have Ker{L̄} = Ker{L̄T L̄}, and



hence, S = Ker{L̄T L̄}. Now, we add zeros to this subspaces
to extend it to get

Ŝ := Im
([

BS
0nd×d(d+1)

])
, Ŝ⊥ := Im

([
BS⊥

BW

])
,

where {BS}, {BS⊥}, and {BW are a set of basis for S,S⊥,
and W , respectively. Hence, W ⊂ Rnd having dimension of
nd − d(d + 1). We may observe that the sub-spaces Ŝ, Ŝ⊥,
are mutually orthogonal, i.e., for any vector s ∈ Ŝ and s̄ ∈
Ŝ⊥ we have ⟨s, s̄⟩ = 0. Also, Ŝ ⊕ Ŝ⊥ = R2nd. Now the
projection matrix for a vector v ∈ R2nd to the subspace Ŝ
is denoted by PŜ :=

[
PS 0
0 0

]
, where PS is the projection

for a vector v
′ ∈ Rnd to the subspaces S. Also, from Lemma

4, it is clear that Ŝ is the kernel of Ā. Now, we can rewrite
x = [pT ζT ]T ∈ R2nd and ∆̃ as

x = PŜx+ PŜ⊥x = x∥ + x⊥,

∆̃ = PŜ∆̃ + PŜ⊥∆̃ = ∆̃∥ + ∆̃⊥,

where x∥ and x⊥ are the components of x ∈ R2nd along Ŝ
and Ŝ⊥, respectively. Therefore, p and δ̂ are written as

p = PSp+ PS⊥p = p∥ + p⊥ (22a)

δ̂ = PS δ̂ + PS⊥ δ̂ = δ̂∥ + δ̂⊥, (22b)

where p∥, δ̂∥, p⊥, δ̂⊥ are the components of p, δ̂ ∈ Rnd along
S and S⊥, respectively. Observe that x∥ = [pT∥ 0T ]T ∈ R2nd,
and x⊥ = [pT⊥ ζT ]T ∈ R2nd. From (21), the closed loop
dynamics is

ẋ = (A⊗ Id)x− 1

h
(Â ⊗ Id)x+ ∆̃ (23a)

˙̂
δ = −(LT ⊗ Id)ζ +

1

h
(L̂ ⊗ Id)p+ v, (23b)

We consider (23a) as a nominal system with input with ∆̃
being the input. First, we show that the error term, ∆̃, goes to
zero exponentially. From (23b) and (23a) , δ̃ has dynamics:

˙̃
δ = δ̇ − ˙̂

δ = − ˙̂
δ = (LT ⊗ Id)ζ −

1

h
(L̂ ⊗ Id)p− v

= −δ̃ =⇒ δ̃(t) = exp(−Idn×dnt)δ̃(t0). (24)

From (24), it is clear that δ̃ goes to zero exponentially, and
hence ∆̃ goes to zero exponentially.

Now, the dynamics of x⊥ is given by:

ẋ⊥ = PŜ⊥(A⊗ Id)x− 1

h
PŜ⊥(Â ⊗ Id)x+ ∆̃⊥

= PŜ⊥Ā(x∥ + x⊥)−
1

h
PŜ⊥

¯̂A(x∥ + x⊥) + ∆̃⊥ (25)

We will now consider only the nominal system (without input
∆̃⊥) and show that x⊥(t) → 0 and as t → ∞. As x∥ is in
the Null space of Ā, we have Āx∥ = 0. Also,

PŜ⊥
¯̂Ax∥ =

[
PS⊥ 0
0 0

] [
L̂ ⊗ Id 0

0 0

] [
p∥
ζ∥

]
=

[
PS⊥

¯̂Lp∥
0

]
,

and from Lemma 5 we have ¯̂Lp∥ ∈ S . Hence, PS⊥
¯̂Lp∥ = 0,

implying PŜ⊥
¯̂Ax∥ = 0. Hence, 25 becomes

ẋ⊥ = PŜ⊥Āx⊥ − 1

h
PŜ⊥

¯̂Ax⊥ (26)

Now, let a basis for Ŝ be given by the columns of BŜ :=
[v1 v2 . . . vd(d+1)] ∈ R2nd×d(d+1). We can obtain a set of
vectors orthogonal to the columns of BŜ , which form a basis
for the space Ŝ⊥ and let these vectors be given by the columns
of BŜ⊥ = [u1 u2 . . . u2dn−d(d+1)]. Now we define T−1 =
[BŜ BŜ⊥ ] ∈ R2nd×2nd, also these basis vectors are chosen

such that TPŜ⊥T−1 =

[
0d(d+1) 0

0 I2dn−d(d+1)

]
. Now, we

apply change of coordinates, T , to x, i.e.,

[zT1 zT2 ]
T = Tx = T (x∥ + x⊥).

Here, z1 ∈ Rd(d+1) and z2 ∈ R2dn−d(d+1). Observe that
Tx∥ = [zT1 0T ]T and Tz⊥ = [0T zT2 ]

T . Also, T ĀT−1 =[
A11 0
0 A22

]
, where A11 ∈ R(d2+d)×(d2+d) sharing the zero

eigenvalues of Ā, and A22 ∈ R2dn−d(d+1)×2dn−d(d+1) which
shares all eigenvalues of Ā with negative real parts. Applying
the same co-ordinate change to (26) and obtain

d
dt

[
0
z2

]
= TPŜ⊥ĀT−1

[
0
z2

]
− 1

h
TPŜ⊥

¯̂AT−1

[
0
z2

]
(27)

Now, form (27) and using the fact

TPŜ⊥ĀT−1 = (TPŜ⊥T
−1)(T ĀT−1) =

[
0 0
0 A22

]
,

ż2 = A22z2 −
1

h
(TPŜ⊥

¯̂AT−1)†z2, (28)

where the † symbol indicates the last 2dn− d(d+1)× 2dn−
d(d+1) block is taken because it is compatible with the size of
z2. Now, consider the Lyapunov candidate V = zT2 Qz2, where
Q is positive definite and satisfies the Lyapunov equation
QA22+AT

22Q = −2I2dn−d(d+1). Since all the eigenvalues of
A22 are negative, such a matrix Q always exists. Now, taking
the derivative of V along the trajectories of the dynamics of
z2 using (28), we get:

V̇ ≤ −2||z2||2 +
2

h
||Q(TPS⊥

¯̂AT−1)†||||z2||2

=⇒ V̇ ≤ −2||z2||2 +
2

h
||Q||||(TPŜ⊥

¯̂AT−1)†||||z2||2

We have ||(TPŜ⊥
¯̂AT−1)|| = ||(TPŜ⊥

¯̂AT−1)†|| and ||Q|| ≤
1

||A22|| ≤
1

|λ(A22)|max
= 1

|λ(Ā)|max
≤ 1

a , because from Lemma
4, we have a ≤ |λ(Ā)|max. Hence,

V̇ ≤ −2||z2||2 +
2|| ¯̂A||
a

||z2||2 (∵ ||PS⊥ || ≤ 1)

=⇒ V̇ ≤ −2
||z2||2

h

(
h− ||L̂||

a

)
(∵ || ¯̂A|| = || ¯̂L||) (29)

Hence, if h > ||L̂||
a := α, V̇ is negative definite. Also, from

(29) we obtain

V̇ ≤ −kV (30)

where k := h−α
hλmax(Q) and hence the nominal system is ex-

ponentially stable. Now, the system (25) is globally Lipschitz
with respect to x⊥ and input ∆̃ and hence is input to state
stable [28, Lemma 4.6]. Using (24), as the input ∆̃ goes to



zero exponentially, x⊥ → 0 exponentially. Hence, from (23a),
we obtain

x(t) → x∥(t) = PŜx =

[
PS 0
0 0

] [
p
ζ

]
=⇒ p(t) → p∥ and ζ(t) → 0 t → ∞.

Hence, from (9a) it is clear that

ṗ(t) → − 1

h
(L̂ ⊗ Id)p(t) = − 1

h
¯̂Lp∥(t) ∈ S, t → ∞.

Remark 10. After subtracting the term 1
h
¯̂A from Ā in (21),

with a lower bound on h as given in Theorem 3, we end up
modifying the d(d+1) zero eigenvalues of Ā that span S. The
eigenvectors corresponding to these modified eigenvalues now
also span the space of affine transformations, i.e., S. Moreover,
the non-zero eigenvalues of Ā that originally resided in the
right half of the complex plane are also changed so that they
do not migrate to the left half of the complex plane.

Remark 11. In [25], [26] a diagonal matrix is required for the
control design for undirected graphs, and a fully decentralized
design without the need for any diagonal matrix was not
addressed for undirected graphs in the literature. Although
we have considered a directed interaction topology here, using
our proposed laws in (6) and (19) we can solve this problem
for undirected graphs as well.

3) Affine maneuvering for higher-order integrators: We
next design a control law and establish the stability for affine
maneuvering of higher order integrator systems in the presence
of constant disturbances as described in (5).

We adopt an adaptive back-stepping-based approach for the
design. Let y∗i,l+1, 1 ≤ l ≤ ρ − 1 be the desired input for
stabilizing l-th order term for the i-th agent. Then, the error
term is defined as ỹi,l+1 := yi,l+1−y∗i,l+1. Further, to avoid the
use of the derivatives of virtual control input, i.e., y∗i,l+1, 1 ≤
l ≤ ρ−1, in the control law, for avoiding the amplification of
noise, motivated by design methods in [29], we use a second
order command filter H(s) :=

w2
n

s2+2ζwns+w2
n
, with ζ = 1. The

filtered signal is denoted by y∗if,l+1, 1 ≤ l ≤ ρ− 1, and here
y∗if,l+1 = H(s)y∗i,l+1(s). In frequency domain, the derivative
of y∗if,l+1 is obtained by ẏ∗if,l+1(s) := sH(s)y∗i,l+1. Here, wn

is the filter’s natural frequency, and the filter’s dc gain and
damping ratio are 1, which ensures no overshoot for tracking
the signal. The dynamics of the command filter in the state
space form is:

ẋi,l+1 = wn(F ⊗ Id)xi,l+1 + wn(B ⊗ Id)y
∗
i,l+1 (31a)

[(y∗if,l+1)
T (ẏ∗if,l+1)

T ]T = (C ⊗ Id)xi,l+1 (31b)

where xi,l+1 := [ηT1i,l+1 ηT2i,l+1]
T are the state variables asso-

ciated with the command filter, y∗if,l+1 is the filtered output of

y∗i,l+1, and F :=

[
0 1
−1 −2

]
, B := [0 1]T , C :=

[
1 0
0 wn

]
.

The output is considered to be [(y∗if,l+1)
T (ẏ∗if,l+1)

T ]T . The
equilibrium point for the filter is calculated as xeq

i,l+1 = −(F⊗
Id)

−1(B ⊗ Id)y
∗
i,l+1 = −(F−1B ⊗ Id)y

∗
i,l+1 = ([1, 0]T ⊗

Id)y
∗
i,l+1. The following coordinate transform for agent i is

defined, x̃i,l+1 := [η̃T1i,l+1 η̃T2i,l+1]
T = xi,l+1 − xeq

i,l+1 =

[(η1i,l+1−y∗i,l+1)
T ηT2i,l+1]

T . Hence, the filter error dynamics
of the filter states becomes dx̃i,l+1

dt = wn(F⊗Id)x̃i,l+1. As the
matrix A is Hurwitz, this filter error dynamics is exponentially
stable.

Now, the desired state and control laws that are used for
i-th agent are given by:

y∗i,2 = −
∑
j∈Ni

wijζi +
∑
i∈Nj

wjiζj

− 1

h

∑
j∈Ni

ŵij(yj,1 − yi,1)− δ̂i, (32a)

ζ̇i = −aζi +
∑
j∈Ni

wij(yj,1 − yi,1) (32b)

y∗i,l+1 = −klỹi,l + ẏ∗if,l − δ̂i,2 2 ≤ l ≤ ρ− 1 (32c)

ui = −kρỹi,ρ + ẏ∗if,ρ − δ̂i,ρ i ∈ V (32d)
˙̂
δi,1 =

∑
j∈Ni

wijζi −
∑
i∈Nj

wjiζj + ẏi,1 (32e)

˙̂
δi,l = ỹi,l 2 ≤ l ≤ ρ (32f)

Let ȳi,1 = [yTi,1 ζTi ]
T and ȳ1 = [ȳT1,1 . . . ȳTi,1]

T . With the
above control law (32) for the ρ-th order integrator system
(5), we have the following closed loop dynamics in compact
form for n agents:

˙̄y1 = (A⊗ Id)ȳ1 −
1

h
(Â ⊗ Id)ȳ1 +

[
δ̃1,
0

]
+

[
ỹ2
0

]
, (33a)

ẏl = −klỹl + wnη̃2,l + δ̃l + ỹl+1, 2 ≤ l ≤ ρ− 1, (33b)

ẏρ = −kρỹρ + wnη̃2,ρ + δ̃ρ, (33c)
˙̂
δ1 = (LT ⊗ Id)ζ +

1

h
(L̂ ⊗ Id)y1 + ẏ1, (33d)

˙̂
δl = ỹl, 2 ≤ l ≤ ρ (33e)

where yl, δ̂l ∈ Rdn, 2 ≤ l ≤ ρ, are the stacked state vectors
of all agents, and η̃2,l := [η̃T21,l . . . η̃T2n,l]

T , i.e., the stacked
filter error vector of all agents.

Theorem 4. Using the control law in (32) for a group of ρ-
th order systems when the gain parameter h > α and k1 >
1, kρ > 1, kl > 1.5 ∀l ∈ {2, . . . , ρ− 1}, affine maneuvering is
achieved i.e. yi,1(t) → S and yi,2(t) → ¯̂Lyi,1 ∈ S ∀i ∈ V.

Proof. We first show the error system ỹl, 2 ≤ l ≤ ρ goes
to zero asymptotically as t → ∞. Choosing the positive
definite and radially unbounded Lyapunov candidate V =
1
2

∑ρ
l=2 ỹ

T
l ỹl +

1
2

∑ρ
l=2 δ̃

T
l δ̃l, and taking its derivative along

the trajectories of we get:

V̇ =

ρ∑
l=2

ỹTl (ẏl − ẏ∗l )−
ρ∑

l=2

δ̃Tl (
˙̂
δl) (34)



Using (33b),(33c),(33e) in the expression for V̇ we get:

V̇ ≤ −
ρ∑

l=2

kl||ỹl||2 +
ρ−1∑
l=2

||ỹl||||ỹl+1||+
ρ∑

l=2

||ỹl|||| ˙̃η1,l||

=⇒ V̇ ≤ −
ρ∑

l=2

kl||ỹl||2 +
ρ−1∑
l=2

(
||ỹl||2

2
+

||ỹl+1||2

2

)

+

ρ∑
l=2

(
||ỹl||2

2
+

|| ˙̃η1,l||
2

)

=⇒ V̇ ≤ −
ρ∑

l=2

(kl − βl)||ỹl||2 +
ρ∑

l=2

|| ˙̃η1,l||2

2

=⇒ V̇ ≤ −
ρ∑

l=2

(kl − βl)

(
||ỹl||2 −

|| ˙̃η1,l||2

2(kl − βl)

)
, (35)

where βl = 1.5, 3 ≤ l ≤ ρ − 1 and β2 = 1, βρ = 1. Setting
kl > βl, when we have ||ỹl|| > || ˙̃η1,l||√

2(kl−βl)
we have V̇ ≤ 0

from (35). Hence, from [28], we have the closed loop system
is input-to-state stable, where the input is given by || ˙̃η1,l||√

2(kl−βl)
.

However, as the filter dynamics is exponentially stable, and we
have d2x̃i,l+1

dt = wn(F ⊗ Id)
dx̃i,l+1

dt , hence as F is Hurwitz,
˙̃xi,l+1 goes to zero exponentially as t → ∞, hence ˙̃η1,l goes to
zero exponentially t → ∞. Now, from 35, we have the system
33 is Lyapunov stable. Hence, ỹl ∈ L∞ and δ̃ ∈ L∞. Also,
taking derivative of (32e) and using (32a) , we have ẏ∗i,2 ∈
L∞ and similarly from (32c) and (32f) we have ẏ∗l ∈ L∞.
Then from (33b) we have ẏl ∈ L∞, implies yl is uniformly-
continuous. Now, integrating both sides of (35), we get:

V (∞)− V (0)−
ρ∑

l=2

∫ ∞

0

|| ˙̃η1,l||2

2
dt

≤ −
ρ∑

l=2

(kl − βl)

∫ ∞

0

||ỹl||2dt. (36)

As ˙̃η1,l goes to zero exponentially fast, we have || ˙̃η1,l|| ≤
λ1e

−λ2t for some λ1, λ2 > 0, implying || ˙̃η1,l||2 ≤ λ2
1e

−2λ2t.
Hence,

∫∞
0

|| ˙̃η1,l||2
2 =

λ2
1

4λ2
< ∞,∀l ∈ {2, . . . , ρ}. Hence, the

L.H.S. of (36) is bounded and so will be the R.H.S., implying
ỹl ∈ L2. By Barbalat’s lemma [28, Lemma 8.2] we have ỹl →
0 as t → ∞ ∀2 ≤ l ≤ ρ. Now, system 33a can be thought
of as a nominal system with input [ỹT2 0T ]T . Here, the input
ỹ2 goes to zero as t → ∞, and using similar arguments in
the Theorem 3, exponential stability of the nominal system
can be established, and hence using the arguments of input-
to-state stability, we have yi,1(t) → S and yi,2(t) → ¯̂Lyi,1 ∈
S ∀i ∈ V.

IV. SIMULATIONS

In this section, simulations are provided for illustration.

A. Complex Laplacian based maneuvering

The reference shape (p∗) is considered to be a hexagon in
C, which is defined by the the positions p∗1 = −cos(π/3) +
ιsin(π/3), p∗2 = cos(π/3) + ιsin(π/3), p∗3 = 1, p∗4 =
cos(π/3)− ιsin(π/3), p∗5 = −cos(π/3)− ιsin(π/3), p∗6 = −1.
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Fig. 3. Trajectory of single integrators performing translation and scale
maneuvers using control law (6).
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Fig. 4. Trajectory of single integrators performing a rotation maneuver making
agent 3 as their center using control law (6).

The initial position of the six agents are p1(0) = 1.6 +
ι2.5, p2(0) = 3.7 + ι0.4, p3(0) = 5.3 + ι6.7, p4(0) =
−2.1 − ι3.5, p5(0) = −4.7 − ι5.8, p6(0) = −6.2 − ι7.5.
The constant disturbances for single integrator dynamics are
taken to be δ1 = 1 + ι2, δ2 = −1ι0.1, δ3 = 0.2 + ι0.1, δ4 =
0.9 + ι0.4, δ5 = 2.3 − ι0.5, δ6 = 0.5 + ι2.1. The interaction
topology among the agents is a 2-rooted graph with each
agent having the previous two agents as the in-neighbors, i.e.,
N1 = {5, 6},N2 = {1, 6},N3 = {1, 2},N4 = {2, 3},N5 =
{3, 4},N6 = {4, 5}. Then, the perturbation weights for the
control law are designed by solving (8) through the choice of
appropriate velocity v∗i , i ∈ V for translation, rotation, scale
maneuvers. The parameter h is set as 10.

In Fig. 3, the agents perform a translational maneuver for
the first 30 sec., followed by a scaling maneuver for 20 sec.
Here, the velocities for designing the perturbation weights are
v∗i = 1− ι1 ∀i for first 30 sec., followed by v∗i = p∗i for the
next 20 sec.
In Fig. 4, the agents are performing rotational motion, keeping
agent 3 as their center. The desired velocities for different
agents are v∗1 = ι(p∗1 − p∗3), v

∗
2 = ι(p∗1 − p∗3), v

∗
3 = 0, v∗4 =

ι(p∗4 − p∗3), v
∗
5 = ι(p∗5 − p∗3), v

∗
1 = ι(p∗6 − p∗3).
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Fig. 5. Trajectory of single integrators performing translation, scale, and
rotation maneuvers using control law (19).

B. Affine formation maneuvering

The reference shape (p∗) is considered to be a hexagon
in R2, which is defined by the the positions p∗1 =
[−cos(π/3) sin(π/3)]T , p∗2 = [cos(π/3) sin(π/3)]T , p∗3 =
[1 0]T , p∗4 = [cos(π/3) − sin(π/3)]T , p∗5 = [−cos(π/3) −
sin(π/3)]T , p∗6 = [−1 0]T . The initial position of the six
agents are p1(0) = [−1.6 2.5]T , p2(0) = [3.7 4.0]T , p3(0) =
[5.3 0.6]T , p4(0) = [2.1 − 3.5]T , p5(0) = [−1.7 −
1.8]T , p6(0) = [−0.1 2]T . The constant disturbances for single
integrator dynamics are taken to be δ1 = [3 4]T , δ2 = [1 −
1]T , δ3 = [1 0]T , δ4 = [−1 0]T , δ5 = [2 − 1]T , δ6 = [1 2]T .
The interaction topology among the agents is a 3-rooted graph,
which is the same as in Fig. 2(b), i.e., each agent has the
previous three agents as the in-neighbors. Then, the pertur-
bation weights for the control law are designed by solving
(20b) through the choice of appropriate velocity v∗i , i ∈ V
for translation, rotation, scale, and shear transformations. The
parameter h is set as 10. Fig. 5 and Fig. 6 illustrate the
simulations related to the single integrators. In Fig. 7, a sim-
ulation corresponding to higher-order (third-order) integrators
is shown.

In Fig. 5, the agents perform a translational maneuver for
the first 70 sec., followed by a scaling maneuver for 10 sec.,
which is further followed by a translational maneuver for 20
sec., and finally, a rotational maneuver is performed for 6 sec.
Here, the velocities for designing the perturbation weights are
v∗i = [−1 − 1]T ∀i for first 70 sec., followed by v∗i = −p∗i
for the next 10 sec. Subsequently, v∗i = [−1 −1]T ∀i for next

20 sec., and finally v∗i =

[
0 1
−1 0

]
p∗i .

In Fig. 6, first, a translational maneuver is performed by the
single integrators, followed by a shearing maneuver. Here, we

have taken v∗i = [−0.5;−0.8], and v∗i =

[
0 1
1 0

]
p∗i ∀i for the

two phases, respectively.
In Fig. 7 the agents perform scaling and rotational maneuvers
simultaneously which gives rise to a spiral pattern. Here, v∗i =

− 1
2p

∗
i +

[
0 1
−1 0

]
p∗i ∀i.
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Fig. 6. Trajectory of single integrators performing translation and shear
maneuvers using control law (19).
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Fig. 7. Trajectory of 3-rd order integrators performing scaling and rotational
maneuver yielding a spiral pattern using control law (32).

V. CONCLUSION

In this work, we have proposed control laws for leaderless
maneuverings, considering a directed interaction topology be-
tween the agents. With a modification of the interaction graph,
i.e., by adding in-neighbors to the root nodes, the maneuvering
force is generated to the root nodes. The control laws are fully
distributed in nature. For maneuvering no stabilizing diagonal
matrix is required. Hence, the full knowledge of the interaction
topology among the agents is not required, which was not the
case in previously reported literature. In complex laplacian-
based maneuvering, translation, rotation, and scale formation
maneuvering are reported for planar agents. In affine formation
maneuvering translation, rotation, scale, and sheer formation
maneuverings are reported for both 2-D and 3-D cases. For
higher-order systems, control laws are also proposed, and
stability is analyzed.
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