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ABSTRACT8

Climate extremes like hurricanes can devastate vulnerable power lines, resulting in large-scale
power outages, e.g., Hurricane Beryl (2024) with 2.6 million customers in Texas, US. In response,
peer-to-peer (P2P) energy sharing has emerged as a promising strategy to create energy communi-
ties (ECs) that become resilient by adopting distributed energy resources (DERs) to generate and
share electricity locally, especially after disasters. We developed a validated high-fidelity model of
power systems for 2,640 households, integrating geographical multi-sourced data with probabilistic
risk analysis to assess the feasibility of ECs for hurricane resilience. Our study finds that ECs
would have experienced shorter outages by 65.8% for Hurricane Isaias (2020) in Absecon City, New
Jersey. We then utilized our power risk model to study the financial feasibility of ECs versus other
measures (e.g., undergrounding lines) for resilience to future hurricanes in Absecon and compare
it to Miami communities, in Florida, exposed to larger hurricanes. We show that benefits are
larger in Miami, where ECs can shorten outages by 64.4%, 33%, and 50.54% than no grid upgrade,
DERs without P2P sharing (non-ECs), and undergrounding. Battery backups and resilient solar
panels enhanced ECs ability to operate in island mode, which would have reduced the percentage
of households experiencing outages longer than a day by 74% during Hurricane Isaias (2020).
Furthermore, we show that undergrounding results in a negative net present value (NPV) for
communities, with households facing a 155% higher cash outflow compared to ECs, where the
addition of solar panels reduces energy bills and increases savings. Our study demonstrates the
importance of integrating resilience into energy policies, particularly as infrastructure evolves to
meet the challenges of a changing climate.
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1. INTRODUCTION10

Hurricanes can destroy old and vulnerable power lines, causing large-scale cascading power11

failures [1, 2]. For example, (a) Hurricane Isaias (2020) caused widespread blackouts for more12

than 3 million customers across five states in the US [3]; (b) Hurricane Ida (2021) caused extensive13

damage to power infrastructure in Louisiana, leaving 1.2 million customers without power [4];14

(c) Hurricane Ian (2022) left 2.7 million customers in Florida without power [5]; (d) more recently,15

Hurricane Beryl (2024) left more than 2.6 million customers without power in Texas [6]. These16

blackouts are often prolonged, threatening the health of the affected population as they endure17

excessive heat after a hurricane [7, 8]. Adding to the distress, the critical interdependence of18

transport, water pumps, medical facilities, food supplies, and emergency aids with electricity19

can deprive communities of critical services post-hurricane. Power outages can severely impact20

vulnerable community members, including households with children, the elderly, and medically21
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fragile populations [9, 10].22

Resilient communities must have power systems capable of withstanding extreme weather events23

and minimizing the extent of cascading power disruptions [11, 12]. In recent years, rooftop solar24

panels have supplemented the power supply of residential, office, and industrial buildings [13].25

The US Energy Information Administration predicts a 75% growth in solar energy production from26

2023 to 2025 [14]. Distributed energy resources, such as rooftop solar panels, can generate electricity27

locally and operate in island mode. Thus, DERs have great potential to enhance community28

resilience by providing electricity access after a disaster, even when power lines fail [15].29

Furthermore, massive governmental and industry investments are targeting integrating DERs at30

micro-urban scales through microgrids to create energy communities (ECs), an emerging concept31

in energy markets [16]. In ECs, prosumers - households with energy-generating sources such as32

rooftop solar panels - sell surplus electricity under peer-to-peer (P2P) sharing to local neighborhoods33

[17, 18]. One notable example of an energy community (EC) is the Brooklyn Microgrid, which34

became operational in 2016 [19]. Such ECs are exhibiting resilience after large disasters. In35

2017, Hurricane Maria battered Puerto Rico, snapping many power lines and leaving numerous36

communities without power for several months. In response, communities have turned toward37

building independent microgrids to solve their energy needs and resilient power infrastructure38

[20]. To further support these initiatives, the US Department of Energy announced USD 450 million39

in funding in July 2023 to incentivize the deployment of 30,000 to 40,000 residential solar systems40

[20].41

Currently, there is limited research on the benefits of resiliency with P2P sharing at the community42

level because most studies have focused on a single or small group (2-3) of households [21–24].43

Other studies have not considered the vulnerability of the existing grid [15]. In [25], authors showed44

increased resilience to power outages at the household level with P2P power sharing during an45

earthquake, but they did not consider power lines can fail during ground shaking, affecting the46

power network connectivity of ECs. Analyzing electricity access from solar during hurricanes is47

also more complex than for earthquakes. Unlike earthquakes, thick optical clouds during hurricanes48

can significantly hinder the incoming solar irradiance on solar panels [26], further reducing the49

electrical power generation during the disaster.50

To understand the resilience of ECs, this paper develops a high-fidelity outage risk model (Hi-Fi51

ORiM) for households with rooftop panels, behind-the-meter batteries, and P2P energy sharing52

to predict electricity access during hurricane emergencies. The model integrates state-of-the-art53

hurricane hazard [27], vulnerability [28], solar irradiance [29, 30], and network modeling [31] to54

study ECs during future hurricanes with a probabilistic framework. We combine multiple data55

streams to create a realistic synthetic network for Hi-Fi ORiM using graph theory (see Methods)56

[31]. Thus, the Hi-Fi ORiM can assess the failure risk from each component (poles, panels) in the57

network, as their vulnerabilities vary, and how their failures cascade through the network. We also58

use high-performance computing to quantify uncertainties in the risk model and thoroughly study59

the viability of adopting different resilience mitigation strategies, including ECs [32].60

Current models that evaluate the viability of DERs in high hurricane hazard areas do not account61

for solar panel failures, solar irradiance reductions, or the long duration of power recovery during62

large hurricanes. These factors are crucial for evaluating the ability of DERs to sustain electricity63

supply during disasters. Existing tools, such as renewable energy integration and optimization64

tools (REopt) and solar power calculators (PVwatts), do not consider solar panel failure risks,65

neglecting their repair and replacement costs when optimizing panel and battery size for savings66

and resilience [33]. Other important studies for hurricane resilience have also neglected such failure67

risks, in addition to significant solar irradiance decays during hurricanes [34]. Rooftop solar panels68

can have a 75% failure probability for hurricanes with wind speeds over 90m/s [35]. An example69
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of a failed solar panel in the aftermath of Hurricane Ian (2022) is shown in Supplementary Figure70

S5. Additionally, in [26], the authors found that solar generation could decrease by more than 70%71

in Miami-Dade, US, during category-4 hurricanes. Moreover, scholars have mostly considered a72

particular outage scenario with quick recoveries of 8h to 24h [23, 36]. However, hurricanes can73

leave populations without power for days to months [10].74

Other grid-hardening measures can also increase the resilience of power systems. For example,75

the resilience of the power grid to hurricanes can be enhanced by undergrounding overhead power76

lines [37–39]. However, the cost of undergrounding can be high and result in increased consumer77

electricity tariffs [38]. On the contrary, there is growing literature on the economic and financial78

benefits, in addition to the environmental ones, that renewables can bring to reduce the billions of79

dollars in losses caused by power blackouts [21, 36, 40, 41]. Thus, evaluating and comparing the80

cost of adopting such mitigation strategies to enhance resilience becomes essential.81

This paper presents and develops a high-fidelity risk outage model (Hi-Fi ORiM) of a distribution82

grid serving 2,640 households. We calibrate the model with power outage and recovery data from83

Hurricane Isaias (2020) to serve as a validated test bed for assessing the resilience of power84

communities prone to hurricane risks. To evaluate the finances of resilient electricity, we determine85

the net present value (NPV) of solar panel adoption by considering installation costs, cash flows86

(amount of electricity sold and bought), and the value of resilience [42]. Traditionally, value of87

resilience is considered by multiplying the avoided outage duration with the value of lost load88

(VoLL), expressed in dollars per kWh of unserved load [42, 43]. However, traditional VoLL is limited89

to qualitative analysis as it is determined through surveys based on the responses to hypothetical90

conditions provided to the responder. This paper presents a new method to quantify the value91

of resilience by arranging alternative energy resources during emergencies. Our study compares92

multiple strategies for resilient electricity: (a) ECs, which involves the adoption of solar panels with93

P2P sharing; (b) non-ECs, which involves the adoption of solar panels without P2P sharing; and94

(c) undergrounding of power lines. Additionally, we integrate 5,018 synthetic hurricanes from a95

state-of-the-art hurricane hazard model to study the resilience benefits against future hurricanes96

[44]. Our combined approach of state-of-the-art Digital Twin, probabilistic risk modeling, and97

financial analysis would allow stakeholders such as homeowners, utilities, and local governments98

to make informed decisions and invest in building a resilient power grid for the future.99

2. RESULTS100

A. Validated High-Fidelity Outage Risk Model of Power Network101

The high-fidelity outage risk model (Hi-Fi ORiM) represents the physical systems of the power grid,102

enabling simulations of their interactions with natural hazards [31, 45]. This approach assesses the103

vulnerability of entire power networks by integrating risk modeling for individual components104

with their interconnections rather than focusing on single components. This method is particularly105

valuable in scenarios where network dynamics are crucial, such as in power networks. We lever-106

aged high-performance computing (HPC) resources to overcome the computational challenges of107

running multiple power systems and hurricane scenarios.108

We developed Hi-Fi ORiM of the power distribution network serving 2,640 residential consumers109

in Absecon City in Atlantic County, New Jersey, who could benefit as ECs. We integrated informa-110

tion from publicly available multi-sourced datasets in the model (Figure 1), including limited pole111

locations from OpenStreetMaps [46], roads and building parcels from New Jersey Open Geographic112

Information Systems [47, 48], and building footprints from Microsoft [49].113
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Fig. 1. Hi-Fi ORiM developed using open-source datasets of roads, parcels, and buildings from
the New Jersey Geographic Information Network [50]; fragility curves for pole failure probabil-
ities across classes C1-C7, modeled with a log-normal distribution for a median 3-second wind
gust (w̄) and dispersion (β) [28] (see Methods); and hazard information from 3-second wind
gusts during Hurricane Isaias (2020).

Most distribution networks in the US have a radial structure, where the failure of a single over-114

head pole can cause cascading power failures for all downstream consumers [51]. We developed the115

Hi-Fi ORiM by reproducing such a radial topology and coupling it with hazard and vulnerability116

models of the power system’s components [31]. The resulting probabilistic risk-network model117

predicts the damage to the overhead poles from wind hazards, disconnections in the power network118

due to damages, and the recovery of damaged components back to a fully connected network (see119

Methods). We only consider wind-driven failures of distribution poles [31] and do not model the120

compound failures from falling trees on distribution poles due to lack of data [52]. Fragility curves121

define the wind-dependent failure probabilities for different classes of poles (Figure 1). We used a122

full circulating [27] and background [53] wind model to capture the complete structure of tropical123

cyclones to assess realistic hurricane winds. Figure 1 presents all the components to build a Hi-Fi124

ORiM, including datasets, risk modeling, and hazard information.125
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Fig. 2. a. Representation of constructed synthetic grid for Absecon City, New Jersey. b. Recovery
simulations of Hi-Fi ORiM calibrated for the observed recovery during Hurricane Isaias (2020).

Our Hi-Fi ORiM was calibrated using outage and recovery data from Hurricane Isaias (2020)126

(see Methods) [54]. Isaias carried winds close to 100-year return period events for New Jersey [55].127

Even though Isaias transitioned to a tropical storm before hitting New Jersey, it still snapped power128

lines and destroyed many power poles [56]. Isaias caused economic losses of 4.2 billion and 15129

deaths and was responsible for major blackouts across five states in the Northeast United States.130

One million customers were without power alone in New Jersey, with many suffering power loss131

for over four days [57, 58].132

Our developed Hi-Fi ORiM model, as shown in Figure 2a, can simulate hurricane-induced133

outages and the post-disaster recovery of the power network with high precision, as demonstrated134

in Figure 2b. Our model predicts maximum percent outages of 77.42% close to the observed percent135

outages for 74.15% of consumers. In our synthetic grid, 95% of the customers recover in 61 hours136

close to 55 hours for the observed recovery of the power grid in Absecon City. Our developed Hi-Fi137

ORiM model represents a typical suburban power network, making our framework adaptable for138

assessing the risk of power outages across varying levels of hurricane wind intensity, from low to139

high.140

B. Could we have enhanced electricity resilience during Hurricane Isasias?141

We found that communities would have benefited significantly from resilience measures during142

Hurricane Isaias (Figure 4). To compare the effectiveness of resilience measures, we considered143

four different cases: (a) No Upgrade, (b) ECs, (c) Non-ECs, and (d) Underground power lines. We144

ran 400 random simulations of our probabilistic risk model during Hurricane Isaias.145

The US is projected to have 55% of its electricity generation through solar energy [59]. In line with146

this projection, we assumed that 50% of houses in a cluster would adopt solar panels and battery147

storage of 10 kWh. We grouped the houses into clusters based on Euclidean distance to study148

the effectiveness of energy sharing (see Methods). The solar panels are sized for net-zero energy149
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consumption, i.e., energy generated by panels equals energy consumed by households. Figure150

3a. depicts a network of houses in a power grid without solar panels, where all the houses lose151

power during hurricane emergencies. In contrast, another network in Figure 3b. has prosumers152

installing rooftop solar panels. These prosumers can generate electricity or use backup power from153

a battery during a hurricane emergency. The prosumers gain resilience through solar panels and154

can enhance the community’s resilience by sharing excess electricity in a solar EC.155

To model ECs, we extended our Hi-Fi ORiM model (Figure 8). First, we integrated solar panel156

vulnerability functions into our risk model [35] to predict damage from the hurricane winds [27, 53]157

We integrated a stochastic model to predict reduced solar irradiance into the Hi-Fi ORiM model,158

using historical solar data to capture the effect of thick hurricane clouds on solar generation, as159

shown in Supplementary Figure S4 (see Methods) [26]. Finally, we modeled each household’s160

recovery based on the available solar irradiance and undamaged network components.161

To study the effectiveness of undergrounding measures, we assumed that 50% of the most162

vulnerable power poles are buried. For example, class 7 poles, which have the lowest median wind163

threshold on the fragility curve (Figure 1), are undergrounded first, followed by the second most164

vulnerable poles.165

Supplementary Figure S7 shows the adoption of solar panels among prosumers across Absecon166

City for ECs and non-ECs grid hardening configurations, as well as the undergrounding of power167

poles (lines) to increase resilience against strong winds (see Methods).168

Fig. 3. Schematic Diagram of the P2P energy sharing. The left figure shows the traditional grids
where consumers suffer outages during hurricanes due to extensive damage to the power grid,
and the right figure shows the adoption of solar panels so that the prosumers can generate elec-
tricity in island mode after the hurricane and share excessive energy with consumers (without
solar panels) to increase the resilience against power outages.
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Fig. 4. Simulations for resilient strategies scenarios for the developed Hi-Fi ORiM in Absecon
City, New Jersey, during hurricane Isaias (2020). a. Cumulative percentage of customers experi-
encing power outages. b. Duration of mean power outages observed for each household under
different configurations of Hi-Fi ORiM c. Representation of mean reduction in the duration of
power outages for a cluster for different resilience strategies compared to the base case of no up-
grades. d. Scatter plot between the reduced number of outages for a cluster and distance from
the US highway.

IEEE Standard 1366-2022 defines reliability indices, such as the System Average Interruption169

Frequency Index (SAIFI). As reliability only focuses on daily interruptions, utility performance170

ratings exclude catastrophic events, defined as ’Major Day Events,’ such as hurricanes, from SAIFI171

calculations [60]. Thus, no standard index is defined for measuring the resilience of power systems.172
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However, any interruption to the consumers is a disturbance, whether caused by a daily outage or a173

hurricane. The IEEE Power and Energy Sector (PES) Task Force emphasizes the resilience of power174

systems as the ability to limit the extent, system impact, and duration of degradation following175

an extraordinary event such as natural hazards [12]. Thus, we identify the resilience gained from176

resilience strategies as the reduction in outage durations. Our proposed resilient strategies focus177

on reducing outage durations by increasing the robustness of power systems through integrating178

DERs and undergrounding power lines.179

Configuration Outages duration
(hours)

Households (%) with
long outages [≥ 24
hours]

No Upgrade 13.92 [1.61-59.86] 16.86% [8.41%-31.45%]

ECs 4.76 [0.00-33.11] 4.43% [2.50%-11.33%]

Non-ECs 7.41 [0.00-57.56] 9.05% [4.61%-16.45%]

Underground 7.46 [0.53-43.59] 8.41% [4.50%-20.76%]

Table 1. Mean outage duration of households and households with longer outages for the sce-
nario of Hurricane Isaias (2020)
*95% C.I. in bracket

Our results (Figure 4a-b and Table 1) show that ECs would achieve the highest resilience against180

hurricanes compared to non-ECs and undergrounding configurations in the scenario of Hurricane181

Isaias (2020). We found that households in ECs would experience a mean outage duration of182

4.76 hours per household, which is 65.80%, 35.76%, and 36.19% shorter than in the no upgrade,183

non-ECs, and undergrounding cases, respectively. Moreover, 97.5% of households in ECs would184

have an outage duration of less than 33.11 hours, whereas no-upgrade scenario would be 80.80%185

longer. Additionally, ECs would have a mean of 4.43% of households experiencing long outages186

(> 24 hours), which is 73.47%, 51.04%, and 47.32% less than in the no-upgrade, non-ECs, and187

undergrounding cases, respectively. At the 97.5th percentile, ECs would have 11.33% of households188

experiencing long outages, which is 177.58% higher in the no upgrade case.189

We show the spatial distribution of mean reductions in power outage duration for different190

resilience strategies across 264 clusters, comprising 2,640 households, in Figure 4c. We observe more191

significant reductions in outage durations farther from the main highway across all mitigation cases192

(Figure 4d). For instance, clusters in ECs between 1000 and 1500 meters would observe an average193

reduction in outage duration of 24.53 hours, three times higher than the reduction for clusters194

between 500 and 1000 meters. Typically, power grids are restored using a top-down strategy where195

repair teams reach the poles closer to the main highway first [61, 62]. Thus, households with more196

remote access through local roads often recover electricity last, especially in radial distribution197

networks. Our results show that these resilience measures, and especially ECs, can significantly198

enhance electricity access for such households (Figure 4d).199

C. Assessing the effectiveness of resilience measure to future hurricanes200

Hurricane Isaias reached a maximum category of 1, but the US is exposed to more significant201

events, e.g., the recent 2024 category 5 Hurricane Beryl with 165 mph winds [63]. To analyze the202

benefits of resilience measures comprehensively, we studied multiple realistic hurricane scenarios203

using state-of-art hurricane hazard models [27]. We analyzed 5,018 landfalling hurricanes that204
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originate in the North Atlantic Basin [64] representing the hurricane hazard under the current205

climate scenario (Figure 5a). These hurricanes cover approximately 1, 485 years, as about 3.38206

hurricanes from the Atlantic Basin make landfall each year [35]. We sampled the hurricanes yearly207

as a random Poisson process (see Methods). We represent a typical year as the mean of 1, 485 years208

of simulations. We ran a total of ∼ 4 × 105 simulations to model outages and recovery in Absecon209

and Miami.210

We also considered a different region from Absecon City to evaluate how resilience measures211

apply to other US communities exposed to the largest hurricane hazards. To do so, we leveraged our212

Hi-Fi ORiM model, which represents typical communities with radial distribution lines in the US,213

to also analyze communities in Miami, Florida (Figure 5a). Miami has recently experienced strong214

hurricanes e.g., Matthew (2016), Irma (2017), Dorian (2019), Ian (2022) and can experience winds215

of 62 m/s for a 100-year return period, which is 38% higher than 45 m/s winds for Absecon City.216

Notice that wooden power poles can sustain winds up to 20 m/s [65]. Thus, wind speeds beyond217

20 m/s can make them fail. In Absecon City, only 5.14% simulations exceeded 20 m/s (Figure218

5b). In contrast, Miami has 20.18% simulations that exceeded 20 m/s (Figure 5c), highlighting219

significantly higher hazards due to its different location (Figure 5a).220
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Fig. 5. Simulations for the future (synthetic) hurricanes. a. Tracks of synthetic hurricanes in the
North Atlantic basin based on the historical climate [44]. b. Distribution of wind speeds (>20
m/s) in Absecon City, New Jersey. c. Distribution of wind speeds (>20 m/s) in Miami, Florida. d.
Average duration of power outages observed for each household under different configurations
of Hi-Fi ORiM in Absecon City, New Jersey, for 25 years. e. Average duration of power outages
observed for each household under different configurations of Hi-Fi ORiM in Miami, Florida, for
25 years.

We investigated the same four cases, including a baseline and three resilience measures, under221

future hurricanes. The average lifetime of a solar project is 25 years. We also assumed that utilities222

would recover undergrounding costs over 25 years. Thus, we present the average duration of223

power outages for each house across 25 years with different power grid configurations in Figures224

5d-e and Table 2.225
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Similar to the results for Hurricane Isaias (2020), we found that households will gain more226

resilience in ECs. From Figure 5d, we observe that the low-wind region of Absecon City would227

have minimal outages across all the configurations. The observed outages for the high winds region228

of Miami are ∼ 100 times more than the low wind region of Absecon City. In an extreme case, a229

household can observe an outage of 206 hours ( 8 days) in Florida. In the aftermath of Hurricane230

Ian (2022), a category 4 hurricane, nearly 30% of Lee County in Florida consumers were without231

power after 8 days.232

We observe more significant resilience gains for Miami than for Absecon City. For instance,233

the mean outage durations in Miami decreased from 35.64 hours in the no upgrade scenario234

to 12.69 hours with ECs, compared to a smaller reduction in Absecon, where the mean outage235

durations dropped from 0.31 hours to 0.08 hours. The biggest improvement in resilience for236

Miami is observed with ECs, where we observe a 64.4%, 33.0%, and 50.5% average reduction in237

outage duration compared to the no-upgrade, non-ECs, and undergrounding cases, respectively.238

Additionally, 97.5% of households in Miami will observe an average outage duration of less than239

80.17 hours, which is 126.32% higher than the outage duration of 130.66 hours for the no upgrade240

case. Finally, we also observe an increasing reduction in duration with the distance from the241

highway (Supplementary Figure S9). Like the scenario analysis for Hurricane Isaias, resilience242

gains are maximized for the population at greater risk of prolonged power outages.243

Location Configuration Outages duration
(hours)

Absecon No Upgrade 0.31 [0.00-2.90]

Absecon ECs 0.08 [0.00-0.69]

Absecon Non-ECs 0.17 [0.00-2.34]

Absecon Underground 0.08 [0.00-1.45]

Miami No Upgrade 35.64 [11.42-147.09]

Miami ECs 12.69 [0.00-80.17]

Miami Non-ECs 18.95 [0.00-139.43]

Miami Underground 25.63 [7.40-128.24]

Table 2. Mean outage duration of households (95% C.I. in bracket)

D. Household-scale resilience financing244

Here, we quantify the finances for the resilience measure to weigh the cost of investments against245

the benefits [66]. We evaluate the profitability of prosumers by determining their net present value246

(NPV) for 25 years, i.e., the solar panel’s lifespan (see Methods). We studied the contributions of247

different components towards NPV: (a) investments and operation costs for panels and batteries248

(I&O), (b) savings from not purchasing grid electricity, (c) additional state incentives, (d) panel249

damage from winds, and (e) the avoided costs from shorter/no outages.250

Previous research [42] has considered the financial value of resilience measures as the savings251

from avoided outages based on the value of lost load (VoLL). Historically, the VoLL for residential252

customers has been estimated using questionnaires based on hypothetical outage scenarios [43].253
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These questionnaires ask about customers’ willingness to pay to avoid outages, but the wide range254

of options, such as 0 to 50 USD, can lead to underestimations of VoLL as customers tend to choose255

a lower value. Additionally, these surveys consider outages of up to 16 hours, whereas hurricane-256

related outages can last up to a week. In contrast, we quantified the value of avoided outages as the257

savings from not needing alternate energy sources, such as emergency diesel generators, to supply258

electricity when the grid is down (see Supplementary Text S3). Many communities use generators259

for days or even weeks as a backup during significant power outages, for example, in Florida after260

Hurricane Irma (2017) [7]. Thus, we use this avoided cost as a more realistic way to quantify the261

value of shorter outages during disasters.262

We define profitable prosumers as those with a positive NPV and study the effects of state263

incentives. For brevity, we show results for NPV with state incentives here (Figure 6a) and without264

them in the Supplementary Information (Figure S11 and S12). Prosumers are more profitable265

in Miami as Florida receives nearly 25% more solar irradiance than New Jersey (Supplementary266

Figure S3) [29]. Smaller-sized rooftop solar systems can generate the same amount of solar energy267

in Florida as larger-sized solar panel systems in New Jersey. Figures 6b-c represent the breakdown268

of profitable and unprofitable prosumers in Absecon City and Miami. While profitable prosumers269

have similar I&O costs in Miami and Absecon City, prosumers in Miami have higher savings than270

those in Absecon City. For example, profitable prosumers in ECs have 29% higher savings in Miami271

than in Absecon City. We found that 99% of the prosumers are profitable in Miami compared to272

92% in Absecon for both ECs and non-ECs.273

Our findings show that, on average, the value of resilience, measured as the avoided cost from274

outages, is about 16% and 23% of I&O costs for profitable and unprofitable prosumers, respectively275

(Figure 6b-c). These avoided costs are important and can supplement other savings from reduced276

grid electricity purchases and energy sharing. On average, prosumers have higher profits and277

savings with ECs configuration than non-ECs. This can be attributed to higher selling electricity278

costs in local energy markets than net-metering rates. The median NPV with state incentives in279

Absecon and Miami for ECs is 16% and 7% higher than for non-ECs.280
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Fig. 6. a. NPV for each prosumer in Absecon City and Miami with state incentives. b. Average
contributions of different components in NPV for profitable prosumers. c. Average contributions
of different components in NPV for unprofitable prosumers. d. NPV vs. annual consumption for
prosumers without state incentives.

We observe from Figure 6d that the NPV for prosumers increases with higher yearly consumption281

due to more significant savings from self-consumption. For example, in Absecon City, for ECs282

with state incentives, the mean yearly consumption of houses with positive NPV is 144% higher283

than that of houses with negative NPV. Similarly, in Miami, for ECs with state incentives, the mean284

yearly power consumption of prosumers with positive NPV is 141% higher than that of prosumers285

with negative NPV.286

However, even unprofitable prosumers with a negative NPV can still gain significant electricity287

resilience. For instance, an unprofitable prosumer in Absecon City can still significantly reduce up288

to 20 hours in outage duration per year. This reduction can be up to 167 hours (∼ 7 days) for an289

unprofitable prosumer in Miami. We present the cases of unprofitable prosumers with a negative290

NPV in Figure 6c. We find that lower savings (e.g., 57% for unprofitable prosumers in Miami versus291

123% for profitable ones) contribute to a negative NPV. Solar panels are sized for net-zero energy292

consumption, and we assumed a constant battery size of 10kWh for all prosumers, leading to293
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higher ratios of I&O costs versus savings for smaller households. While batteries could be smaller294

to reduce I&O costs [23], households would also lose resilience to more extended outages, e.g.,295

outage lasted days for Hurricane Isaias [3]. Given these financial challenges, further research is296

essential to better quantify the value of resilience that could significantly boost the adoption of297

solar panels.298

Meanwhile, to support solar adoption, incentives such as the 30% Solar Investment Tax Credit299

(SITC) towards residential solar installations [67] and Successor Solar Incentive (SuSI) Program300

[68] by NJ Clean Energy Programs can reduce the financial burden on households. As shown in301

Figure 6d, state incentives can cover up to 40% and 60% of I&O costs for the profitable prosumers in302

Absecon City and Miami. These incentives can significantly benefit the prosumers in low irradiance303

regions, such as Absecon City, and could be crucial in helping unprofitable prosumers move toward304

profitability. This is evident as there are only 26% profitable prosumers in Absecon City without305

state incentives for ECs, while 80% profitable prosumers in Miami. These incentives will also attract306

more solar panel adoption where net-metering rates are at wholesale rates, e.g., in New Jersey307

[69], or where net-metering is expected to decrease to wholesale rates, e.g., in Florida with the308

introduction of House Bill 741 [70].309

Finally, we found that damage costs are negligible in Absecon City’s low-wind region. In contrast,310

in Miami’s high winds region, the average damage cost over 25 years equals 21% of average I&O311

costs. Miami’s high-wind region experiences an annual mean panel failure rate of 3.3 × 10−2, 21312

times higher than 1.5 × 10−3 in Absecon. Despite this higher failure rate, solar panels can still313

provide resilient electricity; for instance, when the chance of a panel failure is 3%, a class 7 pole314

has a 38% chance of failure. The rate of solar panel damage was determined through hurricane315

simulations and panel fragility assessments. Damage costs were calculated by multiplying the316

failure rate by the cost of installing a new panel (see Methods). The "Solar Under Storm" report,317

based on observations from hurricanes Irma and Maria in 2017 and Dorian in 2019, suggests318

using vibration-resistant module bolted connections to enhance resilience. This would increase319

installation costs by approximately 5%, which is still significantly lower than the 21% damage cost320

[13]. Our results show Miami has more profitable prosumers even with approximately 100 times321

higher damage costs than Absecon City because of higher solar irradiance. This highlights the need322

for policies that not only incentivize solar adoption but also ensure resilience, enabling robust solar323

energy even in high wind risk areas like Miami.324

E. Community-scale resilience financing325

The cost of installing new rooftop solar panels is covered by the individual house installing326

the panels. However, the economic cost of undergrounding power lines is passed on to all the327

consumers [38], requiring a financial analysis at the community scale, e.g., Florida Senate Bill 796328

(2019) [71] (see methods). For a clean investment comparison of undergrounding versus ECs, we329

analyzed NPVs at the community level, aggregating the cash flows for the 2,640 households.330

At the community level, investments in ECs in Absecon City and Miami have positive aggregated331

NPVs (Figure 7a). This positive NPV results from savings for the prosumers and reduced bills332

for households without solar panels, who purchase electricity from prosumers at reduced prices.333

Similar to NPV for individual prosumers, the NPV of the community in Miami is 188% higher than334

the community in Absecon City with solar EC configuration.335

In contrast, households primarily experience cash outflow during undergrounding due to336

increased consumer bills needed to cover the cost, even though there is added value in resilience.337

To cover the cost of undergrounding, households might observe an annual increase of up to 42%,338

with the value of resilience being negligible in Absecon and only accounting for 0.3% of consumer339

energy bills in Miami. Thus, we observe negative NPVs for the undergrounding of power lines in340
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both Absecon City and Miami in Figure 7a.341

Fig. 7. Community-Scale Results. a. Community-wide NPV for adoption of solar panels in ECs
and undergrounding cases. b.Scatter plot for the duration of outages and net cash outflow for
ECs and undergrounding cases in Miami, Florida.

To compare each household’s total spending, we calculated the net cash outflow over the next342

25 years for solar EC and undergrounding in the Miami region, including state incentives. We343

calculated the net cash outflow because NPV includes savings that do not generate any cash inflow.344

Although Absecon City had 92% profitable prosumers, close to 99% in Miami, we focused on Miami345

due to its high wind region, where solar power significantly enhances community resilience. We346

present the distribution of cashout flow and duration of outages for EC and undergrounding cases347

for 2,640 households in Miami in Figure 7b. We observe a cluster of households in the community348

with less than 50 hours of outages for ECs. In contrast, the undergrounding case has a higher349

duration of outages. We observe that close to 16% of customers would experience more than 50350

hours of outages in undergrounding case, whereas less than 8% would experience the same duration351

in ECs. Battery backup, combined with more resilient solar panels, enhances the capacity of ECs to352

operate in island mode. However, undergrounding 50% of power poles can still result in network353

disconnections where poles remain above ground, leading to prolonged outages. The average cash354

outflow of households in ECs is USD 16998.77 [7593.40 − 36012.95, 95%CI] while the average cash355

outflow in the undergrounding case is 155% higher at USD 42552.67 [19164.34 − 69465.29, 95%CI].356

Thus, ECs can gain more electricity resilience with lower net cash outflows than undergrounding357

case.358

3. DISCUSSION359

We developed a high-fidelity outage risk model (Hi-Fi ORiM) of a power distribution network serv-360

ing a city with 2,640 households. This model leverages multi-source datasets on roads, buildings361

and power network and integrates state-of-the-art hurricane hazard model [27] to predict failures362

of power network components, cascading outages, and recovery after hurricanes. We calibrated the363

model to accurately reproduce outages from Hurricane Isaias (2020) in New Jersey [72], achieving364

a 77.42% peak outage prediction compared to the actual 74.15% outages. Our validated risk model365
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represents a typical radial US power network. Thus, we used it as test bed for evaluating outage366

risks and the feasibility (e.g., costs and benefits) of resilience measures across varying hurricane367

conditions.368

We studied resilience measures through four cases: a) No Upgrade, b) ECs, c) Non-ECs and369

d) Undergrounding power lines. First, we analyzed how these resilience measures would have370

enhanced electricity access for communities in Absecon City after Hurricane Isaias. We found371

that ECs would have provided the most significant gains, with only 4.43% households facing372

outages longer than 24hrs compared to 16.86%, 9.05%, and 8.41% for no upgrade, non-ECs, and373

undergrounding cases, respectively.374

We then investigated the benefits of these resilience measures for future hurricanes through375

state-of-art disaster risk modeling. For a comprehensive analysis of hurricane conditions, we376

extended our case study in Absecon City to include Miami, which, unlike Absecon City, is one of377

the US regions facing the most significant hurricane hazards. Due to the higher hurricane hazards,378

our predictions showed Miami could experience outage durations up to 100 times longer than379

Absecon City.380

We observed modest resilience gains in Absecon City for future hurricanes due to the lower381

likelihood of experiencing many events like Hurricane Isaias. However, Miami is exposed to382

stronger and more frequency hurricanes that can cause large-scale outages, and thus, we found383

significant resilience gains. We predicted that Miami ECs would have average outage durations384

64.4%, 33.0%, and 50.5% shorter than those in the no-upgrade, non-EC, and undergrounding cases,385

respectively. We have already seen DERs can enhance electricity access after previous disasters.386

Hurricane Ian in 2022 caused widespread outages, leaving 2.6 million households in Florida without387

electricity. Nevertheless, Babcock Ranch, a small community in the state, maintained power for388

2,000 households using its solar panels [5]. Similarly, after the Tohoku Earthquake in 2011, the389

Sendai Microgrid continued to supply electricity through solar panels and batteries [73]. These390

findings highlight the need for greater investment in DERs to bolster community resilience against391

disasters. While the energy policies are shifting towards clean energy goals [74], they should also392

focus on disaster risk management.393

Next, we assessed the financial feasibility of implementing such resilience measures. We found394

that the avoided costs from preventing outages are 18% and 23% of the investments and operations395

(I&O) costs of these measures for profitable and unprofitable prosumers, respectively. To estimate396

these avoided costs, we calculated the expenses of arranging alternate energy sources, such as397

diesel generators, to access electricity during an outage. This approach results in different costs than398

the typical small values of lost load (VoLL) from consumer surveys [43], traditional VoLL estimates399

are not suited for disaster scenarios. Traditional VoLL underestimates the costs of outages, which400

are based on hypothetical short outage scenarios [43]. We observe that unprofitable prosumers can401

significantly reduce outage duration during hurricanes. This suggests that their financial feasibility402

might be underestimated Given these findings, future research should focus on quantifying the403

true value of avoiding outages after disasters, as these prosumers might actually be profitable when404

considering the broader economic benefits of resilience, especially for vulnerable groups relying on405

electric medical equipment.406

We also found that prosumers in Miami would observe a 21 times higher failure rate for solar407

panels than prosumers in Absecon due to their higher wind hazards. Extensive structural sur-408

veys after Hurricanes Irma (2017), Maria (2017), and Dorian (2019) found many rooftop panels409

experienced failures in racks and clips attaching the panels to the racks in the Caribbean Islands410

[13]. These surveys suggested vibration-resistant module bolted connections to improve resilience411

against storm winds. Overall, the projected increase in solar installation cost is about 5% to gain412

resilience through stronger structural systems. This projected cost is less than the expected damage413
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cost for solar panels in Miami for the next 25 years, which is 21% of I&O costs, including solar414

panels and battery, and damage cost might be an even higher proportion of only solar panels costs.415

We found that prosumers can be profitable with higher savings and incentives and that solar416

adoption can also help the community become resilient. State incentives could be crucial in417

determining consumers’ willingness to adopt solar panels, especially in low-irradiance regions418

such as New Jersey. Without state incentives, we found that the percentage of profitable prosumers419

in Absecon City reduces from 92% to 26% for ECs as those incentives can cover up to 40% of I&O420

cost. The reduction in profitable prosumers in Miami is not as drastic as in Absecon City, as regions421

in Florida receive 25% more year-round consistent solar irradiance than in New Jersey. Moreover,422

prosumers in ECs can earn more profit by selling excess solar power to local neighborhood energy423

markets at higher selling costs than net-metering costs.424

Unlike solar adoption, where only prosumers bear installment costs, undergrounding costs are425

distributed among all households in the community. Therefore, we calculated the NPV for the426

entire community for both ECs and undergrounding cases. ECs had a positive NPV for both427

Absecon City and Miami, but the NPV was negative for the undergrounding case for both locations.428

Consumers do not benefit financially from undergrounding, except for the added resilience, as it429

mainly leads to increased electricity bills to cover the costs. We also compared the net cash outflow430

(NCF) and duration of power outages for ECs and undergrounding cases in the Miami region for431

25 years. The average NCF in undergrounding is 155% higher than in ECs. Moreover, more than432

16% of the consumers would observe more than 50 hrs for power outage duration compared to less433

than 8% of the consumers in ECs. Thus, adopting solar panels in the P2P sharing setting not only434

increases the community’s resilience benefits but also proves more profitable.435

Finally, our study also has some limitations. Our Hi-Fi ORiM captures the structural failures436

of the power grid components during hurricanes. However, this study does not consider the437

synchronization of DERs with the main grid as required in IEEE Standard 1547-2018 [75]. Future438

studies could address this limitation, as well as other requirements, such as voltage regulations,439

since we only focus on the connectivity of power system components. Additionally, future research440

could explore the value of inverters and the costs associated with operating a microgrid, especially441

as additional operators might be required.442

4. METHODS443

A. High-Fidelity Outage Risk Model (Hi-Fi ORiM)444

Researchers have developed probabilistic and machine-learning models to predict power outages445

during a storm [51, 65, 76, 77], but these models only provide point estimates of the total number446

of outages in a city and cannot quantify the risk at the component level for a power grid. Another447

stream of literature has focused on developing synthetic grids to model the risk of natural disasters448

to power networks as individual components have different hazard-dependent failure probabilities449

[2, 31, 38, 78]. We developed a high-fidelity outage risk model (Hi-Fi ORiM) for the power network450

to model hurricane risk to individual components (e.g., poles, solar panels) at the residential level.451

Our Hi-Fi ORiM was further employed to analyze mitigation strategies, such as rooftop solar452

adoption and undergrounding power lines.453

For this Hi-Fi ORiM model, we used open-source data for Absecon City, New Jersey, to create454

a power network. We calibrated our Hi-Fi ORiM against outages recorded during Hurricane455

Isaias (2020) by PowerOutage [72], as shown in Figure 2. To develop the synthetic power grid, we456

calculated an average distance of approximately 60 meters between power poles, based on the457

limited number of poles available in OpenStreetMap data [46]. We then used the roads shapefile458

from New Jersey Geographic Information Network (NJGIN) [47] to place poles along five classes of459
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roads: US highways, state highways, county routes, other county roads, and local roads, excluding460

ramps and inaccessible roads (see Supplementary Text S1, Table S1, and Figures S1-S2). For461

simplicity, poles were positioned along the center of roads, and for two-way roads (e.g., US and462

state highways), poles were placed on only one side. We obtained the locations of 2,640 residential463

buildings from New Jersey parcel data [48] and assigned each building to the nearest pole like a464

typical radial power grid. The power network can be represented as a graph G = (N, E) where465

poles and houses are nodes (N), and connections between poles and from pole to houses are edges466

(E).467

We captured the damage to the power distribution network through failures of power poles from468

hurricane winds. The probability of pole failure is hazard-dependent, i.e., it changes with the wind469

and is represented through fragility curves for different classes of the pole (Figure 5c) obtained470

from [28]. The fragility curves are represented as.471

Pf (w) = ϕ

(
ln(w/w̄)

β

)
(1)

where Pf (w) is the probability for an observed 3-second wind gust of w ms−1, ϕ(.) is the standard472

normal distribution, w̄ is the median of fragility curves (i.e., Pf (w̄) = 0.5), and β is the dispersion473

parameter. The parameters w̄ and β vary depending on the class of the pole (Figure 1).474

We used the tropical cyclone model from [27] to determine axis-symmetric winds and the475

background wind model from [53] to capture the complete wind structure. The historical hurricane476

paths are available from IBTRACS [79]. In [80], the authors emphasized the importance of using a477

complete wind structure, as excluding the background winds can result in underestimating wind478

hazards and, hence, an underprediction of risk from wind storms.479

In [31], authors calibrated their synthetic grid for the poles of age 50 and 60 as most of the power480

distribution systems in the United States are old. We assumed a uniform age of 50 years for all481

poles in our synthetic power distribution network. We iteratively selected the class of pole for each482

road class from the seven available pole classes (Figure 1). We performed 1.6 × 106 iterations to483

select the combination of the class of poles, which minimizes the error on the predicted percentage484

of outages for our synthetic network with actually observed outages.485

We obtained the observed percent of customers without power from PowerOutage[72]. Power-486

Outage reports the outages for all types of customers, including industrial, commercial, and487

residential. Since our focus is on residential customers, we matched only the percentage of cus-488

tomers without power, not the total number of customers affected. Additionally, PowerOutage489

compiles reports from utilities, which can delay the reporting of power outages [72]. Therefore, we490

assume that maximum outages occur initially and persist until a reported decrease in outages. To491

simulate total outages, we disconnected the network at identified failure points, forming subnet-492

works. Since transmission networks are predominantly aligned with US highways, we assumed493

that the subnetwork along the highway with the highest node density would retain power. The494

proportion of outages is given as.495

Oratio =
∑Nb

i=1 boi

Nb
(2)

where Oratio is the percent of customers without power, boi = 1, if a building is disconnected496

from the supply network otherwise 0, and Nb is the total number of buildings. The final selection497

for pole classes was as follows: US and State Highways were assigned class 7 poles; County Routes498

were assigned class 3 poles; Other County Roads were assigned class 4 poles; and Local Roads499

were assigned class 5 poles.500
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We further calibrated our synthetic power distribution network to model the recovery time501

of failed poles. We assumed that repair teams would initially focus on main highways before502

progressing to local roads for restoration. In a radial network, this top-down strategy is expected to503

facilitate the rapid recovery of many buildings [62]. Therefore, we assigned recovery times to poles504

based on their distance from the US highway, formulated as follows.505

trecovery = f loor
(

d
100

)
∗ t1 + t2 (3)

where f loor(.) is the greatest integer operator, d is the distance of a pole from the US highway in506

meters normalized with 100 meters, t1 follows a truncated normal distribution as t1 ∼ N(t̄1, t̄1/2),507

t1 ∈ (0, 2t̄1), and t2 represents an initial time to start any repair work which also follows a truncated508

normal distribution, t2 ∼ N(t̄2, t̄2/2), t1 ∈ (t̄2/2, 3t̄2/2). We calibrated t̄1 and t̄2 to represent the509

recovery during Hurricane Isaias (2020) (Figure 2b). Since recovery time depends on the number of510

failed poles, which is influenced by wind gusts in future hurricanes and constrained by the limited511

number of crews [62, 81], we scale t̄1 for a future hurricane, given as.512

t̄1 future =
wfuture · t̄1

wIsaias
(4)

where wfuture is the 3-second wind gust of a future hurricane, and wIsaias is the observed 3-second513

wind gust during hurricane Isaias.514

We performed 400 uncertainty simulations for the scenario of hurricane Isaias and 4 × 105
515

uncertainty simulations for future hurricanes. Each simulation begins by disconnecting the failed516

poles. Based on the recovery times, poles are reconnected to their original adjacent poles every517

hour. The simulation continues until all nodes in the original power network are fully restored.518

B. Future Hurricanes519

The 5,018 landfalling synthetic hurricanes chosen for this study consider the current climate520

scenario according to the National Center for Environmental Prediction (NCEP) reanalysis [44].521

The synthetic storm generative model involves three steps: random seeding for storm genesis, a522

beta-advection tropical cyclone motion model, and storm development based on environmental523

factors [44]. We show tracks of all synthetic hurricanes in Figure 5a.524

On average, 3.38 landfalling hurricanes are expected per year in the US. Thus, the simulation of525

5,018 hurricanes corresponds to 1,485 years. We perform Monte-Carlo Simulations (MCS) [82] to526

determine the number of hurricanes in a year, assuming their occurrence follows a Poisson process,527

given as.528

P(k) = e−λ λk

k!
(5)

where λ = 3.38/yr is average hurricane occurrences per year, and P(k) is the probability of529

k number of hurricane events in an year. We randomly sampled without replacement yearly530

hurricanes for 1485 years from the dataset of 5018 synthetic storms. We represent a typical year531

with an average of 1485 years of simulation.532

C. Solar Analysis533

We used global horizontal irradiance (GHI), measured in watts per square meter units, to determine534

the total solar potential. We obtained the historical GHI from the National Solar Radiation Database,535

maintained by the National Renewable Energy Laboratory (NREL), which provides data at a spatial536

19



resolution of 4km × 4km and a temporal resolution of 30 minutes [29]. We averaged GHI over a537

window of 1 hour to obtain hourly GHI and used nearest-neighbor interpolation to assign GHI538

to the solar energy-generating building. While historical irradiance is available for the case of539

Hurricane Isaias (2020) scenario to measure the solar potential, we used solar irradiance for future540

hurricanes introduced by [26], which is given as.541

Ih = Ī × e f (R,C) (6)

where Ih is the reduced irradiance during hurricane, Ī is the spatiotemporal average of the542

observed irradiance, and f (R, C) ≤ 0, is a function of the ratio of hurricane’s distance-to-site (d)543

to the radius-of-closed-isobars (ROCI) where winds are zero, R = d/ROCI and category of a544

hurricane (C) as can be found in [26]. To calculate Ī, we used the GHI at an hourly scale during545

2020 and averaged the irradiance at each hour across all days to get the Ī for a typical 24-hour day546

of a month. We determined the start of outages and corresponding solar irradiance (Ih in Eq. 6) by547

using the location and month of the year for each hour from each synthetic hurricane’s genesis to548

its complete dissipation.549

To share solar energy in ECs, we clustered houses using a k-means clustering algorithm based550

on Euclidean distance, with the average cluster containing ten houses. Refer to Supplementary551

Figure S8 for the distribution of the number of houses clustered together for energy sharing. We552

assumed that 50% of households in a cluster adopt solar panels and behind-the-meter batteries.553

Like overhead power lines, solar panels installed on rooftops are exposed to high hurricane winds.554

In [35], authors developed data-driven fragility models of the rooftop-mounted panels to the555

hurricane winds, represented similar to Eq. 1 with parameter w̄ = 80 m/s and β = 0.32.556

We ran simulations for any pole and solar panel failures in our Hi-Fi ORiM during a hurricane.557

If a solar panel is damaged during a hurricane, only behind-the-meter power will provide the558

power during the disaster, and there will be no solar generation for that panel. Energy sharing559

during a disaster is only possible if none of the poles connecting houses in a cluster are damaged560

and all houses belong to the same disconnected subnetwork; otherwise, houses with solar panels561

will use the generated solar power for themselves. Also, during an emergency, households with562

solar panels first consume energy for themselves and then share any surplus equally with those563

without solar panels. We assume a simple power balance for household energy sharing but with564

no transmission losses [81]. Our study does not consider the failure of lines due to overloading565

[18], which could be addressed in future studies. Figure 8 outlines our approach to determining566

generated power.567
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Fig. 8. Framework for evaluating the available energy during and after the hurricane. First, we
get the cloud cover and winds during a hurricane. Then, we determine any failures for power
poles and solar panels from hurricane winds. Finally, we determine the generated power during
and after a hurricane.

We assumed that solar panels are made of standard crystal silicone with an energy conversion568

efficiency of 19% [33]. Further energy conversion losses could happen due to system losses such as569

soiling, shading, and wiring issues. Hence, we considered further system losses of 14%. Finally,570

we considered an AC-to-DC conversion ratio of 96%. Thus, the total available solar energy was571

calculated by multiplying GHI with the energy conversion efficiency, system losses, and AC-to-DC572

conversion factors [58].573

For this study, rooftop solar panels are sized according to the net-zero energy efficiency crite-574

rion, meaning the total energy generated equals the total consumption by a house [25]. We also575

constrained the panel size not to exceed the roof area. We used open-source building footprints576

provided by Microsoft [49] to determine roof size.577

Real-time electrical energy consumption data for individual buildings is not publicly available.578

However, NREL’s ResStock provides a simulated dataset for thousands of residential load profiles579

across various climate zones in the United States [83]. These datasets are validated against the US580

Energy Information Administration’s survey on residential energy use [84]. The load profile dataset581

includes buildings with different floor areas, construction years, and types, such as single-family582

and multi-family residential buildings.583

We considered diverse load profiles since larger households typically consume more electricity,584

and newer houses might use electrical heating systems, unlike older buildings that often have585

gas-fired heaters [85]. The load profiles are available at the census block level across the US. Since586

our study focuses on residential buildings, we filtered the load profiles for single-family and587

multi-family residences based on census block, building area, and construction year. We obtained588

the construction year and number of floors from parcel data [48] and multiplied the number of589

floors by the building footprints [49] to calculate the total floor area for each building. Based on the590

different combinations of building floor area and year of construction (see Supplementary Text S2,591

Tables S2-S3, and Figure S6), we obtained consumption profiles for our synthetic grid at an hourly592

scale for a typical year.593
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D. Undergrounding594

Undergrounding power lines can be an effective resilient strategy to hurricanes, as it reduces the595

exposure to the high hurricane winds [2, 39, 81]. Thus, we also investigated underground energy596

as an alternative to adopting solar energy to reduce cascading power blackouts during extreme597

weather events. We assume that 50% of the power lines to estimate the resilience gained with the598

undergrounding strategy. To understand the effect of undergrounding, we assume that power599

poles are undergrounding in the decreasing order of vulnerability. For example, class 7 poles are600

the most vulnerable (Figure 1), so they are assumed to be underground first. The poles for the601

underground power lines were assigned a zero probability of failure, i.e., Pf (w) → 0 in Eq. 1. The602

failure analysis and recovery for the rest of the poles in the synthetic grid are similar to methods603

for the synthetic grid without undergrounding.604

E. Economics of resilience605

Net present value (NPV) has been used to define prosumers’ profitability. A positive NPV represents606

profit, while a negative NPV represents prosumers’ losses. NPV is presented as.607

NPV = −I0 +
Li f etime

∑
n=1

(
CF

(1 + r)n

)
(7)

where I0 is the initial investment to install solar systems and behind-the-meter battery, the608

project’s lifetime is 25 years, r is the discount rate, and CF is the cash flow, which is given as.609

CF = −CO&M − CD − CB(n = 11 or n = 21) + Ppv→sel f × Cgrid

+ Ppv→grid × Cnet−meter + Ppv→local × Clocal

+ Plocalpurchase × (Cgrid − Clocal) + Davoid−outage × Coutage (8)

where CO&M is the cost of operation and maintenance, CD is the cost of damage determined610

by multiplying the average failures of solar panels multiplied by the cost of installing a new611

panel, CB is the cost of behind-the-meter battery assuming lifetime of a battery is 10 years, Ppv→sel f612

is the self-consumption of solar power, Ppv→local is the surplus power sold locally, Ppv→grid is613

the surplus power sold to the grid, Plocalpurchase is the locally purchased electricity at the time of614

underproduction of solar power, Cgrid is the cost of grid purchased electricity, Cnet−meter in the615

incentive from net-metering, Clocal is the local sell price of electricity, Davoid−outage is the duration616

of avoided outages, and Coutage of avoided outage. Thus, Ppv→sel f × Cgrid represents the savings617

from self-consumption, Ppv→grid × Cnet−meter + Ppv→local × Clocal represents the incentives from P2P618

sharing and net-metering, and Plocalpurchase × (Cgrid − Clocal) represents the savings by avoiding to619

the purchase the electricity from grid. We studied the case of ECs and non-ECs to understand the620

profit of selling electricity locally.621

We calculated the cost of avoided outages by considering the reduction in outage duration with622

the adoption of solar panels in an average year (out of 1485 years of simulation). For our analysis,623

we determined the value of resilience by calculating the cost of an alternative energy source: a624

rental diesel generator. Consequently, the reduction in outages is rounded up to the nearest integer625

number of days to determine the rental cost for the diesel generator as the cost of avoided outages.626

We also evaluate the NPV for the community in the solar EC community and undergrounding627

configurations of our synthetic power grid. We assume that the customers bear the cost of under-628

grounding, and the utility recovers the cost over the next 25 years. Thus, we distribute the cost629
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to the customers uniformly based on their annual consumption to their electricity bills, which is630

represented as.631

∆Cgrid,underground =
Iunderground − Ounderground

25 × ∑ Pconsumer
(9)

where ∆Cgrid,underground is the increase in the bill of consumers, Iunderground is the cost of under-632

grounding, Ounderground is the reduction in operation cost of power lines after undergrounding, and633

Pconsumer is the energy consumption of each consumer. We use Eq. 7 and cash flow for underground-634

ing is.635

CFunderground = −(Cgrid + ∆Cgrid,underground)× Pconsumer + Coutage,underground (10)

where Coutage,underground is the cost of saved outages with the undergrounding risk mitigation636

strategy. We also compute the net cash outflow (NCF) for the mitigation strategies of solar EC and637

undergrounding. For undergrounding, NCF is given as.638

NCFunderground = (Cgrid + ∆Cgrid,underground)× Pconsumer (11)

For solar EC, NCF is different for prosumers and consumers. For a prosumer, NCF is given as.639

NCFsolar,prosumer = I0 + CO&M + CD + CB(n = 11 or n = 21)− Ppv→sel f × Cgrid

− Ppv→grid × Cnet−meter − Ppv→local × Clocal

+ Plocalpurchase × Clocal + Pgridpurchase × Cgrid (12)

NCF for a consumer is given as.640

NCFsolar,prosumer = Plocalpurchase × Clocal + Pgridpurchase × Cgrid (13)

The Supplementary Text S3 provides all cost details used in the above calculations. Supplemen-641

tary Figure S10 presents an example of generated energy, energy sold, and energy purchased from642

the grid for a house with solar panels.643
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