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Abstract. The current paper aims to use methods of control of chaos to stabilize the chaotic behavior of a nonlinear piezo-
electric energy harvester, making its power generation more fruitful, both for signal improvement and for the amplitude
of the generated power. We have implemented the "discrete” OGY method of chaos control on the dynamical model of the
harvester’s system. The methodology (following the OGY method) is based on detecting recurrent points in a Poincaré
section, through the development of the dynamical system, and, once the desired orbit is detected (if it exists within the
analysis time) the system applies small control forces to maintain the system in this trajectory. Depending on the con-
straint imposed on the recurring points, stabilization can occur for orbits of not only one period, but also of multiple
periods, with different geometries in the phase space, which may take more or less time to stabilize. The results obtained
so far are promising. Stabilized orbits generally have a higher energy yield than that of the free system (which may be
chaotic or not). Depending on the constraint imposed, the system can be stabilized in larger or smaller orbits of one or
multiple periods. In some cases, stabilization may occur for orbits that have an energy efficiency lower than that of the
chaotic system, but other orbits, for the same system conditions, achieve a higher yield.

Keywords: Control of Chaos, Energy Harvesting, Nonlinear Oscillator
1. INTRODUCTION

The fast pace of technological innovation demands new and more efficient sources of energy to sustain its needs and
increase the lifespan of electronic devices. Those demands stimulates the research for the development of more efficient
types of energy harvesting (Lopes et al., 2017a,b; Peterson et al., 2018; ?) . Energy harvesting devices are able to assist
and preserve the independence and autonomy of many kinds of electronic equipments, from engineering applications of
all kinds as in nanotechnology (Koka et al., 2014; Seol et al., 2013; Wang and Song, 2006) and telecommunications to
medicine as, for instance, a power source for pacemakers (?).

Vibration energy harvesters are specially useful as vibrations can be generated by various types of sources, from sound,
heat, pressure, even a simple human movement can make it capture the exceeding energy (Peterson et al., 2018; Lopes
et al.,2019a,b).

Linear energy harvesters can be very effective when vibrating in their natural frequency, more so than nonlinear ones.
However, the nonlinearity can provide a wider range of acceptable frequencies (Cottone et al., 2009) , and, by doing so,
it proves itself being more useful for a greater variety of activities. The problem with nonlinearity is that it encompasses
chaotic phenomena in its exercise.

Chaos has, traditionally, been an enemy of engineering. Irregular or completely unexpected results are situations that
cannot be afforded in rigorous, precise projects. Even when its presence is unavoidable, it is often an annoyance that
brings damage or lessens the efficiency of a given structure. Methods of control of chaos are a good prospects into making
chaotic events less harmful or even beneficial to a given system.

For the energy harvester system presented in this research, chaos can be a friend in the sense that it amplifies the
incoming vibration amplitude granting a higher energy yield. But it can also be an enemy as the chaotic signal is of poor
quality, unpredictable and not suitable for direct use in electronic devices. Because of this, control of chaos techniques
(such as the OGY method (Ott et al., 1990)) are used as a solution for the negative effects, stabilizing the chaotic system
in an orbit embedded in the chaotic attractor and, as discussed throughout the paper, enabling a predictable, regular and
often higher electrical signal.
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2. BISTABLE ENERGY HARVESTER SYSTEM

The mechanical system of interest in this work is depicted in Fig. 1. It is the bistable piezoelectric energy harvesting
system proposed by Erturk et al. (2009), based on the concept of nonlinear vibrating energy harvesting introduced by
Cottone et al. (2009).
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Figure 1: Schematic representation of a nonlinear bistable energy harvester.

The harvester’s dynamics is modelled by the following nondimensional equations
. o1 2
x+2§x—§x(1—x)—xv:fcoth, @)

D+ Av+ KD =0, )

where v represents the voltage through the resistor, x the horizontal displacement of the beam’s tip, ¢ the time, y the
mechanical coupling factor, « the electric coupling factor, A the inverse characteristic time, f the excitation amplitude and
Q the excitation frequency. The above equations are supplemented by the initial conditions z(0) = x, ©(0) = & and
v(0) = vp.

For the simulations reported in this work the following values were employed: ¢ = 0.01, kK = 0.5, x = 0.05, A = 0.05,
Q = 0.8, with initial conditions (z, 9, v9) = (1,0,0).

The pair of magnets act as attractors of the dynamical system, in which the orbits of the phase space revolves around
(considering the movement of the vertical beam’s free extremity). The system’s trajectory can present chaotic behaviour
in the range 0.03 < f < 0.112 (Barbosa et al., 2015). In order to take advantage of such chaos, seeking to improve
the system efficiency, the OGY method (Kapitaniak, 2012; Ott ef al., 1990) for control of chaos is used to stabilize the
system’s dynamics into an unstable periodic orbit embedded in the underlying chaotic attractor.

The power generated and consumed by the system are given, respectively, by

1 T
P = — P
Gavg T/o Gdt 3)
and

1 T
PCuy = 7 /0 PCt, 4)
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where PG is the power generated, calculated by squaring the instant generated nondimensional voltage v and multiplying
it by the inverse characteristic time A (which is inversely proportional to the resistance of the circuit). Therefore PG =
M2, And PC is the consumed power, calculated by multiplying the control force (the discrete control force of the OGY
method, each cycle) by the velocity of the system at that time of actuation. Therefore PC' = (Control Force)i.

The intensity of the control force is given by the displacement component of the vector " K" multiplying the change in
displacement in the Poincaré section from one cycle to the next, better described in the "OGY METHOD" subsection.

The sample period, from "zero to 7", can be any period of time of interest. Here, samples from the moment the control
system starts to apply the control force until an arbitrary moment in the permanent state were taken (however, some of the
figures only consider the permanent state, to show the stabilized system).

3. METHODS OF CONTROL OF CHAOS

Methods of control of chaos are based on stabilizing a given chaotic system through small, wisely decided, distur-
bances to maintain itself in a certain unstable periodic orbit (UPO).

Although there are several techniques available, most approaches are either based on discrete control methods (such as
the OGY method) or continuos control methods (such as the Pyragas method). Both of them require information about the
current state of the system (for example, its position and velocity) in order for the method to work properly. As they need
information of the outcome of the system to send the control signal, they are categorized as "closed loop" or "feedback"
methods (Boccaletti et al., 2000).

The focus of this paper is centered on the OGY method, where most of the results shown here were executed. Figure
2 displays a simplified model of the control system.

chaos actuating energy output
controller harvester

feedback
elements

Figure 2: Schematic representation of the chaos controller.

3.1 OGY METHOD

Named after E. Ott, C. Grebogi and J. A. Yorke (Ott et al., 1990), this discrete method actuates once (if needed) at
each period %’T of time (a "cycle"), sending a control signal that, through a small controlled force, keeps the system in the
chosen unstable periodic orbit (UPO). Such UPO is determined by finding recurrent points in a Poincaré section (points
that, after a %’T period of time, are sufficiently close to each other by an imposed tolerance). While the UPO is being
determined, the method cannot actuate, as the desired orbit is not yet defined. This stage of determining the UPO is the
"learning stage" of the control system. The system will remain uncontrolled until such condition is met.

In a time-discretized system, a Poincaré map can be given by

§n+1 = g(€n7p)a (5)

where &, p and g represent the state of the system, the model parameters and the function capturing the points of the
Poincaré map (marking them once per cycle in a displacement vs velocity plane), respectively. If the desired orbit is given
by the state £* in the Poincaré map and considering that its vicinity is sufficiently small, by an imposed tolerance, we can
approximate the deviation of the point £, 41 in relation to the point £* linearly as a function of the deviation of the point
&, compared to the same point. Following

(§n+1 _5*) ZJ(gn—f*)—l—C(p—p*), (6)

where J, C' and p* are, respectively, the Jacobian matrix of the system, the system’s derivatives in relation to the control
parameter (the excitation force amplitude) and the parameters corresponding to the orbit Z* (Witvoet, 2005). The goal of
the method is to make (&,41 — £*) decrease, preferably converging to zero. To that end, a gain "K " is defined such that



L. de la Roca, J. Peterson, M. C. Pereira and A. Cunha Jr
Control of chaos via OGY method on a bistable energy harvester

(p—p")=—K"(& — &), @)

with K7 representing the gain vector of the control system. From Eq. (6) and Eq. (7) and denoting the deviations in
relation to the target orbit as J, follows that

66pi1 = (J — CKT)6¢,. (®)

To make the next deviation decrease in modulus, J — C KT needs to have eigenvalues with a modulus less than 1. This
condition can be solved by the inequality

11l

KT <~
eyl

©)

picking values for K7 satisfying it.

In the case of orbits with multiple periods, the recurrent points in the Poincaré section must be analysed differently, so
the proper unstable periodic orbit may be found. A n-periodic orbit is identified when its points in the Poincaré section
(denoted by &;) meet the following condition (Neto, 2016):

& — Eipn| e < tol, (10)

where IV, is the total number of points in the Poincaré section, tol the imposed tolerance between recurrent points (a
small distance, for example), and n the maximum period of the desired orbit. There might be more than one orbit, with
different periods, that falls into the same condition. In this case, further restrictions (similar to this one, but with different
tolerances) must be implemented to "pinpoint" the desired orbit.

4. NUMERICAL SIMULATIONS

Several simulations, for different cases of excitement forces and stabilizations, were done using MATLAB with the
OGY method. Apart from the adopted values for the constants (2, A, £ and y, as previously mentioned, values for f were
chosen in the range of 0.03 < f < 0.112, as in this range the system presents coexisting attractors, including chaotic
responses (Barbosa et al., 2015). The excitation force of f = 0.083 and 2 = 0.8 presents, when uncontrolled, a chaotic
behavior. Figures 3, 4 and 5 display some of the effects of the implementation of the OGY method in the system.

phase space uncontrolled phase space after control

velocity
velocity

diplacement diplacement

(a) f=0.083 uncontrolled. (b) f=0.083 controlled.
Figure 3: Phase space of the case f = 0.083, {2 = 0.8 , uncontrolled and stabilized in a 1-periodic orbit
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(a) f=0.083 uncontrolled. (b) £=0.083 controlled.

Figure 4: Voltage along time for the case f = 0.083, 2 = 0.8, uncontrolled and stabilized in a 1-periodic orbit
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Figure 5: Power consumption and generation for the case f = 0.083, 2 = 0.8, 1-periodic orbit.

In Figure 3, the colors represent the evolution of the system, from blue to pink, as time progresses. The blue part in
Fig. 3(b) shows the transient state before the stabilization in the 1-periodic orbit, in pink.

Figure 4 displays the instant generated voltage along time. The zoom puts in evidence the improvement in the quality
of the signal, from a chaotic to a regular, predictable, alternating current.

The last figure of this segment, Fig. 5, indicates the power consumption and generation. Figure 5(a) shows each
cycle actuating with discrete impulses from the control force, considering the velocity of the system, defining the power
consumption PC'. Figure 5(b) shows the instant power generation PG along time, directly from the voltage and resistance
of the circuit.

Another interesting result is that different orbit stabilizations causes different power outcomes, as shown in Fig. 6, 7,
8 and 9. As it is to be expected, an orbit focused on only one of the attractors (as the case of the 2-periodic orbit in Fig.
8) travels an overall shorter distance, making the piezoelectric materials generate less power as result (compared to the
larger chaotic orbit of the free, uncontrolled system, in Fig. 6).
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(a) Phase space, f = 0.090 uncontrolled.
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(b) Power generation, f = 0.090 uncontrolled.

Figure 6: Phase space and power generation for the case f = 0.090, 2 = 0.8 uncontrolled

phase space after control

0.5

05 j
i _A_
-1 -0.5 ] 0.5 1

15

diplacement

(a) Phase space, f = 0.090 controlled 1-periodic orbit.
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(b) Power generation, f = 0.090 controlled 1-periodic orbit.

Figure 7: Phase space and power generation for the case f = 0.090, 2 = 0.8 1-periodic orbit.
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(a) Phase space, f = 0.090 controlled 2-periodic orbit.
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(b) Power generation, f = 0.090 controlled 2-periodic orbit.

Figure 8: Phase space and power generation for the case f = 0.090, 2 = 0.8 2-periodic orbit.
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(a) Phase space, f = 0.090 controlled 5-periodic orbit. (b) Power generation, f = 0.090 controlled 5-periodic orbit.
Figure 9: Phase space and power generation for the case f = 0.090, Q2 = 0.8 5-periodic orbit.

As shown in the graphics, not all cases show improvements. Comparing the power generation figures of the controlled
systems (Fig. 7(b), 8(b) and 9(b)) with the uncontrolled one (Fig. 6(b)), it is possible to visualize that the 2-periodic orbit
case had a massive decrease in power generation. As for the 1-periodic case, in Fig. 7, it increases, and for the 5-periodic
orbit the power generation does not suffer much of a change.

The following table, Table 1, summarizes several results in terms of power generation from the controlled systems in
relation to the uncontrolled one.

f uncontrolled | controlled | controller (x10~%) | effective | enhancement
0.050 0.0001 0.0068 - 0.0005 0.0068 68 %
0.083 0.0073 0.0131 - 0.0006 0.0131 1.8 X
0.090 1-p 0.0077 0.0154 - 0.0001 0.0154 2 X
0.090 2-p 0.0077 0.0037 - 0.0002 0.0037 0.5 x
0.090 5-p 0.0077 0.0084 - 0.0001 0.0084 1.1 x

Table 1: Power generation of the uncontrolled system compared to the controlled one over different values of f, with
different periodic orbits for the case f = 0.090 (orbits "1-p"=1-periodic, "2-p"=2-periodic and "5-p"=5-periodic).

The Table 1 indicates the values of the average power generated, PG4 (displayed in the table as "uncontrolled" and
"controlled" for the respective states of the system), as well as the power consumption of the controller, PC,,4 (displayed
in the table as "controller"). The effective power of the system, given by PG, s — PCy,4 for the controlled cases, is shown
in the "effective" column. And at the last column displays the overall improvement of the controlled system compared
to its uncontrolled state (the value of 1 would represent no improvement at all, and values below it represent a decay in
power generation). The time sample of the simulations were from the moment the control system starts to send signals
until an arbitrary moment in the permanent state, with the same time limits for the uncontrolled and controlled systems.

The great improvement of the f = 0.050 case is mainly due to the initial position of the system, o = 1, which,
for the uncontrolled state, "trapped" the extremity of the ferromagnetic beam around one of the magnets, as the initial
displacement was near it. The control system was able to break free from this "trap" as the control forces set the orbit
around both magnets, greatly extending the travelled distance, thus increasing the power generated by the piezoelectric
components.

It can also be seen the decay in efficiency for the case " f=0.090 2-p", considering Fig. 8 in relation to Fig. 6. The
increase of almost two fold the power generated for the case " f=0.090 1-p" and the roughly indifferent case " f=0.090
1-p", as the average generated power is only about 10% above the uncontrolled system’s power.

5. CONCLUSION

This work has the purpose to analyse the usage of control of chaos techniques, in particular the discrete OGY method,
as a tool to increase the efficacy of a nonlinear piezoelectric energy harvester. Such improvement comes in the form of a
better, regular, electrical signal and an increase in the amplitude of vibration, generating more energy.
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The study and results show that such improvement does not happen for every controlled state, as for certain cases
the controlled system decays in power - a "bad effect”, and in other situations the control gain might be indifferent in
comparison to the uncontrolled system, displaying virtually the same power generation - an "ugly effect". Nonetheless,
the correct UPO stabilization may prove to be highly effective for the system’s power generation - a "good effect".
Different situations can have distinct benefits from the application of control of chaos. As can be seen in Table 1, the case
f = 0.050 shows a drastic increase in power generation while for the cases f = 0.083 and f = 0.090 the control "only"
offers around two times the uncontrolled generated power.
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