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• Propose a novel global optimization method based on deflation constraints
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A B S T R A C T
The study presents deflation constraints that enable a systematic exploration of the design space
during the design of composite structures. By incorporating the deflation constraints, gradient-based
optimizers become able to find multiple local optima over the design space. The study presents the idea
behind deflation using a simple sine function, where all roots within an interval can be systematically
found. Next, the novel deflation constraints are presented: hypersphere, hypercube and hypercuboid;
consisting of a combination of Gaussian and sigmoid functions. As a test case, the developed
constraints are applied to the optimization of a double-cosine function, where all the 13 minima
points could be found with 24 deflation constraints. It is shown that a new optimum is encountered
after each deflation constraint is added, with the optimization subsequently re-started from the same
initial point, or resumed from the last found minimum, being the latter the recommended approach.
The new deflation constraints are then used in heuristic-based direct search methods, where a genetic
algorithm optimizer is able to find new optimum individuals for straight-fiber composites. Lastly,
variable-stiffness composites were designed with the deflation constraints applied to the multimodal
optimization problem of recovering fiber orientations from a set of optimum lamination parameters.

1. Introduction
Structural optimization is a fairly vast subject in itself that is
tightly associated with the design of lightweight structures.
Composite materials have been a major enabler of these
designs, owing to their superior specific material properties
as compared to metals, and to their significantly larger design
space enabled by their anisotropy. Both aeronautical and
space industries have been continuously developing new
concepts for composites to pursue these benefits, and Figure
1 shows the evolution of the use of composites in aeronautics
over the last 60 decades. Note that Boeing’s 787 Dreamliner
was the first large commercial aircraft have 50% of the
structural weight in composites (1).
1.1. Types of design space and optimization

composites
Ghiasi et al. reviewed in detail different composite optimiza-
tion methods used for constant (3) and variable (4) stiffness
laminates, classifying the techniques into four categories,
being in order of relevance: gradient-based, direct search
and heuristic, specialized and hybrid methods. Gradient-
based methods can find a local minimum generally faster
than all the other methods, limited to contiguous problems
with first or second derivatives (3). For problems that are
large in dimension, with usually more than 30 variables (5),
gradient-based methods may be the only viable optimization
method (6). However, gradient-based optimizers can find
the global optimum with high accuracy only in unimodal
design spaces (7; 8), whereas in multimodal spaces the final
solution largely depends on the initial point (3). A convex
design space is a subset of a unimodal design space, as
illustrated in Figure 2, and convexity requires that all line
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segments connecting any two points in the function are
above the function and do not intersect it. Hence, not all
unimodal functions are convex, but all multimodal functions
are non-convex (6). As the design space becomes increas-
ingly multimodal or non-convex, finding a global minimum
becomes more difficult and would require special techniques
that can evaluate multiple regions of the design space to
find the point that best minimizes the function. These global
search schemes involve different sampling or starting point
approaches (9; 10) to increase the likelihood to converge
to a global optimum, despite it is never guaranteed that
a global optimum will be found, not even that the global
search will converge onto a solution that is different from
those previously found (6). In commercial software such as
Altair’s Optistruct, such global searches can be activated
with the "dglobal" user input (11).

Direct search methods do not require derivatives, and can
be more appropriately applied for composite lay-up design,
handling a mixture of continuous and discrete variables.
They can find the global optimum of multimodal objective
functions, although with a significantly lower rate of con-
vergence when compared to gradient-based methods (3).
Genetic algorithms (GA) has been the most popular class
of direct search method, according to Ghiasi et al. (3), with
simulated annealing ranking second. Haftka and his group
have pioneered the application of GA in composite design
(12; 13; 14). António (15) proposed a hierarchical GA for
multimodal optimization of hybrid composites with multiple
solutions. The sunflower algorithm is another relevant global
optimizer originally applied to inverse problem of structural
damage detection in laminated composite plates, proposed
by Gomes (16).

Variable stiffeness (VS) laminated composites can fur-
ther increase the design space and hence the potential for
better structural performance of composites (17), manufac-
turable by automated fiber placement (18) and continuous
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Figure 1: Utilization of fiber-reinforced composites in aircraft over the last decades, from Wang et al. (2).

two shearing (19). However, the larger design space created
by VS laminates creates new challenges for the optimization,
due to highly non-convex design spaces associated with the
variable fiber angles (20).

Figure 2: Unimodal and multimodal functions, from Martins
& Ning (6).

Even in the design of constant stiffness laminated com-
posites, the use of ply-angles as design variables is often
associated with non-convenxity (21). Miki (22) proposed
the use of lamination parameters, introduced by Tsai &
Pagano in 1968 (23), as design variables to render a convex
optimization. Scardaoni & Montemurro (24) proved non-
convexity of the feasible domain for both anisotropic and
orthotropic-membrane laminates, even when those are pa-
rameterized using lamination parameters. However, approx-
imations that lead to convex feasible domains have been
proposed, such as the one for the in-plane and flexural
lamination parameters developed by Fukunaga & Sekine
(25; 26). Even when the optimization of the lamination

parameters is performed in a convex design space, the next
step of retrieving the fiber angles involves a multimodal
optimization that is ubiquitously done using GA algorithms.
In the present study, it is shown that this retrieval can be done
with gradient-based optimizers when deflation constraints
are used.
1.2. The deflation method
1.2.1. Deflation of scalar-valued functions
The first instance of the deflation methods were applied for
systematic root finding in nonlinear functions (27), provid-
ing an easy visualization of the concept. Assume 𝑝(𝑥) to be
a scalar-valued nonlinear function having 𝑛 multiple roots
𝑥1, 𝑥2, ..., 𝑥𝑛, with each root found using an iterative method
such as the Newton-Raphson (28). After having evaluated
the initial root of 𝑝(𝑥), more roots can be systematically
found by considering the following deflated function (29):

𝑞(𝑥) =
𝑝(𝑥)

𝑛
∏

𝑖=1
(𝑥 − 𝑥𝑖)

, (1)

for which the already obtained roots can be effectively
removed by the multiplicative term in the denominator.
Consider the sine function 𝑝(𝑥) = 𝑠𝑖𝑛(𝜋𝑥) with 7 roots
within −𝜋 ≤ 𝑥 ≤ +𝜋. Figure 3 depicts 𝑝(𝑥) and the two
new functions 𝑞1(𝑥) and 𝑞2(𝑥), created after two consecutive
deflation steps, respectively after finding the roots at 𝑥 = −2
and 𝑥 = +1, given as:

𝑞1(𝑥) =
sin(𝜋𝑥)
𝑥 − (−2)

𝑞2(𝑥) =
sin(𝜋𝑥)

(𝑥 − (−2))(𝑥 − (+1))

(2)
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Figure 3 shows that the deflated functions have the spe-
cific roots completely removed, i.e. the deflated functions no
longer cross zero at those points, while keeping all the other
roots unchanged. This property of the deflation technique
can be exploited to remove selected minima points from
an arbitrary objective function, as demonstrated later in the
present study.

Figure 3: Deflated sine function obtained using Equation 1

1.2.2. Deflation applied to nonlinear equations
The idea behind polynomial deflation was generalized to
partial differential equations (PDE) by Farrell et al. (29),
extending the concept of deflation matrix 𝑀 and deflation
operator 𝑚 that had been previously introduced by Brown &
Gearhart (30), also with the intent of solving PDEs. Farrell
proved that convergence to different solutions from the same
starting point was achieved after deflation. Consider the
residuals for a system of 𝑛 nonlinear equations 𝐹 (𝑥) such
that:

𝐹 (𝑥) = 0 (3)
After solving the system of equations once, solution 𝑥1is obtained, such that a deflation matrix can be calculated

using a deflation operator:

𝑀(𝑥; 𝑥1) = 𝑚(𝑥; 𝑥1)
𝑚(𝑥; 𝑥1) = ||𝑥 − 𝑥1||−𝑝 + 𝜎 (4)

where  is the identity matrix (𝑛×𝑛); 𝑝 is the pole strength or
power that dictates the rate at which the function approaches
infinity; and 𝜎 is an offset parameter that is reached when the
norm distance ||𝑥 − 𝑥1|| → ∞ (31). The deflated nonlinear
system of equations 𝐺(𝑥) becomes (31):

𝐺(𝑥) ≡ 𝑀(𝑥; 𝑥1)𝐹 (𝑥) = 0 (5)
The system in Equation 5 can be solved to obtain a new

solution 𝑥2. Here 𝐺 satisfies the following properties (31):

1. The two system of equations, 𝐹 (𝑥) = 0 and 𝐺(𝑥) = 0
both have the same solutions for all 𝑥 ≠ 𝑥1.

2. With the known solution 𝑥1,𝐺 will not converge again
to 𝑥1 under the assumption lim𝑥→𝑥1 ‖𝐺(𝑥)‖ > 0

After having found 𝐾̃ multiple solutions, the method in
(29) proposes multiplying the deflation matrices and solving
the following set of equations:

𝐾̃
∏

𝑘=1
𝑀(𝑥; 𝑥𝑘)𝐹 (𝑥) = 0. (6)

Farrell et al. in a recent study (32) have further extended
this method for semi-smooth equations. Deflation does not
guarantee that all the solutions to a problem are found;
however, it provides a systematic method to explore a pro-
gressively larger number of nonlinear solutions.
1.2.3. Deflation in global search
In the context of sizing optimization, the idea to apply defla-
tion as a new constraint has been independently developed
by the authors, with the only literature reference using a
similar approach for topology optimization being the non-
peer reviewed pre-print by Tarek & Huang (33). Consider the
nonlinear programming (NLP) problem for which multiple
solutions need to be evaluated:

minimize
𝑥∈𝑛

𝑓 (𝑥)
subject to 𝑐(𝑥) = 0

𝑙 ≤ 𝑥 ≤ 𝑢
(7)

where 𝑙 and 𝑢 are respectively the lower and upper bounds
of the design variable 𝑥. This constrained minimization
problem can be converted into an unconstrained problem
by expressing the objective function as the Lagrangian,
expressed as (33):

(𝑥, 𝜆, 𝑧+, 𝑧−) = 𝑓 (𝑥) + 𝑐(𝑥)𝑇 𝜆 + (𝑥 − 𝑢)𝑇 𝑧+ − (𝑥 − 𝑙)𝑇 𝑧−
(8)

where 𝜆 ∈ 𝑚 is the Lagrange multiplier vector associ-
ated with the equality constraints, 𝑧−, 𝑧+ ∈ 𝑛

+ is the
Lagrange multiplier vectors associated with the lower and
upper bound. The Karush-Kuhn-Tucker (KKT) conditions
are satisfied when (33):

∇𝑥(𝑥, 𝜆, 𝑧+, 𝑧−) = 0
𝑐(𝑥) = 0
𝑙 ≤ 𝑥 ≤ 𝑢
𝑧+ ≥ 0
𝑧− ≥ 0

(𝑥 − 𝑢)𝑇 𝑧+ = 0
(𝑥 − 𝑙)𝑇 𝑧− = 0

(9)

A point 𝑥 that satisfies these conditions is therefore
known as a KKT point, and finding multiple solutions to
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the NLP consists of finding multiple KKT points. In the
work of Tarek & Huang (33) two versions of the deflation
constraint were proposed. First, an additional variable 𝑦 is
introduced into the optimization problem along with the
deflation constraint 𝑚. With 𝑦 ≥ 0, the deflation constraint
is given as (33):

𝑚(𝑥; 𝑥1) = ||𝑥 − 𝑥1||
−𝑝 + 𝜎 ≤ 𝑦 (10)

where 𝑥1 is the first optimum point that is found previously, 𝑝
is a power (usually varies between 2-4), and an offset term 𝜎.
After this constraint becomes active, it is considered that if
the new found optimum point 𝑥2 is associated with variable
𝑦 such that 𝑦 is finite and has a value in exact arithmetic,
then 𝑥1 ≠ 𝑥2 (since lim𝒙→𝒙1 𝑚(𝑥; 𝑥1) = ∞). It can further
be proved that every KKT point of the new NLP with a finite
value of 𝑦 is a KKT point of the original formulation (33).
A proof of how (𝑥∗, 𝑦∗) would be a regular KKT point for
the modified problem after the introduction of the deflation
constraint is provided in Appendix A.

If it is assumed that 𝑚 > 0 and 𝑦 > 𝜎, the deflation
constraint would be equivalent to the distance constraint as
follows (33):

||𝑥 − 𝑥1||
𝑝 ≥ 𝑧 (11)

where 𝑧 = 1∕(𝑦 − 𝜎). Thus, it becomes clear that the de-
flation constraint essentially puts a constraint on the known
solutions. If at any point, the optimizer approaches 𝑧 = 0 or
𝑦 = ∞, then the deflation operator is not distancing the new
points from the known optimum points sufficiently. Hence,
in this case, the main hyperparameters that can be varied to
ensure that this distancing occurs are the offset 𝜎 and the
power 𝑝, as shown in Equation 10.

The first deflation constraint defined in Equation 10
can be modified by omitting the additional variable 𝑦, and
replacing it with a large finite constant 𝑀 , such that a second
deflation constraint is obtained as (33):

𝑚(𝑥; 𝑥1) = ||𝑥 − 𝑥1||
−𝑝 + 𝜎 ≤ 𝑀 (12)

Because there are no additional variables to this second
deflation constraint, a proof similar to what is given in
Appendix A can be used to conclude that the newly found
point 𝑥∗ is a regular KKT point to Equation 7. So far,
Equation 10 and Equation 12 have been evaluated with a
single known solution, whereas for 𝐾̃ known solutions the
deflation constraint can be expressed as a summation, given
by (33):

𝐾̃
∑

𝑘=1
𝑚(𝑥; 𝑥𝑘) ≤ 𝑦 (13)

1.3. Contributions of the present work
Given the challenges related to performing systematic global
search in multimodal design spaces, the present study pro-
poses a novel deflation constraint that is included in the
optimization problem by minimizing the Lagrangian instead
of the main objective function, thus being compatible with
any algorithm that allows constrained optimization.

The methodology of Tarek & Huang (33), similarly to
the methodology initially attempted by Bangera (34), does
not perform adequately in a larger design space after the first
few deflation constraints are added. This lack of robustness
is mainly due to their deflation constraint not being differen-
tiable at the deflated points, and due to the relatively arbitrary
offset parameter 𝜎. The deflation constraint herein proposed
addresses these shortcomings, enabling a robust exploration
of larger design spaces by guaranteeing the discovery of
new distinct minima when the optimization is re-started
or resumed, after a new deflation constraint is added. This
new constraint is applied without altering the optimization
algorithm, making it suitable to both gradient-based and
gradient-free optimization methods.

2. Methodology
2.1. Interior-point optimization algorithm
Interior-point algorithms stems from interior penalty meth-
ods that associate a penalization term with the constraints,
being a key difference the fact that the constraints are not
directly penalised. In interior-point, the penalization acts
on slack variables that are added to the constraints, with
the penalty term increasing as the optimizer moves towards
the boundary of the constrained domain. The formulation is
written as (6):

minimize
𝑥,𝑠

𝑓 (𝑥) − 𝜇𝑏
∑𝑛𝑔

𝑗=1 ln 𝑠𝑗
subject to ℎ(𝑥) = 0

𝑔(𝑥) + 𝑠 = 0
(14)

where 𝜇𝑏 is a barrier parameter. The resulting formulation
turns the inequality constraint into an equality constraint
with the addition of the slack variables 𝑠.

Newton’s method can be applied to solve the KKT sys-
tem of equations in Equation 14, where the logarithm term
associated with the slack variables is only defined for pos-
itive 𝑠 values, acting as a barrier for negative 𝑠 values (see
Figure 4). Owing to the positive 𝑠 values, 𝑔(𝑥∗) < 0 at the
solution, hence satisfying the inequality constraints (6).

The interior-point formulation of Equation 14 is equiv-
alent to the original constrained problem when 𝜇𝑏 → 0.
Hence, a sequence of solutions needs to be obtained such
that 𝜇𝑏 → 0. A constrained problem can be reformulated
as an unconstrained problem by utilizing the Lagrangian
function along with associated Lagrange variables, or La-
grange multipliers (6). The Lagrangian for the interior-point
optimization problem can be written as (6):

(𝑥, 𝜆, 𝜎, 𝑠) = 𝑓 (𝑥)+𝜇𝑏𝑒⊤ ln 𝑠+ℎ(𝑥)⊤𝜆+(𝑔(𝑥)+𝑠)⊤𝜎, (15)
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Figure 4: Plot of inverse barrier and Logarithmic barrier penalty
functions (6)

where, ln 𝑠 is a vector having 𝑛𝑔 components being the
logarithms of each value of 𝑠; 𝑒 = [1, ..., 1] is a vector of
length 𝑛𝑔 containing ones, introduced to express the sum
in vector form; 𝜆 is the Lagrange variable vector associated
with the equality constraints; and 𝜎 is the Lagrange variable
associated with the inequality constraints. The KKT condi-
tions can be derived by taking the derivatives with respect to
𝑥, 𝜆, 𝜎 and 𝑠, leading to:

∇𝑓 (𝑥) + 𝐽ℎ(𝑥)⊤𝜆 + 𝐽𝑔(𝑥)⊤𝜎 = 0
ℎ = 0
𝑔 + 𝑠 = 0
−𝜇𝑏𝑒 + 𝑆𝜎 = 0

(16)

where 𝑆 is a diagonal matrix with its diagonal values given
by the slack variable vector. With this set of residual equa-
tions, Newton’s method can be applied. Taking the Jacobian
of the equations in Equation 16, the following linear system
is obtained:

⎡

⎢

⎢

⎢

⎣

𝐻𝐿(𝑥) 𝐽ℎ(𝑥)⊤ 𝐽𝑔(𝑥)⊤ 0
𝐽ℎ(𝑥) 0 0 0
𝐽𝑔(𝑥) 0 0 
0 0 𝑆 Σ

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝜆
𝑝𝜎
𝑝𝑠

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

∇𝑥(𝑥, 𝜆, 𝜎)
ℎ(𝑥)

𝑔(𝑥) + 𝑠
𝑆𝜎 − 𝜇𝑏𝑒

⎤

⎥

⎥

⎥

⎦

(17)

where Σ is a diagonal matrix whose entries are given by
the values of vector 𝜎; and  is the identity matrix. For
numerical efficiency, the system can be made symmetric
after multiplying the last rows in Equation 17 by 𝑆−1,
which can be calculated as 𝑆−1

𝑘𝑘 = 1∕𝑠𝑘. This results in
the following symmetric linear system that can be directly
solved:

⎡

⎢

⎢

⎢

⎣

𝐻𝐿(𝑥) 𝐽ℎ(𝑥)⊤ 𝐽𝑔(𝑥)⊤ 0
𝐽ℎ(𝑥) 0 0 0
𝐽𝑔(𝑥) 0 0 
0 0  𝑆−1Σ

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝜆
𝑝𝜎
𝑝𝑠

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

∇𝑥(𝑥, 𝜆, 𝜎)
ℎ(𝑥)

𝑔(𝑥) + 𝑠
𝜎 − 𝜇𝑏𝑆−1𝑒

⎤

⎥

⎥

⎥

⎦

(18)

The optimization algorithm developed in the present
study fulfils the requirement of handling versatile inputs,
being applicable to constrained and unconstrained optimiza-
tion problems, while handling both equality and inequality

constraints. Therefore, generally grouped in four types of
optimization problems:

1. Fully unconstrained, which can be solved by applying
Newton’s method to the simple unconstrained condi-
tions of optimality.

2. Only with equality constraints that can be solved by
employing the method of sequential quadratic pro-
gramming, which involves a similar set of equations as
the interior-point method (Equation 18), but omits the
equations associated with the inequality constraints.

3. Only with inequality constraints, which can be solved
using the interior-point method (Equation 18), but
omitting the equations associated with the equality
constraints.

4. With both equality and inequality constraints, which
can be solved using the interior-point method.

2.2. Deflation constraint
Consider the deflation constraint of Equation 4 evaluated at
the design point 𝑥 = 𝑥∗:

𝑚(𝑥; 𝑥∗) = ||𝑥 − 𝑥∗||−𝑝 + 𝜎 (19)
Figure 5 plots Equation 19 using 𝑥∗ = 0 and 𝑝 = 2. Here,
the offset parameter 𝜎 influences the ability to overcome
saddle points created by the deflation constraint when us-
ing gradient-based optimizers, but the use of 𝜎 keeps the
influence of the deflation constraint even far from 𝑥 = 𝑥∗.
When ||𝑥 − 𝑥∗|| → 0, the constraint behaves as 𝑚(𝑥; 𝑥∗) →
∞, which is a discontinuity of the deflation constraint that
prevents its robust use in gradient-based optimizers.
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x
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m
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)

x *

Figure 5: Plot of deflation function given by Equation 19, also
proposed by Tarek & Huang (33)

Aiming to reach a differentiable deflation constraint
function that has no influence outside the proximity of
𝑥 = 𝑥∗, the present study proposes the use of the following
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(a) Gaussian deflation function (Equation 20)
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(b) Gaussian deflation function with the sigmoid terms (Equation 23)
Figure 6: Comparison of the proposed Gaussian deflation with and without the sigmoid terms.

Gaussian function as one of the main components of the new
deflation function:

𝑚(𝑥; 𝑥∗) = 𝑎𝑒−
(𝑥−𝑥∗)2

2𝑐2 (20)
where 𝑎 is the maximum amplitude; and 𝑐 is the standard
deviation. It is proposed to utilise the total span of the desired
deflation divided by 6 as the standard deviation, such that
99.7% of the Gaussian distribution is covered.

Figure 6a depicts the Gaussian distribution using 𝑎 =
5 and 𝑐 = 1∕3. For both the original deflation function,
depicted in Figure 5, and the proposed Gaussian deflation
function depicted in Figure 6a, it can be observed that the
deflation constraint does not terminate to zero beyond the
deflation span −1 ≤ (𝑥−𝑥∗) ≤ +1, nor it becomes negative,
making it inappropriate to be used as a new equality or
inequality constraint. This is because the deflation constraint
function still has a residual value 𝑚(𝑥; 𝑥∗) > 0 that ex-
tends way beyond the desired deflation span. Therefore, it
is suggested to use a differentiable decay function, being a
sigmoid, that multiplies to the Gaussian function with the
aim to terminate the aforementioned residual value entirely
beyond the desired deflation span. Two one-sided sigmoid
functions are used, given as (35):

𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝐿(𝑥) =
1

1 + 𝑒−𝐾(𝑥−𝑥∗+𝑏)
(21)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝑅(𝑥) =
1

1 + 𝑒𝐾(𝑥−𝑥∗−𝑏)
(22)

where 𝑏 is half of the required deflation span; 𝐾 is a param-
eter that controls the steepness of how the sigmoid function
goes from 1 to 0 at the required point of termination, i.e. at
𝑥−𝑥∗ = 𝑏. With the two one-sided sigmoid functions, Equa-
tion 21 and Equation 22, it is possible to make 𝑚(𝑥; 𝑥∗) →
0 respectively for negatives and positives values of ||𝑥 −
𝑥∗||; with the −𝑏 term becoming +𝑏 and 𝐾 becoming −𝐾 ,
from Equation 22 to Equation 21. Hence, within the desired
deflation span, the product of the two sigmoid functions
results in 1, whereas outside the span this product results in
0.

Figure 6b shows how the Gaussian function is changed
by the multiplying sigmoid terms, resulting in the following
deflation function:

𝑚(𝑥; 𝑥∗) = 𝑎𝑒−
(𝑥−𝑥∗)2

2𝑐2 ⋅𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝐿(𝑥) ⋅𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝑅(𝑥) (23)
where 𝑐 = 𝑏∕3. In Figure 6b, 𝑏 = 1 and 𝐾 = 100 and
the resulting deflation function terminates to zero beyond
||𝑥 − 𝑥∗|| = 1. Noticeably, the deflation function value
does not become zero immediately after crossing 1, but this
can be adjusted using a higher value of 𝐾 for a steeper
termination, or a parameter 𝑏 that is slightly smaller than
half of the required deflation span. Note that, the associated
Gaussian and sigmoid functions increase with the number of
dimensions being deflated in an optimization problem.

Three deflation constraint methods are herein proposed:
hypersphere, hypercube and hypercuboid; being the last two
based on Equation 23, with their advantages and drawbacks
discussed in the following.
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2.2.1. Hypersphere approach
The hypersphere or n-sphere approach is a distance-based
approach in which the deflation span region is defined by
a hypersphere. The main advantage is that only one scalar
parameter controls the size of the deflated region, i.e. the
radius of action 𝑟 that is the same over all dimensions
undergoing deflation within the optimization problem.

The distance constraint is given as:
||𝑥 − 𝑥∗|| ≤ 𝑟 (24)

which whether the current design point 𝑥 falls within the
required deflation span. Followed by that, the deflation con-
straint of Equation 20 can be directly applied, without re-
quiring the sigmoid decay function. Deflation is not applied
when ||𝑥 − 𝑥∗|| > 𝑟.
2.2.2. Hypercube approach
Here, a hypercube is used to represent the required deflated
span, where each side of the hypercube has the same length
represented by the scalar 𝑟. The distance constraint is given
as:

𝑥𝑖 − 𝑥∗𝑖 ≤ 𝑟 (25)
where 𝑖 = 1, 2,… , 𝑛; with 𝑛 being the number of dimensions
of the problem. For an 𝑛−dimensional problem, the deflation
function becomes:

𝑚(𝑥; 𝑥∗) =
𝑛
∏

𝑖=1

(

𝑎𝑒−
(𝑥𝑖−𝑥∗𝑖 )

2

2𝑐2 ⋅ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝐿(𝑥𝑖)

⋅ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝑅(𝑥𝑖)
)

(26)

Figure 7a plots the hypercube deflation function of Equa-
tion 26 for a 2-dimensional problem, showing the even
spread across all dimensions, here using a value of 𝑟 = 4.5.
2.2.3. Hypercuboid approach
When the deflated region is represented by a hypercuboid,
a different length is attributed to each side of the cuboid,
being the number of sides equal to the number of dimen-
sions being deflated within the optimization problem. The
𝑛−dimensional vector of deflation spans is
𝑟 = {𝑟1, 𝑟2,… , 𝑟𝑖,… , 𝑟𝑛}; such that the distance constraint
becomes:

𝑥𝑖 − 𝑥∗𝑖 ≤ 𝑟𝑖 (27)
where 𝑖 = 1, 2,… , 𝑛. The expression for the deflation
function becomes:

𝑚(𝑥; 𝑥∗) =
𝑛
∏

𝑖=1

(

𝑎𝑒
−

(𝑥𝑖−𝑥∗𝑖 )
2

2𝑐2𝑖 ⋅
1

1 + 𝑒𝐾(𝑥𝑖−𝑥∗𝑖 −𝑟𝑖)

⋅
1

1 + 𝑒−𝐾(𝑥𝑖−𝑥∗𝑖 +𝑟𝑖)

)

(28)

with 𝑐𝑖 = 𝑟𝑖∕3 for 𝑖 = 1, 2,… , 𝑛, being compatible with
the deflation span vector 𝑟. Figure 7b illustrates Equation 28
for a 2−dimensional problem, where deflation constraint is
uneven across different dimensions, here using 𝑟 = {2, 4.5}.
2.2.4. Advantages and drawbacks
The idea behind having a deflation constraint is to have a
simple approach that can be applied to any optimization
method intuitively seamlessly to find different solutions in
a multimodal design space. The three proposed deflation
constraints can be applied to any optimization problem;
however, there are certain cases in which some perform
better than the others.

The hypersphere and hypercube approach have only one
distance parameter in the deflation problem, i.e. the scalar 𝑟,
being therefore adequate when all design variables should be
equally deflated from existing minima points. Even though
it is simpler to have a single parameter to control the size
of the deflated region, it increases the chances of masking
local minima throughout the design space. This scenario
is shown in Figure 8, which could happen in any of the
three proposed deflation constraints. The figure displays two
local minima in green that were masked due to 𝑟 being
too large. Moreover, Figure 8 illustrates that at the point of
termination of the deflation constraint, the objective function
intersects the deflated region creating false-minima depicted
in red. These false-minima become possible minima to be
discovered by the optimizer in subsequent searches after the
deflation constraint is applied, and can be overcome when
further deflation constraints are added. Masking of minima
points should be always avoided, which is possible by using
smaller values of 𝑟, with the side effect of increasing the
number of deflations that are necessary to move away from
a local minimum region to the next.

However, when it is desired that different design vari-
ables are deflated differently, the hypercuboid approach pro-
vides flexibility in selecting the required 𝑟𝑖 values along each
dimension.

3. Results and discussions
The proposed deflation constraints are applied across various
problems to evaluate the capabilities of the method. First,
a test case study based on a double-cosine function is pre-
sented. The next two case studies represent different sizing
problems encountered in the design of composites.
3.1. Test case: double-cosine function
The double-cosine function of Equation 29 is used to verify
whether the proposed deflation constraint can be used to
obtain all the 13 minima points within a bounded region of
the objective function.

𝑓 (𝑥1, 𝑥2) = − cos(𝑥1𝜋) cos(𝑥2𝜋) (29)
The results below were generated for the three defla-

tion constraint approaches herein proposed: hypersphere,
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(a) (b)

Figure 7: (a) Plot of Gaussian deflation function distribution using hypecube approach (Equation 25) (b) Plot of Gaussian
deflation function distribution using hypercuboid approach (Equation 28)

x *

r

Figure 8: Masking of local minima (green) due to a large value
of 𝑟, and creation of false minima (red) at the boundaries of
the deflated region.

hypercube and hypercuboid. Here, the same starting point
for the optimizer is used for all cases, even after deflation
is performed. However, as shown in Appendix B, it was
observed with the double-cosine function that consistently
fewer deflation iterations are necessary if the starting point
after deflation is be set to the latest found solution, such that
the search for a new solution proceeds from there.
3.1.1. Hypersphere
The hypersphere deflation constraint is applied to the double-
cosine function within the bounded region−2.5𝜋 ≤ 𝑥1, 𝑥2 ≤
+2.5𝜋 and using as starting point 𝑥1, 𝑥2 = −5.5,−5.5.
The radius of the deflation hypersphere is 𝑟 = 𝜋. Figure 9
shows a plot of the double-cosine function, where the dashed
regions represent negative values; the red dot depicts the
starting point of the optimizer; whereas the black dots are the
obtained solutions. After deflating the function 29 times, all
the 13 minima within the bound space have been discovered.
Note the false minima points are created at the end of the
regions intersecting with the deflation radius, represented
as red dots in Figure 8. The presence of false minima is
not a problem for the overall optimization result given that

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

x0 (-5.50,-5.50)

Deflated 29 times using hypersphere approach

Figure 9: Hypersphere approach applied to locate minima of
the double-cosine function (Equation 29)

enough additional deflations are carried on, because when
new deflation constraints are added the false minima points
are eventually overcome. The value of deflation radius 𝑟 = 𝜋
has shown to be small enough, preventing local minima of
being masked, e.g. the green dots in Figure 8. Hence, to
guarantee the robustness of the method, it is recommended to
use small values for the deflation radius 𝑟, despite a possible
increase in the number of deflation iterations needed to
discover the required solutions.
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6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

x0 (-5.50,-5.50)

Deflated 51 times using hypercube approach

Figure 10: Hypercube approach applied to locate minima of
the double-cosine function (Equation 29)

3.1.2. Hypercube
For the hypercube, the bounds and starting point are the same
as for the hypersphere, with the side of the hypercube set
to 𝑟 = 𝑝𝑖. As seen in Figure 10, 51 deflation iterations are
required to find all 13 minima points, as compared to 29
of the hypersphere. However, this difference is not verified
when the starting point for the new optimization, after each
deflation step, is set to be the latest minimum point (see
Appendix B), with both the hypersphere and the hypercube
approaches requiring 24 deflation iterations to find all the 13
minima points.
3.1.3. Hypercuboid

6 4 2 0 2 4 6
x1

4

2

0

2

4

x 2

x0 (-5.85,-3.24)

Deflated 64 times using hypercuboid approach

Figure 11: Hypercuboid approach applied to locate minima of
the double-cosine function (Equation 29)

For the hypercuboid, the double-cosine function is skewed
in one dimension, as follows:

𝑓 (𝑥1, 𝑥2) = − cos(𝑥1𝜋) cos(2𝑥2𝜋) (30)
where it can be seen that each sub-space in the whole design
space is now shaped like a rectangle, making a proper test
for the hypercuboid approach. The design space is bounded
such that −2.5𝜋 ≤ 𝑥1 ≤ +2.5𝜋, and −1.5𝜋 ≤ 𝑥2 ≤ +1.5𝜋.
The dimensions used for the 2-sided deflation hypercuboid
(i.e. a rectangle in two-dimensions) are, 𝑟1 = 𝜋, along
𝑥1; and 𝑟2 = 𝜋∕2, along 𝑥2. As seen in Figure 11, the
function has to be deflated 64 times to yield all the 13 minima
within the bounded region. When the starting point after
each deflation is set to be the latest minimum point, as shown
in Appendix B, the hypercuboid approach required only 44
deflations to find all the 13 minima.
3.2. Application to composite design
Case study 1 presents a genetic algorithm-based optimiza-
tion seeking minimum mass and constrained by buckling and
strength, where the laminate is parameterized using discrete
ply orientations. Case study 2 presents a gradient-based
optimization, where the laminate is parameterized using
lamination parameters (LP) and the total thickness, typically
applied in the design of variable-stiffness (VS) laminates.
3.2.1. Case study 1: deflation in gradient-free

discrete-based optimization

45
90

Y

X

0

a

b

Nx

Ny

Nx

Ny

Figure 12: The geometry of laminated plate and applied loads
(12).

Riche et al. (12) presents optimum benchmark cases for
composite plates under bi-axial compression. As illustrated
in Figure 12, 𝑁𝑥 and 𝑁𝑦 are the loads acting along the 𝑥
and 𝑦 axes, and 𝜆 represents a load amplitude parameter that
affects all loads. The rectangular plates with length 𝑎 and
width 𝑏 are simply supported. Discrete fiber angles of each
layer are optimized, aiming minimum weight for a given
design load, and the laminate is considered to have variable
number of plies while remaining symmetric and balanced. It
is assumed that only angles 0◦, 90◦, and ±45◦ can be used,
and that all plies have the same thickness ℎ𝑝𝑙𝑦.
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To account for a variable number of plies in this discrete
optimization, the thickness value associated with each ply
ℎ𝑝𝑙𝑦, becomes an additional design variable. Schläpfer (36)
introduced the concept of ghost layers, which essentially is a
layer that carries information about material properties and
also the ply fiber orientation but can be associated with a zero
thickness value. Here, every layer constituting the laminates
are allowed to become ghost layers.

Two constraints are used in this optimization problem,
represented by their respective load factors, being: critical
buckling (𝜆𝑐𝑏); and material failure (𝜆𝑐𝑠). These are calcu-
lated as detailed in Appendix C. In the optimization, these
constraints are normalized using the design load factor (𝜆𝑡),such that the optimization problem becomes:

minimize
𝜃,𝑡∈𝑛

(
𝑗
∑

𝑖=1
ℎ𝑖)𝑎𝑏

subject to −𝑀𝑆𝑐𝑏 ≤ 0
−𝑀𝑆𝑐𝑠 ≤ 0

(31)

where (
𝑗
∑

𝑖=1
ℎ𝑖)𝑎𝑏 is the total volume of the laminate; defining

the margins of safety for buckling 𝑀𝑆𝑐𝑏 and failure 𝑀𝑆𝑐𝑠as:

𝑀𝑆𝑐𝑏 = (𝜆𝑐𝑏∕𝜆𝑡) − 1
𝑀𝑆𝑐𝑠 = 𝜆𝑁𝑦 = (𝜆𝑐𝑠∕𝜆𝑡) − 1 (32)

A genetic algorithm (GA) optimizer is selected given the
discrete nature of the optimization of Equation 31. Adopting
the ghost layer approach, the thickness of each ply can
either be zero or ℎ𝑝𝑙𝑦, and each ply angle can assume one
of the three values; 0◦, 90◦ or ±45◦. For implementation,
the GA present within the Python module pymoo (37) is
utilized. The deflation constraint herein proposed is applied
to the optimizer to support the claim that the developed
methodology is applicable in any optimization scheme that
supports inequality constraints, even heuristic optimization
schemes based on discrete variables. For this optimizer,
the conversion from continuous to discrete variables can be
done within the optimization, directly affecting the value of
the objective function. In gradient-based methods this con-
version is done after the optimization process is complete,
in a post-processing step, usually affecting the objective
and constraints. Regarding the main GA parameters, the
population size herein utilized is 20, and the number of
generations is 30, being the termination criterion.

Table 1 shows 4 stacking sequences with 48 plies with
their corresponding load factors, extracted from Riche et
al. (12). Their optimization focused on maximizing the
buckling and failure load factors for a fixed amount of plies.
Note the lowest load factor of 13, 518.66 corresponding to
the failure constraint. Here, with the intent to allow the
optimizer to remove some layers, the design load factor is
set to 𝜆𝑡 = 10, 000. A total of 24 independent and discrete

Load factor
Stacking sequence Buckling Failure

(902,±454, 04,±45, 04,±45, 02)𝑠 14,168.12 13,518.66
(±453, 02,±452, 02, 902, 04 ± 45, 02)𝑠 14,134.76 13,518.66
(902,±453, 02,±45, 02,±45, 04,±45, 02)𝑠 14,013.71 13,518.66
(±452, 02,±452, 902, 04,±45, 02,±45, 02)𝑠 13,662.61 13,518.66

Table 1
Results for the buckling load maximization problem obtained
by Riche et al. (12). (48 plies, 𝑎 = 20 in • 𝑏 = 5 in, 𝑁𝑥 = 1 lb,
𝑁𝑦 = 0.125 lb).

Margin of Safety
Stacking sequence Plies Buckling Failure

(904, 06, 902,±456)𝑠 48 7.44% 15.85%
(±453, 04,±452, 02,±452, 02)𝑠 44 6.49% 12.94%
(±454, 04,±45, 02,±45, 02,±45)𝑠 44 10.3% 12.94%
(902, 06, 904, 02, 904,±453)𝑠 48 3.84% 9.21%
(904, 04 ± 452, 902, 02, 904, 02, 902)𝑠 48 13.73 % 5.155 %
(902,±45, 02,±45, 02,±454, 04)𝑠 44 2.55% 14.2%

Table 2
Results for the buckling load maximization problem obtained
using the GA optimizer with deflation. (6 solutions generated
using hypersphere approach with 𝑝 = 3, 𝜎 = 1 and 𝑟 = 1)

design variables are utilized, being 12 for the ply angles
and 12 for the thickness of each ply. Note that due to the
assumption of symmetric and balanced laminated, this setup
will allow a maximum of 48 plies in the laminate.

The solutions obtained are displayed in Table 2. The
first solution is without deflation, resulting in a laminate
with 48 plies, not changing from the baseline value. After
deflation is applied, new constraints are added to the GA to
enable finding novel solutions, where five new solutions are
herein reported. The third solution is the most promising,
combining the smallest amount of plies herein encountered
with relatively high margins of safety.

Hence, applying deflation to this GA optimization proves
that the deflation constraint works even in heuristic algo-
rithms for optimization and it creates means to force further
exploration of the design space.
3.2.2. Case study 2: deflation enabling gradient-based

retrieval of fiber angles
Setoodeh et al. (39) discuss a method for generating curvi-
linear fiber paths for the manufacturing of VS laminates
using AFP, where part of the work consists of finding the
fiber angles when the lamination parameters (LP) are already
known. Here, the deflation constraints are applied to enable
the use of gradient-based methods to solve the multimodal
optimization problem of retrieving the fiber angles.

A balanced and symmetric layup is assumed, and the
objective function is given by:
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Figure 13: Cantilever plate with uniform load (38).

minimize
𝜃

|𝑉 − 𝑉 ∗
|

subject to 0◦ ⩽ 𝜃 ⩽ 90◦
(33)

which minimizes the least square distance between the
known LPs 𝑉 ∗ and those calculated 𝑉 based on the fiber
angles being optimized. The calculated LPs use the relations
in Equation D.7. The optimization of Equation 33 is already
non-convex even for a single design variable, as shown in
Figure 14.
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Non-convex nature of design space

Figure 14: Variation of the objective function plotted against
𝜃 for a node along the laminate

The optimal set of lamination parameters 𝑉 ∗ is found
through a compliance minimization problem, where the
feasibility constraints of LPs allow for a convex design
space according to Fukunaga and Sekune (25; 26). The
minimization problem is formulated as:

Normalized compliance
Method used 𝐶̄∗ 𝐶̄ %Difference

Baseline from reference (39) 0.0374 0.0389 4.00
Gradient-based optimizer 0.0389 0.0414 6.42
Genetic Algorithm 0.00392 0.0419 6.88

Table 3
Normalized compliance obtained with optimum LPs and re-
trieved stacking sequence.

minimize
𝑉𝑖

1
2𝑁

𝑇
𝑖 ⋅ 𝐴−1(𝑉𝑖) ⋅𝑁𝑖

subject to 2𝑉 2
1
(

1 − 𝑉3
)

+ 2𝑉 2
2
(

1 + 𝑉3
)

+
𝑉 2
3 + 𝑉 2

4 − 4𝑉1𝑉2𝑉4 ⩽ 1
𝑉 2
1 + 𝑉 2

2 ⩽ 1
−1 ⩽ 𝑉3 ⩽ 1

(34)

where 𝑁𝑖 is the vector of the resultant forces for the 𝑖𝑡ℎ node;
𝐴 is the in-plane stiffness matrix which is a function of 𝑉𝑖calculated with Equation D.8; and 𝑉𝑖 = {𝑉𝑖1 , 𝑉𝑖2 , 𝑉𝑖3 , 𝑉𝑖4},
the vector of in-plane LPs of the 𝑖𝑡ℎ node. For balanced VS
laminates, LPs 𝑉2 = 𝑉4 = 0. The material properties used
for the present numerical evaluations are: 𝐸11 = 181.0𝐺𝑃𝑎,
𝐸22 = 10.3 𝐺𝑃𝑎, 𝐺12 = 7.17 𝐺𝑃𝑎, and 𝜈12 = 0.28.

The results for the retrieved fiber angles can be verified
by plotting the distribution of LPs once again and comparing
it with the optimal LPs. In this case a non-dimensional
compliance term is also utilised to numerically compare the
results of the retrieved angles and optimal LPs. The non-
dimensional compliance term is given as (38):

𝐶̄ =
𝐸22ℎ𝑏3𝐶
𝑞20𝑎

5
(35)

where 𝐸2 is the transverse modulus of elasticity; ℎ, 𝑎 and
𝑏 are respectively the thickness, length and width of the
laminate; 𝑞0 is the uniformly distributed load; and 𝐶 is the
compliance obtained after optimization, given as:

𝐶 = 1
2
𝐹 𝑇 ⋅ 𝑈 (36)

where𝐹 and𝑈 are respectively the vectors of external forces
and displacements.

For the sake of benchmarking, a standard GA algorithm
(37) is also used to retrieve the fiber angles. Table 3 shows
normalized compliance values obtained with the optimum
LPs (𝐶̄∗); and with the retrieved fiber angles (𝐶̄). For the
baseline result, Setoodeh et al. (39) achieved fiber angles that
led to just 4% difference in compliance, and this is because
the authors utilized a maximum curvature constraint for the
curved fibers of (𝜅 = 3.333𝑚−1) that further constrained
the minimum compliance optimization of Equation 34. Fig-
ure 15 illustrates the fiber angle distributions corresponding
to Table 3.
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(a) +𝜃 by Setoodeh et al. (39) (b) −𝜃 by Setoodeh et al.(39)

(c) +𝜃 using gradient-based optimization with deflation (d) −𝜃 using gradient-based optimization with deflation

(e) +𝜃 using GA (f) −𝜃 using GA

Figure 15: Distribution of fiber angles of balanced laminate. (𝑎∕𝑏 = 3, and 31 × 11 nodes)

The results for the gradient-based method using the
deflation constraint are obtained after deflating the design
space 7 times, such that a total of 8 solutions are ob-
tained after finding the retrieved angles that best minimizes
the objective function of Equation 33. In Table 3, it can
be seen that the percentage difference between the non-
dimensional compliances obtained with 𝑉 ∗ and 𝑉 is ap-
proximately 6.68%, achieving a slightly better result than the
benchmark GA that has a difference of 6.88%.

Figure 16 shows the distributions of laminations param-
eters obtained with the gradient-based method constrained
by deflation, whereas Figure 17 shows these distributions
obtained with the GA. Again, the good agreement shows
that the deflation constraints enabled global search by the
gradient-based optimizer. Figure 18 shows the convergence
of the normalized compliance obtained obtained with each
optimization, after progressive deflation steps, indicating
convergence towards a global optimum.

4. Conclusion
The present study proposed a novel set of deflation con-
straints applicable to gradient-based and heuristics-based
optimization algorithms. Virtually, the proposed constraints
can be used in any optimization algorithm that is compatible
with constraints. Deflation constraints force the optimizer
to look for other optimal points, even if the optimization is
restarted from the same initial guess. Such behavior makes
it even possible for gradient-based optimizers to explore

multimodal design spaces and ultimately find a global min-
ima, after an enough number of deflation constraints are
progressively added.

The three deflation constraint schemes herein proposed:
hypersphere, hypercube, hypercuboid; were demonstrated
in detail for a double-cosine function. Thereafter, two case
studies related to composite design and optimization were
investigated, where the first case study demonstrated the
minimization of the weight of a plate for a given target design
load, in which deflation is used to create new constraints for
a GA algorithm. The second case study covered the opti-
mization of LPs followed by the retrival of fiber angles, with
deflation applied only to the gradient based optimizer. The
obtained results were promising and showed the versatility
of the developed methodology, uncovering new paths for its
application composite design.

Future studies could focus in design cases involving
multi-objective optimizations, investigating how the use of
deflation constraints could improve the Pareto fronts ob-
tained with gradient-based optimizers.

A. Deflation constraint - KKT proof
This appendix provides a proof on how the modified prob-
lem, after the introduction of the deflation constraint shown
in Equation 10, provides a solution (𝑥∗, 𝑦∗) that also satis-
fies the stationary conditions of the original problem. The
modified problem is given as (33):
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Lamination Parameter = V1
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Figure 16: Distribution of Lamination parameters obtained by applying gradient-based optimization method with upper images
representing optimum LP values and lower distributions obtained with retrieved angles shown in Figure 15 (c) and (d). (𝑎∕𝑏 = 3,
and 31 × 11 nodes)

minimize
𝑥∈𝑛

𝑓 (𝑥)
subject to 𝑐(𝑥) = 0

𝑚(𝑥; 𝑥1) ≤ 𝑦
𝑙 ≤ 𝑥 ≤ 𝑢

(A.1)

It is to be proved that, 𝑥∗ is a regular KKT point to
the problem given in Equation 7 and that 𝑥∗ ≠ 𝑥1. Let a
new Lagrange multiplier 𝜂 be introduced in addition to the
ones in Equation 8 associated with the deflation constraint.
Therefore, the stationary conditions now will be:

∇𝑥𝑓 (𝑥) + ∇𝑥𝑐(𝑥)𝑇 𝜆 + 𝑧+ + 𝑧− + 𝜂∇𝑥𝑚(𝑥; 𝑥1) = 0
𝜂 = 0

(A.2)
It can be said that 𝜂 would be 0 at any KKT point, hence

the stationary conditions for Equation 7 would be satisfied.
Since the constraints given in Equation 7 are a subset to those
in Equation A.1, 𝑥∗ must be a feasible point in the original
problem (Equation 7) as well, and the complementary con-
ditions of those constraints must be satisfied.

Since the obtained 𝑦∗ is finite, (𝑥∗, 𝑦∗) is feasible to
the deflation constraint problem in Equation A.1 and 𝑚 is
bounded from below, then 𝑚(𝑥∗; 𝑥1) must be finite, which
implies that (𝑥∗ ≠ 𝑥1. This proof can also be generalized to
inequality-constrained NLPs, hence the proposed deflation
constraint approach is a generic and non-invasive way of

utilizing the deflation method for an optimization problem
(33).

B. Using last optimum as starting point
After a new deflation constraint is added, the optimization is
restarted using as start point the last found minimum, which
resulted in a decrease of the number of deflations required
to locate all minima points of the double-cosine function.
Figures 19, 20 and 21 show the evaluated points.

C. Buckling and failure constraints
The critical buckling load factor can be calculated with

the following analytical expression (12):

𝜆𝑏(𝑚, 𝑛)
𝜋2

=
𝐷11(

𝑚
𝑎 )

4 + 2(𝐷12 + 2𝐷66)(
𝑚𝑛
𝑎𝑏 )

2 +𝐷22(
𝑛
𝑏 )

4

(𝑚𝑎 )
2𝑁𝑥 + ( 𝑛𝑏 )

2𝑁𝑦

(C.3)
where 𝑚,𝑛 are respectively the half waves along the length
and width of the plate; and 𝐷𝑖𝑗 are the components of the
bending stiffness matrix𝐷𝐷𝐷 of the laminate, from the classical
laminated plate theory (1). The values of 𝑚 and 𝑛 need to be
found such that it minimizes 𝜆𝑏 to yield the critical buckling
load 𝜆𝑐𝑏; and they vary with the number of plies, constitutive
properties, plate dimensions and the load case.

The material failure constraints are given by the prin-
cipal allowable strains for each ply. The calculation of the
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Lamination Parameter = V1
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Figure 17: Distribution of Lamination parameters obtained by applying GA optimization method with upper images representing
optimum LP values and lower distributions obtained with retrieved angles shown in Figure 15 (e) and (f). (𝑎∕𝑏 = 3, and 31 × 11
nodes)
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Figure 18: Convergence of Normalized Compliance with in-
crease in number of solutions for deflation

principal strains are done using the following relations:
𝜆𝑁𝑥 = 𝐴11𝜖𝑥 + 𝐴12𝜖𝑦
𝜆𝑁𝑦 = 𝐴12𝜖𝑥 + 𝐴22𝜖𝑦

(C.4)

𝜖𝑖1 = cos2 𝜃𝑖𝜖𝑥 + sin2 𝜃𝑖𝜖𝑦
𝜖𝑖2 = sin2 𝜃𝑖𝜖𝑥 + cos2 𝜃𝑖𝜖𝑦
𝛾 𝑖12 = sin2 𝜃𝑖(𝜖𝑦 − 𝜖𝑥)

(C.5)

where 𝜃𝑖 refers to the fiber angle associated with the 𝑖𝑡ℎ layer,
with 𝜖𝑥 and 𝜖𝑦 being the global strains of the plate. The term

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

x0 (-5.78,5.78)

Deflated 24 times using hypersphere approach

Figure 19: Hypersphere approach applied to locate minima of
the double-cosine function (Equation 29) with updated start
points

𝜆 in Equation C.4 is the load amplitude and it becomes 𝜆𝑐𝑠for the lowest value of 𝜆 such that only one of the principal
strains in one of the layers exceeds the allowable strain. In the
case herein considered, 𝛾𝑥𝑦 is not present because the layers
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Figure 20: Hypercube approach applied to locate minima of
the double-cosine function (Equation 29) with updated start
points
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Figure 21: Hypercuboid approach applied to locate minima of
the double-cosine function (Equation 29) with updated start
points

of the laminate are always balanced and symmetric. The
allowable strains for the adopted material, graphite epoxy
composite, are given as:

𝜖𝑖1 ≤ 0.008
𝜖𝑖2 ≤ 0.029
𝛾 𝑖12 ≤ 0.015

(C.6)

D. Lamination parameters
In this case study a few additional aspects need to be

covered for enabling the reader’s understanding. It is im-
portant to know the relation for lamination parameters to

understand how it relates to the design variables and also
the objective function. Lamination parameters were first
introduced by Tsai et al. (23; 40) to represent the laminate
layup configuration in a compact form. The transformation
properties are derived using trigonometric relations (sines
and cosines) in terms of multiple angles. The Lamination
Parameters are non-dimensional and can in turn be used to
obtain the in-plane and bending properties (ABD matrices)
as they are related. A great advantage of using lamination
parameters is that the number of design variables is reduced
and is independent of the number of layers (20; 39). The 12
variables are given as:

(

𝑉1𝐴, 𝑉2𝐴, 𝑉3𝐴, 𝑉4𝐴
)

= ∫
1
2
1
2

(cos 2𝜃, sin 2𝜃, cos 4𝜃, sin 4𝜃)𝑑𝑧,

(

𝑉1𝐵 , 𝑉2𝐵 , 𝑉3𝐵 , 𝑉4𝐵
)

= 4 ∫
1
2
1
2

𝑧̄(cos 2𝜃, sin 2𝜃, cos 4𝜃, sin 4𝜃)𝑑𝑧̄,

(

𝑉1𝐷, 𝑉2𝐷, 𝑉3𝐷, 𝑉4𝐷
)

= 12 ∫
1
2

− 1
2

𝑧̄2(cos 2𝜃, sin 2𝜃, cos 4𝜃, sin 4𝜃)𝑑𝑧

(D.7)
where 𝑉𝑖𝐴, 𝑉𝑖𝐵 and 𝑉𝑖𝐷 are in-plane, coupling and flexural
lamination parameters. 𝑧̄ is the normalized z coordinate (𝑧̄ =
𝑧∕ℎ through the thickness and 𝜃 is the fiber orientation angle
of that layer. The [A], [B], and [D] Matrices can be written
as a linear function of the lamination parameters and the
parameters of Tsai and Pagano as (23),

𝐴 = ℎ
(

Γ0 + Γ1𝑉1𝐴 + Γ2𝑉2𝐴 + Γ3𝑉3𝐴 + Γ4𝑉4𝐴
)

𝐵 = ℎ2∕4
(

Γ1𝑉1𝐵 + Γ2𝑉2𝐵 + Γ3𝑉3𝐵 + Γ4𝑉4𝐵
)

𝐷 = ℎ3∕12
(

Γ0 + Γ1𝑉1𝐷 + Γ2𝑉2𝐷 + Γ3𝑉3𝐷 + Γ4𝑉4𝐷
)

(D.8)
where the material invariant matrices Γ𝑖’s are given by the
parameters of Tsai and Pagano which are material invariants.
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