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Abstract

Recent advances in Artificial Intelligence (AI)
have seen widespread applications across do-
mains such as computer vision, natural lan-
guage processing, and graph-based learning.
Among these, Large Language Models (LLMs)
have emerged as a cornerstone of modern Al
research, with applications ranging from lan-
guage understanding to content generation. As
research in this field rapidly expands, new-
comers face the challenge of navigating an
overwhelming number of survey papers that
attempt to consolidate knowledge on LLMs.
This project addresses this issue by performing
a comprehensive data exploration and analysis
of metadata from recent LLM survey papers.
Through the analysis of publication trends, ci-
tation patterns, and topical coverage, we aim to
offer insights that simplify the discovery pro-
cess for beginners and provide a clearer under-
standing of the current landscape. Our findings
are intended to facilitate more efficient reading
and research in the field of LLMs, enabling new
researchers to quickly grasp key developments
and emerging trends.

1 Introduction

Al techniques have been widely applied to var-
ious domains, such as images (He et al., 2016;
Dosovitskiy, 2020), texts (Vaswani et al., 2017; De-
vlin et al., 2018), and graphs (Kipf and Welling,
2016; Zhuang and Al Hasan, 2022). As a critical
subset of Al techniques, Large Language Models
(LLMs) have gained significant attention in recent
years (Radford et al., 2018, 2019; Brown et al.,
2020; Achiam et al., 2023; Bai et al., 2022; Team
et al., 2023). Especially, more and more new be-
ginners are interested in the research topics about
LLMs. To learn the recent progress in this field,
new beginners commonly will read survey papers
about LLMs. Therefore, to facilitate their learn-
ing, numerous survey papers on LLMs have been
published in the last two years. However, a large

amount of these survey papers can be overwhelm-
ing, making it challenging for new beginners to
read them efficiently. To embrace this challenge,
in this project, we aim to explore and analyze
the metadata of LLMs survey papers, providing
insights to enhance their accessibility and under-
standing (Zhuang and Kennington, 2024). Specifi-
cally, we aim to conduct a comprehensive analysis
of the metadata associated with LLM survey pa-
pers, focusing on key attributes such as publication
trends, author collaborations, and topic evolution
over time. By utilizing data exploration techniques,
we will identify prevalent themes and gaps in the
current literature, which will serve as a guide for
newcomers seeking targeted knowledge. Addition-
ally, we will visualize the findings through various
graphical representations, ensuring that complex
information is presented in an intuitive format. Our
ultimate goal is to create a resource that simpli-
fies the navigation of LLM survey papers, thereby
empowering new researchers to engage more ef-
fectively with the evolving landscape of Al and
LLM:s.

Overall, our contributions can be summarized as
follows:

* Conducted data preprocessing steps, includ-
ing normalization and encoding of categorical
variables, to prepare the dataset for effective

analysis and model training.

* Implemented techniques to address class im-
balance, utilizing methods such as oversam-
pling to ensure a more balanced representation
of categories in the training dataset.

* Employed various machine learning models,
including Random Forest classifiers, and eval-
uated their performance through metrics such
as accuracy, classification reports, and confu-
sion matrices.

* Analyzed the results of the model evalua-
tions to draw insights into classification per-
formance, enabling better understanding of



the effectiveness of different Al techniques
applied to LLLM survey papers.

2 Related Work

Research on Al techniques has advanced rapidly,
with significant applications across various do-
mains, including image processing, natural lan-
guage processing, and graph analysis. Notable
works include those by He et al. (2016) and Doso-
vitskiy (2020) in image classification, as well as
Vaswani et al. (2017) and Devlin et al. (2018),
who pioneered transformer architectures that have
become foundational for modern LLMs.

Within the domain of large language models, sev-
eral studies have explored their capabilities and be-
haviors. For instance, Radford et al. (2018, 2019)
and Brown et al. (2020) highlighted the advance-
ments in LLMs, demonstrating their potential for
generating coherent and contextually relevant text.
In recent years, the exploration of ethical consider-
ations and the societal impact of LLMs has gained
traction, as discussed by Bai et al. (2022) and
Achiam et al. (2023).

Survey papers play a crucial role in synthesizing
existing research, offering newcomers a compre-
hensive overview of developments in LLMs. How-
ever, the proliferation of these surveys, as noted
by Zhuang and Al Hasan (2022), can lead to infor-
mation overload for readers attempting to navigate
the field. Therefore, it is essential to streamline the
information presented in these papers to enhance
accessibility and facilitate effective learning.

In this project, we aim to build upon the existing
literature by analyzing the metadata of LLM survey
papers, identifying trends, and offering insights that
will aid in improving the comprehension and utility
of these resources for researchers and practitioners
alike.

3 Methodology
3.1 Data Exploration

In this section, we conduct a comprehensive explo-
ration of the survey papers dataset. Our primary
objectives include analyzing the trends in the re-
lease of survey papers over time and investigating
the distribution of proposed taxonomies.

3.2 Trends of Survey Papers Over Time

To visualize the trends in the number of survey
papers released over time, we plot the aggregated
data, which shows the count of survey papers per

month. This visualization helps in understanding
how the interest in survey papers has evolved over
the months.

As shown in Figure 1, the trend indicates notable
fluctuations in the number of publications, with
peaks suggesting periods of heightened interest or
activity in specific areas of research. Analyzing
these trends can provide insights into when signif-
icant advancements or discussions around Large
Language Models (LLMs) occurred, reflecting the
dynamics of the research community.

Number of Survey Papers Released Over Time

Figure 1: Trend of Survey Papers Released Over Time

To further analyze the dataset, we calculate the
mean number of surveys released per month, along
with other descriptive statistics. This provides in-
sights into the average publication rate and the dis-
tribution of papers over the time period studied.

3.3 Distribution of Proposed Taxonomy

Next, we examine the distribution of the proposed
taxonomies within the dataset. By counting the
occurrences of each taxonomy, we can visualize
this distribution as shown in Figure 2. This analysis
helps us understand the variety of topics covered in
the survey papers and highlights areas with higher
research activity.

Distribution of Proposed Taxonomy

Figure 2: Distribution of Proposed Taxonomy

Through this exploration, we gain valuable in-
sights into the publication trends of survey papers
and the diversity of proposed taxonomies, contribut-



ing to a better understanding of the current land-
scape in the field of Al-generated content.

3.4 Analysis of Papers by Taxonomy

In addition to the previously discussed trends, we
conducted a comprehensive analysis of the papers
based on their taxonomy. This analysis provides
insights into the distribution and characteristics of
the survey papers included in our dataset.

3.4.1 Statistical Analysis

To better understand the distribution of papers
across different taxonomies, we calculated several
statistical metrics, including the median, mode, and
quantiles.

- The **median** number of papers per taxon-
omy was found to be 8.5. - The **mode**, which
indicates the most frequently occurring taxonomy,
was 1. - We also computed the quantiles (25th, 50th,
and 75th percentiles) of paper counts by taxonomy,
providing a clearer picture of the distribution. The
quantiles are as follows: - 25th Percentile: 4.25 -
50th Percentile: 8.50 - 75th Percentile: 10.75

Furthermore, we sorted the taxonomy counts
to visualize the distribution clearly, as shown in
Table 1.

Taxonomy Count
Finance 1
Education 1
Hardware Architecture 1
Law 2
Others 5
Adaptation Tuning 8
Robotics 8
Graphs 8
Multi-modal & Pre-training 9
Evaluation 9
Software Engineering 9
RecSys & IR 10
Science 13
Comprehensive 17
Prompting 17
Trustworthy 26

Table 1: Sorted Counts of Papers by Taxonomy

3.4.2 Cumulative Distribution

To further illustrate the distribution of papers by
taxonomy, we calculated and plotted the cumula-
tive distribution, as shown in Figure 3. The cumu-
lative distribution provides insights into how the

total number of papers accumulates across different
taxonomies.

Cumulative Distribution of Papers by Taxonomy

Cumulative Number of Pape

& ¢ O ¢
& o & i
& & & &S
o < & & <

Figure 3: Cumulative Distribution of Papers by Taxon-
omy

As seen in the figure, the cumulative number
of papers increases steadily, indicating that some
taxonomies have significantly more papers than
others. This visualization helps identify which ar-
eas of research are more prominent in the survey
papers.

3.4.3 Distribution Visualization

Additionally, we created a pie chart to visualize the
proportion of papers by taxonomy, as illustrated in
Figure 4. This representation helps in quickly as-
sessing the relative contributions of each taxonomy
to the overall dataset.
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Figure 4: Distribution of Papers by Taxonomy

The pie chart reveals the dominance of specific
taxonomies in the dataset, highlighting areas where
research interest is particularly high.

3.4.4 Correlation Analysis

We calculated the correlation matrix to examine
relationships among the variables in our dataset.



The correlation matrix is displayed in Figure 5.
This heatmap provides a visual representation of
the correlations among the numeric variables.
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Figure 5: Correlation Matrix Heatmap

The correlation analysis reveals minimal linear
relationships among the variables, indicating that
other factors may influence these relationships.

3.5 Data Manipulation

To prepare the dataset for modeling, we constructed
a feature matrix from the data. This involved sev-
eral steps:

1. **Feature Extraction:** We utilized the
TF-IDF (Term Frequency-Inverse Document Fre-
quency) vectorizer to transform the ‘Title* and
‘Summary‘ columns into numerical representations.
Additionally, we applied one-hot encoding to the
‘Categories‘ column to represent categorical infor-
mation.

2. **Normalization:** The resulting feature ma-
trix was normalized using the ‘StandardScaler* to
ensure that all features contribute equally to the
analysis.

3. **Label Encoding:** The labels for the clas-
sification task were encoded using ‘LabelEncoder*
to convert categorical labels into numeric format.

4. **Dataset Splitting:** Finally, we split the
dataset into training and testing sets, with a test
ratio of 0.4.

The dimensions of the resulting datasets
are as follows: - Training feature matrix
shape: (86,3547) - Testing feature matrix shape:
(58, 3547) - Training labels shape: (86, ) - Testing
labels shape: (58, )

This preprocessing ensures that the dataset is
well-structured for subsequent analysis and model-
ing tasks.

3.6 Data Evaluation

To analyze the datasets, we employed a Random
Forest classifier, a robust machine learning model
known for its effectiveness in classification tasks.

1. **Model Training:** We trained the Random
Forest classifier using the training dataset. The
model was initialized with a random state for re-
producibility.

2. **Predictions:** After training, we made
predictions on the test set.

3. **Performance Evaluation:** The model’s
performance was evaluated using accuracy as the
primary metric. Additionally, we calculated a
confusion matrix and a classification report to
gain deeper insights into the model’s performance
across different categories.

The evaluation results are as follows: - **Accu-
racy:** 0.397 - **Classification Report:**

precision recall fl-score support

0 0.35 0.50 0.41 20

1 0.20 0.14 0.17 14

2 0.33 0.18 0.23 11

3 0.50 0.33 0.40 12

4 0.54 0.73 0.62 15

5 0.40 0.25 0.31 12

6 0.62 0.77 0.69 13

7 0.71 0.29 0.41 14

8 0.00 0.00 0.00 0

9 0.50 0.40 0.44 10
accuracy 0.40 58
macro avg 0.41 0.39 0.38 58

weighted avg 0.44 0.40 0.39 58

The accuracy score indicates that the model has
moderate performance, suggesting room for im-
provement. Further tuning of hyperparameters or
exploring different models may enhance classifica-
tion performance.

3.7 Further Evaluation

To address the class imbalance in our dataset, we
applied the Random Oversampling technique from
the imblearn library. This involved initializing the
RandomOverSampler and using it to resample the
training data, thereby balancing the class distribu-
tion. After resampling, we confirmed that each
class had an equal number of instances.

Following this, we trained a Random Forest clas-
sifier on the resampled training set. The classifier



was fitted to the newly balanced data, and predic-
tions were made on the test set.

The accuracy score achieved after implement-
ing the oversampling technique was approximately
0.55. This indicates a moderate improvement in
model performance, suggesting that the oversam-
pling helped the Random Forest classifier make
better predictions. However, there remains poten-
tial for further enhancement. Additional hyperpa-
rameter tuning or exploring alternative models may
provide even better classification performance.

3.7.1 Confusion Matrix Visualization

To further evaluate the model’s performance, we
created a confusion matrix, which provides a de-
tailed breakdown of the classifier’s predictions ver-
sus the actual labels. The confusion matrix was
generated using the confusion_matrix function
from the sklearn.metrics module.

A heatmap representation of the confusion ma-
trix is shown in Figure 6. The heatmap visualizes
the counts of true positive, true negative, false posi-
tive, and false negative predictions, allowing us to
quickly assess which classes are being confused by
the classifier.

The matrix is organized such that:

* The rows correspond to the true labels, and

* The columns correspond to the predicted la-
bels.

This visualization aids in identifying specific
classes where the model may be underperforming
or making systematic errors. The plot was saved in
a PDF format for clarity and ease of interpretation.

Confusion Matrix
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Figure 6: Confusion Matrix for Class Imbalance

4 Conclusion

In this study, we conducted a comprehensive anal-
ysis of the dataset, focusing on the relationships
among various features and the distribution of cate-
gories. Our correlation analysis highlighted mini-
mal linear relationships, suggesting that more com-
plex interactions might be at play. To enhance
model performance, we implemented a feature ma-
trix combining textual data and categorical vari-
ables, followed by preprocessing to normalize and
encode the data effectively.

To address class imbalance, we employed Ran-
dom Oversampling, which successfully balanced
the training set, ensuring an equal number of in-
stances across all categories. Subsequently, we
trained a Random Forest classifier, achieving an
accuracy score of approximately 55.2%. This per-
formance indicates a moderate level of classifica-
tion accuracy, revealing potential areas for further
improvement. Future work may involve hyperpa-
rameter tuning, exploring alternative models, and
employing additional techniques to boost predic-
tive performance.

Overall, this analysis lays a strong foundation
for future investigations, providing insights into the
dataset’s structure and guiding subsequent model-
ing efforts.

A APPENDIX

This appendix provides additional details on the
settings and hyperparameters used in our analysis,
as well as other relevant information.

A.1 Model Hyperparameters

The following hyperparameters were used for the
Random Forest classifier:

¢ Number of Estimators: 100

* Max Depth: None (nodes are expanded until
all leaves are pure)

* Min Samples Split: 2
* Min Samples Leaf: 1
* Random State: 42

A2

The feature matrix was constructed using the fol-
lowing methods:

Data Preprocessing Settings

e TF-IDF Vectorization:



— Stop Words: English

* One-Hot Encoding: Applied to the ’Cate-
gories’ column.

A.3 Resampling Technique

To address class imbalance in the training dataset,
we utilized the Random Oversampling technique.
This ensured that each class had an equal number
of instances, as indicated below:

Resampled training labels distribution:
7 17

25 17
2 17
31 17
17 17
43 17
6 17
36 17
18 17
14 17
26 17
39 17
29 17
33 17
20 17
4 17
41 17
28 17
32 17
0 17
37 17
42 17
15 17
40 17
1 17
13 17
3 17
27 17
9 17
46 17
5 17
8 17
19 17

A.4 Software and Libraries Used

The analysis was conducted using the following
libraries and frameworks:

» Pandas for data manipulation.

* Scikit-learn for model training and evalua-
tion.

* Imbalanced-learn for resampling techniques.

* Matplotlib and Seaborn for data visualiza-
tion.
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