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Abstract

As Large Language Models (LLMs) have be-
come more popular in recent years, the number
of survey papers in this field has greatly in-
creased. This large amount of research can be
difficult for new researchers to navigate. In this
paper, I analyze the metadata of these LLM sur-
vey papers, looking at publication trends and
grouping them by research focus areas. I build
a feature matrix using simple methods like TF-
IDF vectorization and one-hot encoding. I also
use a logistic regression model to predict the
category of each paper based on its metadata.
To address class imbalance in the data, I ap-
ply class weighting to improve performance for
less common categories. The results show an
improvement in accuracy, from 43% to 47%,
showing that class weighting helps. This pa-
per provides insights into research trends in the
LLM field and helps new researchers explore
the literature and find areas for future work.

1 Introduction

AI techniques have been widely applied to var-
ious domains, such as images [He et al., 2016,
Dosovitskiy, 2020], texts [Vaswani et al., 2017,
Devlin et al., 2018], and graphs [Kipf and Welling,
2016, Zhuang and Al Hasan, 2022]. As a critical
subset of AI techniques, Large Language Models
(LLMs) have gained significant attention in recent
years [Radford et al., 2018, 2019, Brown et al.,
2020, Achiam et al., 2023, Bai et al., 2022, Team
et al., 2023]. Especially, more and more new be-
ginners are interested in the research topics about
LLMs. To learn the recent progress in this field,
new beginners commonly will read survey papers
about LLMs. Therefore, to facilitate their learn-
ing, numerous survey papers on LLMs have been
published in the last two years. However, a large
amount of these survey papers can be overwhelm-
ing, making it challenging for new beginners to
read them efficiently. To embrace this challenge,
in this project, I aim to explore and analyze the

metadata of LLMs survey papers, providing in-
sights to enhance their accessibility and understand-
ing [Zhuang and Kennington, 2024]. Specifically,
I aim to systematically analyze the metadata of
these LLM survey papers by examining publication
trends, categorizing research topics, and identify-
ing gaps in the existing literature.

Overall, my contributions can be summarized as
follows:

• I conducted a thorough analysis of the meta-
data from LLM survey papers, identifying key
trends in publication dates and categorizing
research focus areas.

• I built a feature matrix by applying Term
Frequency-Inverse Document Frequency (TF-
IDF) vectorization to the textual data and one-
hot encoding to categorical data, enabling ma-
chine learning analysis.

• I implemented a logistic regression model to
classify survey papers based on their metadata,
addressing class imbalance through class-
weighted techniques.

• I evaluated the performance of the logistic
regression model using metrics such as ac-
curacy, precision, recall, and F1-score, and
visualized classification performance through
a confusion matrix.

• My analysis provides insights into the distri-
bution of research areas within LLM-related
studies, helping newcomers navigate the liter-
ature more effectively and identify underex-
plored topics for future research.

2 Related Work

Large Language Models (LLMs) have seen rapid
advancements in recent years. GPT-4 by [Achiam
et al., 2023] exemplifies this progress, showcas-
ing improvements in text generation and handling
complex tasks. [Bai et al., 2022] introduced Con-
stitutional AI, focusing on making AI systems safer
through human feedback. Language models like



GPT-3, as explored by [Brown et al., 2020], rev-
olutionized few-shot learning, enabling models to
generalize from minimal data. The introduction of
BERT by [Devlin et al., 2018] has also become
foundational for many NLP tasks.

While these papers highlight advancements in
LLM development, relatively few studies have fo-
cused specifically on categorizing or analyzing sur-
vey papers within the LLM field. Survey papers
typically provide overviews of advancements in
LLMs, addressing technical challenges, ethical con-
cerns, and application domains. However, research
explicitly aiming to systematically categorize and
analyze the landscape of LLM-related surveys is
scarce.

In contrast to existing works that focus on techni-
cal contributions or ethical frameworks, this paper
addresses the lack of structured analysis of LLM
survey papers. Existing reviews tend to focus on
the functionality and performance of specific mod-
els, while this work provides a meta-analysis of the
survey literature itself. By focusing on publication
trends, taxonomy categorization, and identifying
underexplored research areas, my analysis provides
a new dimension that complements the body of
LLM research.

3 Methodology

I began the analyses with importing the Pandas li-
brary, a powerful tool for data manipulation and
analysis in Python. I loaded the dataset, stored
as a CSV file, into a Pandas DataFrame for easier
handling and manipulation of the structured data.
This initial step helped verify that the data had been
correctly loaded, providing an understanding of the
dataset’s structure, which included columns like
"Taxonomy," "Title," "Authors," "Release Date,"
and "Summary." This analysis is illustrated in Fig-
ure 1. This preparation laid the foundation for
the subsequent stages of data exploration and re-
porting. Later on, the exploration phase involved
examining trends in survey paper publications over
time, with a focus on the "Release Date" field, and
analyzing the distribution of research across vari-
ous taxonomy categories. To better understand the
data, descriptive statistics were computed for key
fields like "Release Year" and "Taxonomy." For the
data manipulation phase, textual data from the "Ti-
tle" and "Summary" fields were transformed into
numerical representations using Term Frequency-
Inverse Document Frequency (TF-IDF) vectoriza-

tion, while the categorical "Categories" field was
processed using one-hot encoding. These transfor-
mations were combined to build a feature matrix,
which was then normalized to ensure that all fea-
tures were on a consistent scale. In the final phase,
a logistic regression model was implemented to
predict the taxonomy category of each paper, and
its performance was evaluated using metrics such
as accuracy, precision, recall, and F1-score. To ad-
dress class imbalance, class-weighting techniques
were applied to the model, improving its ability
to classify underrepresented categories. This ap-
proach provided a comprehensive understanding
of the dataset and facilitated the development of a
predictive model for classifying survey papers on
Large Language Models (LLMs).

3.1 Data Exploration
3.1.1 Survey Paper Trends Over Time
To analyze trends in survey paper publications over
time, I examined the "Release Date" column in
the dataset to track how the volume of published
papers changed.

Methodology: The "Release Date" column was
first converted into a datetime format using Pan-
das, making it easier to manipulate time-based
data. From the converted dates, I extracted the
"YearMonth" component, allowing the data to be
grouped by month and the number of survey papers
published each month to be counted. This group-
ing method was essential for visualizing trends in
publication rates.

I used Matplotlib to generate a plot, where the
X-axis represented the publication year and month,
and the Y-axis displayed the number of survey pa-
pers published in that time frame. This analysis is
illustrated in Figure 2.

Results: The plot revealed that very few sur-
vey papers were published in 2021, with a grad-
ual increase starting in early 2022. A significant
spike occurred in late 2023, peaking in November
2023, where nearly 18 survey papers were pub-
lished. This sharp increase reflects the growing in-
terest and research activity in LLMs, likely driven
by advancements in AI technologies. The trend
indicates a clear rise in publication numbers, show-
ing a surge in research focus on LLMs, especially
in the second half of 2023.

3.1.2 Taxonomy Distribution
I analyzed the distribution of survey papers across
the various categories within the proposed taxon-



Figure 1: Dataset in a tabular format

omy to identify which areas of research were dom-
inant and which were underrepresented.

Methodology: To calculate the frequency of
papers assigned to each category, I used the
value_counts() function on the "Taxonomy" col-
umn. The resulting counts gave a clear overview
of how many papers were categorized under each
taxonomy label.

A bar chart was created using Matplotlib to vi-
sualize the distribution. The X-axis represented
taxonomy categories, while the Y-axis showed the
number of papers in each category. This analysis is
illustrated in Figure 3.

Results: The bar chart revealed that the "Trust-
worthy" category was the most common, with 26
papers. Other frequently represented categories
included "Comprehensive" and "Prompting," both
showing a relatively high number of papers. How-
ever, categories such as "Law," "Finance," and "Ed-
ucation" were underrepresented, suggesting that
fewer survey papers focused on these areas. The
results highlighted the research focus on trustwor-
thiness and prompting in LLMs while identifying
potential gaps in other fields like finance and edu-
cation, where fewer studies were published.

3.1.3 Descriptive Statistics on Release Years
To better understand the temporal distribution of
survey papers, I computed descriptive statistics on
the "Release Year" column. This analysis provided
insights into the central tendencies and spread of
the data.

Methodology: The "Release Date" column was
first converted from string format into a datetime
format using Pandas, and the "Release Year" was
extracted for each paper. I computed several key
statistical measures for the "Release Year" data:
Mean: The average year of publication, giving
insight into the central tendency.
Median: The middle year of publication, which
helps clarify the concentration of the data.
Variance and Standard Deviation: These metrics
describe the spread of publication years around the
mean.
Skewness: The asymmetry of the distribution, indi-
cating whether papers were concentrated in earlier
or more recent years.
Range and Interquartile Range (IQR): These values
capture the earliest and latest years of publication,
as well as the spread of the middle 50% of the data.
Quantiles: The 25th, 50th, and 75th percentiles



Figure 2: Trends in Survey Paper Publications Over Time

Figure 3: Distribution of Survey Papers by Taxonomy Category



were calculated to understand how the data is dis-
tributed.

Results: This analysis is illustrated in Figure 4.
The computed descriptive statistics showed a mean
release year of 2023, confirming that the major-
ity of survey papers were published recently. The
skewness value suggested a slight rightward skew,
indicating that most publications were concentrated
in the last few years, especially in 2023 and 2024.
This analysis provided a clearer picture of the pub-
lication trends over time and helped interpret the
temporal aspects of LLM-related research.

Figure 4: Descriptive Statistics of Survey Paper Release
Years

3.1.4 Visualizing Categorical and Temporal
Data

In the final part of data exploration, I examined
the frequency distribution of categories and the
temporal distribution of the release years for the
survey papers. This analysis is illustrated in Figure
6, 7 and 8.

Methodology: For the categorical data, I com-
puted frequency counts for the "Categories" col-
umn to understand which categories were most
represented. This count revealed that categories
like "cs.CL" and "cs.AI" were highly represented,
with 28 and 27 papers respectively.

To visualize the results, I created a bar chart to
display the distribution of categories. The chart
showed that only a few categories accounted for
most of the papers, while several others were
sparsely represented.

To analyze the temporal data, I plotted a his-
togram of release years and a cumulative distribu-
tion plot. The histogram depicted the frequency of
papers published in each year, while the cumulative

Figure 5: Categories Frequency Distribution



distribution plot provided an overall view of how
the number of publications increased over time.

Results: The histogram and cumulative distribu-
tion plot confirmed that most survey papers were
published in 2023, with few papers published in
earlier years such as 2021 and 2022. The rapid in-
crease in publications starting in 2023 underscored
a significant rise in research efforts within the field.
The combination of categorical and temporal visu-
alizations gave valuable insights into both the areas
of focus and the timing of research in LLM-related
studies.

Figure 6: Cumulative Distribution of Survey Paper Pub-
lications Over Time

Figure 7: Bar Chart of Categories Frequency Distribu-
tion

3.2 Data Manipulation

3.2.1 Building a Feature Matrix
In this stage of the analysis, I created a feature
matrix for the dataset by transforming categorical
and text data into numerical representations that
could be used for further analysis or modeling. This
process involved the use of techniques such as Term
Frequency-Inverse Document Frequency (TF-IDF)
vectorization and one-hot encoding.

Figure 8: Cumulative Distribution of Paper Release
Years Over Time

Methodology:
Loading the Dataset: I first loaded the dataset

from the CSV file into a Pandas DataFrame for
manipulation and analysis.

Building the Feature Matrix: To create a robust
feature matrix, I applied the following transforma-
tions:

TF-IDF Vectorization of Text Data: The "Title"
and "Summary" columns, which contain textual
data, were transformed using the TF-IDF vector-
izer. This method converts the textual data into
numerical vectors that capture the importance of
each word relative to the rest of the dataset. The
TF-IDF scores were then stored in a dense matrix
form for each paper title and summary.

One-Hot Encoding of Categorical Data: The
"Categories" column, which contains categorical
data, was processed using the one-hot encoding
technique. This method transforms each unique
category into a binary feature, where a value of "1"
indicates the presence of a category for a particular
paper and "0" indicates its absence. The resulting
one-hot encoded matrix was then combined with
the TF-IDF matrices.

Combining Features: Once the text and categor-
ical data had been vectorized, I concatenated the
resulting matrices into a single feature matrix. This
final matrix included the TF-IDF representations
of the "Title" and "Summary" columns as well as
the one-hot encoded "Categories" column, creating
a comprehensive numerical representation of the
dataset.

Displaying the Feature Matrix: Finally, I dis-
played the combined feature matrix (figure 9),
which had 3,748 columns representing all the fea-
tures extracted from the textual and categorical
data. The large number of columns reflects the
complexity of the dataset, with each column cor-



responding to either a unique word in the text or
a binary category label. This data manipulation
step was crucial in preparing the dataset for further
analysis or machine learning tasks by converting
all text and categorical data into a format that can
be processed by algorithms. The feature matrix
served as the foundation for modeling and deeper
exploration of the dataset’s properties.

3.2.2 Normalization of Feature Matrix
In the subsequent step of data manipulation, I nor-
malized the feature matrix to ensure all features
were on the same scale and prepared for further
machine learning algorithms. Normalization is es-
sential because many machine learning models are
sensitive to the magnitude of different features, and
this process ensures that no feature dominates the
others due to its scale.

Methodology:
Converting Boolean Columns: Initially, I con-

verted the boolean columns within the feature ma-
trix into numeric values (1s and 0s). This was
achieved by applying the pd.to_numeric() func-
tion to ensure that all columns in the matrix were
numeric and ready for scaling. Any errors during
conversion were handled by filling in missing val-
ues with zeros, ensuring a clean dataset.

Normalization with MinMaxScaler: To normal-
ize the numeric data, I applied the MinMaxScaler
from Scikit-learn, which scales all features to a
range between 0 and 1. The MinMaxScaler was ap-
plied only to the numeric values of the DataFrame
to preserve the feature matrix’s structure. This scal-
ing ensures that features are comparable, regardless
of their original scale.

Reconstructing the DataFrame: After normal-
ization, the scaled values were converted back into
a Pandas DataFrame, preserving the column names
and structure of the original feature matrix. This
made it easier to interpret the scaled values and
ensured compatibility with future operations.

Displaying the Normalized Matrix: The result-
ing normalized matrix was displayed (figure 10),
showing that all values across the 3,748 columns
(features) were now scaled between 0 and 1. This
step confirmed that the normalization process had
successfully standardized the dataset, ensuring that
each feature contributed equally to any further anal-
ysis or modeling.

This normalization step was crucial for ensur-
ing that no individual feature would disproportion-
ately affect the results of machine learning models.

By scaling all features to the same range, the data
was made ready for a variety of machine learning
techniques, which often assume normalized input
features for optimal performance.

3.2.3 Encoding Labels Using LabelEncoder

In the next stage of data manipulation, I used the
LabelEncoder from Scikit-learn to transform the
categorical "Taxonomy" labels into numerical val-
ues. This transformation is essential for converting
non-numeric data into a format that can be fed into
machine learning algorithms, which typically re-
quire numeric input. This analysis is illustrated in
Figure 11.

Methodology:
Initializing the LabelEncoder: I first initialized

the LabelEncoder to convert the categorical labels
in the "Taxonomy" column. The "Taxonomy" col-
umn contained the different categories to which
each paper was assigned, and I assigned this col-
umn to the variable y.

Fitting and Transforming Labels: The LabelEn-
coder was then used to fit and transform the tax-
onomy labels. This process encoded each unique
taxonomy category as an integer. For example, the
label "Comprehensive" was encoded as "1," and
"Trustworthy" was encoded as "7." This transfor-
mation allowed me to represent the categorical la-
bels numerically, making the dataset more suitable
for machine learning models.

Checking Encoded Labels: After the transfor-
mation, I printed both the encoded labels and the
original labels to verify the correctness of the en-
coding process. This step ensured that the mapping
between the original taxonomy categories and the
corresponding integers was accurate.

Inverse Transforming Labels: To validate the
encoding, I also used the inverse_transform
method of the LabelEncoder to map the encoded
integers back to their original categorical labels.
This allowed me to confirm that the encoded la-
bels could be correctly reverted to their original
taxonomy categories if necessary.

This encoding step was crucial for transforming
the categorical taxonomy data into a numerical for-
mat, which is required for many machine learning
algorithms. By using LabelEncoder, I was able to
retain the essential categorical information while
making the data more computationally manageable
for future analysis or modeling tasks.



Figure 9: Featured Matrix

Figure 10: Normalized matrix



Figure 11: Visualization of Encoded and Original Taxonomy Labels for Survey Papers

Figure 12: Dataset Overview: Training and Testing Data Shapes



3.2.4 Splitting the Data into Training and
Testing Sets

In this step, I prepared the dataset for model train-
ing by splitting it into training and testing sets. This
process is crucial for evaluating how well a ma-
chine learning model generalizes to unseen data
by using one portion of the data for training and
another for testing. I used the train_test_split
function from Scikit-learn to carry out this opera-
tion.This analysis is illustrated in Figure 12.

Methodology:
Defining the Test Ratio: I set the test ratio to 0.4,

meaning that 40% of the data would be reserved
for testing, and the remaining 60% would be used
for training. This split ratio ensures that a signifi-
cant portion of the data is set aside to evaluate the
model’s performance on unseen data.

Splitting the Data: The train_test_split
function was used to split the normalized feature
matrix (X) and the encoded labels (y_encoded).
The function randomly split the data according
to the specified ratio while maintaining the struc-
ture and shape of the data. A random seed
(random_state=42) was set to ensure reproducibil-
ity of the split.

- X_train and y_train: These represent the
training set features and labels. - X_test and
y_test: These represent the testing set features
and labels.

Verifying the Split: After splitting the data, I
checked the shapes of both the training and testing
sets to ensure that the split was done correctly. The
training data had 86 samples, while the testing data
had 58 samples, consistent with the 60/40 split.

- Training Data Shape: (86, 3748), meaning 86
samples with 3,748 features each. - Testing Data
Shape: (58, 3748), meaning 58 samples with 3,748
features each.

This step was essential for preparing the data for
machine learning, ensuring that the model would
be trained on one portion of the data and validated
on another to avoid overfitting and assess its gener-
alization performance.

3.3 Data Evaluation

3.3.1 Logistic Regression Model
To evaluate the model’s performance, a logistic re-
gression algorithm was implemented to predict the
taxonomy category for each paper in the dataset.
Logistic regression is suitable for multi-class clas-
sification problems and provides insight into the

relationships between features and labels. This
analysis is illustrated in Figure 13.

Methodology:

• Converting Column Names: The column
names in the feature matrix were converted
to strings to ensure compatibility with Scikit-
learn.

• Model Initialization: The logistic regression
model was initialized using Scikit-learn’s
LogisticRegression function. The max pa-
rameter was set to 1000 to allow sufficient
iterations for model convergence.

• Training the Model: The model was trained on
the training dataset using the fit() method
to establish patterns between features and tax-
onomy labels.

• Making Predictions: After training, predic-
tions were made on the test dataset using the
predict() method, aiming to classify each
paper into its respective taxonomy category.

• Evaluating Performance: Model performance
was evaluated using the accuracy_score
function, with the overall accuracy measured
at 43%. A classification report was generated,
providing precision, recall, and F1-score for
each category.

• Addressing Class Imbalance: The label distri-
bution in both the training and testing datasets
was reviewed to assess class imbalance, which
can negatively impact model performance, es-
pecially for underrepresented categories.

The model’s performance highlighted areas for
improvement, particularly regarding class imbal-
ance and the need for more complex models to
enhance predictive accuracy.

3.3.2 Confusion Matrix and Model
Visualization

To further assess the logistic regression model, a
confusion matrix was generated. This matrix pro-
vided detailed insights into the number of correct
and incorrect classifications for each taxonomy cat-
egory. This is illustrated in Figure 14 and Figure
15.

Methodology:

• Classification Report: A classification report
was created to summarize precision, recall,



Figure 13: Classification Report and Label Distribution

and F1-scores for each class, offering a more
comprehensive view of the model’s perfor-
mance.

• Confusion Matrix: A confusion matrix was
computed using the confusion matrix function
to compare true labels with predicted labels
across all classes.

• Confusion Matrix Visualization: The confu-
sion matrix was visualized as a heatmap us-
ing the Seaborn library. The darker colors
along the diagonal of the heatmap indicated
correctly predicted classes, while off-diagonal
elements reflected misclassifications.

• Model Accuracy: The overall model accuracy
remained consistent at 43

The confusion matrix and visual representa-
tion helped identify which classes were mis-
classified more frequently, highlighting poten-
tial areas where the model could be improved.

Figure 14: Classification Report with Confusion Matrix

3.3.3 Bonus Question: Logistic
Regression with Class Weighting

Given the class imbalance in the dataset, class
weighting was applied to the logistic regres-



Figure 15: Confusion Matrix Heatmap

sion model to improve performance, particu-
larly for underrepresented categories. This is
illustrated in Figure 16.

Methodology:

– Installing Imbalanced-Learn: The
imbalanced-learn library was in-
stalled to manage class imbalances
during training.

– Initializing Logistic Regression with
Class Weighting: The logistic regres-
sion model was re-initialized with the
class_weight=’balanced’ parameter,
ensuring that classes were weighted in-
versely proportional to their frequency in
the dataset.

– Training the Model: The model was re-
trained on the dataset with the adjusted
class weights to address the imbalance
and improve classification of underrepre-
sented categories.

– Making Predictions and Evaluating Per-
formance: Predictions were made on the
test dataset, and the accuracy improved
to 47%. Another classification report
was generated to evaluate improvements
in the precision, recall, and F1-score for
underrepresented classes.

Results: The adjusted logistic regression
model showed a modest improvement in over-
all accuracy, from 43% to 47%, and improved
performance on underrepresented classes, al-
though certain categories still exhibited lower
performance.

Figure 16: Class weighing

4 Conclusion

In this report, I analyzed survey papers on
Large Language Models (LLMs) by explor-
ing metadata, categorizing research areas, and
using machine learning to predict taxonomy
categories. The analysis highlighted publica-
tion trends, with significant research growth
in 2023, particularly in "Trustworthy" and
"Prompting" areas.

I implemented a logistic regression model,
initially achieving 43% accuracy, which im-
proved to 47% after applying class-weighting
techniques to address class imbalance. Al-
though this improved classification for under-
represented categories, further refinement is
needed to enhance performance in some areas.

This study provides a foundation for under-
standing LLM survey papers and offers a
machine learning-based approach to help re-
searchers identify key trends and gaps in the
field. Future work could involve more ad-
vanced models or additional metadata to im-
prove classification and insight into LLM re-
search.
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