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Abstract
As the landscape of research on Large Lan-
guage Models (LLMs) rapidly evolves, un-
derstanding the taxonomy of these models
becomes increasingly crucial for researchers.
This study explores the automatic classifica-
tion of survey papers related to LLMs, utilizing
graph representation learning and various data
manipulation techniques. By collecting and an-
alyzing metadata from 144 literature reviews,
we construct co-category graphs to evaluate and
compare the effectiveness of different classifica-
tion paradigms, including pre-trained language
models and graph neural networks. Our find-
ings indicate that leveraging graph structures
significantly enhances taxonomy classification
performance compared to traditional language
models. Additionally, we demonstrate the ad-
vantages of using weak labels generated from
smaller models, revealing new insights into
weak-to-strong generalization. This research
not only contributes to the understanding of
LLM taxonomy but also provides a framework
for future explorations in the field, highlighting
the importance of innovative evaluation meth-
ods in navigating the complexities of LLM re-
search.

1 Introduction

AI techniques have been widely applied to var-
ious domains, such as images (He et al., 2016;
Dosovitskiy, 2020), texts (Vaswani et al., 2017; De-
vlin et al., 2018), and graphs (Kipf and Welling,
2016; Zhuang and Al Hasan, 2022). As a critical
subset of AI techniques, Large Language Models
(LLMs) have gained significant attention in recent
years (Radford et al., 2018, 2019; Brown et al.,
2020; Achiam et al., 2023; Bai et al., 2022; Team
et al., 2023). Especially, more and more new be-
ginners are interested in the research topics about
LLMs. To learn the recent progress in this field,
new beginners commonly will read survey papers
about LLMs. Therefore, to facilitate their learn-
ing, numerous survey papers on LLMs have been

published in the last two years. However, a large
amount of these survey papers can be overwhelm-
ing, making it challenging for new beginners to
read them efficiently. To embrace this challenge,
in this project, we aim to explore and analyze the
metadata of LLMs survey papers, providing in-
sights to enhance their accessibility and understand-
ing (Zhuang and Kennington, 2024). Specifically,
we aim to develop a comprehensive framework for
analyzing and exploring the data to uncover under-
lying patterns, manipulating the data to enhance its
quality and relevance, and evaluating the results to
ensure robust and actionable insights. After analyz-
ing the data, our plan includes the following key
components:

Exploration: Conducting an in-depth analysis
to identify trends and anomalies within the dataset.

Manipulation: Applying techniques to clean,
transform, and prepare the data for analysis, en-
suring its integrity and suitability for our required
objectives.

Evaluation: Assessing the effectiveness of our
methods and results through statistical measures
and validation techniques to confirm their reliabil-
ity and significance.

Overall, our contributions can be summarized as
follows which will be covered more in detail under
the methodology section:

• Data Exploration
• Data Manipulation
• Data Evaluation

2 Related Work

This study builds on the emerging body of research
focused on automating the classification of sur-
vey papers in the rapidly evolving field of Large
Language Models, leveraging graph representation
learning to enhance taxonomy assignment (Zhuang
and Kennington, 2024).



3 Methodology

3.1 Data Exploration

In this section, we delve into the data exploration
process conducted on the survey dataset to uncover
insights into research trends, taxonomy distribu-
tion, author contributions, and thematic content of
papers. The dataset comprises various attributes,
including release dates, taxonomy categories, au-
thors, and summaries, which facilitate a compre-
hensive analysis.

A. Dataset Loading and Overview: The dataset
was loaded using the Pandas library. The initial step
involved importing the CSV file containing survey
data, which included critical columns necessary
for subsequent analyses. This dataset serves as
the foundation for understanding trends in survey
papers, categorization, and author contributions
over time.

B. Trends Over Time: To analyze the release
trends of survey papers, we converted the ’Re-
lease Date’ column to a datetime format and sub-
sequently grouped the data by year and month.
This process allowed us to visualize the number
of papers released each month. As a result, a line
plot was generated to illustrate the trends in sur-
vey papers over time. Each data point was marked
for clarity, enabling easy identification of peaks
and troughs in the publication rate. The findings
revealed interesting patterns in research activity,
which may correlate with emerging topics or ad-
vancements in the field as shown in Figure 1. Ad-
ditionally, we calculated the mean number of sur-
veys released per month, which provided a quanti-
tative measure of research activity during the study
period. The analysis indicated that the average
number of surveys published monthly was approxi-
mately 9.6, suggesting sustained interest and pro-
ductivity in the field.

C. Taxonomy Distribution: The distribution
of taxonomy categories assigned to survey papers
was evaluated by counting the frequency of each
category. A bar chart was created to visually repre-
sent this distribution, highlighting the diversity of
topics explored in the surveys as shown in Figure
2. Among the categories, the "Trustworthy" classi-
fication was particularly noteworthy, with a total of
26 papers assigned to this category, showcasing a
significant focus on reliability in research findings.

D. Further Exploration:
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Figure 1: Survey Trends
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Figure 2: Taxonomy Distribution Bar Chart

• Histogram of Release Dates
To gain insights into the annual distribution
of survey papers, a histogram of the release
years was plotted. This visualization demon-
strated the concentration of papers published
in certain years, providing context to research
trends which can be observed from the Figure
3.
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Figure 3: Release Year Histogram

• Category Distribution Pie



To further explore research topics, a pie chart
was generated to illustrate the distribution of
research categories. Each category was rep-
resented proportionally, with external labels
detailing the percentage share of each cate-
gory within the dataset as shown in Figure
4.

Figure 4: Category Distribution Pie Chart

• Author Contributions

A violin plot was used to visualize the con-
tributions of the top authors in terms of the
number of papers published. This plot high-
lighted disparities in author output, revealing
key contributors in the field as depicted from
the Figure 5.
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Figure 5: Contribution of Authors

• Word Cloud Analysis

Finally, a word cloud was generated from the
summaries of the papers, providing a visual
representation of the most frequently men-
tioned terms. This technique helps in under-
standing prevalent themes and topics in the
research literature which could be observed
from the Figure 6.

Word Cloud of Paper Summaries

Figure 6: Word Cloud

3.2 Data Manipulation
1. Building the Feature Matrix: The first step

in data manipulation was to create a feature
matrix from the dataset using the appropriate
function. This function transforms three key
features: Title, Summary, and Categories.

• Title and Summary Vectorization:
The TfidfVectorizer from the
sklearn.feature_extraction.text
module was used to convert the text
data in the ’Title’ and ’Summary’
columns into numerical format.
This transformation creates a Term
Frequency-Inverse Document Frequency
(TF-IDF) representation, where each
unique word is represented by a vector.
The stop_words=’english’ parameter
is employed to exclude common English
words that do not contribute significant
meaning (e.g., "the", "is").

• One-Hot Encoding of Categories:
The ’Categories’ column was pro-
cessed by splitting the string of cate-
gories into separate columns using the
str.split method. Following that,
the pd.get_dummies() function was uti-
lized to perform one-hot encoding, gen-
erating binary columns for each category.
This allows the model to recognize the
presence of each category as a separate
feature.

• Combining Features:
The feature matrices from the TF-IDF
transformations and the one-hot encoded
categories were combined into a single
feature matrix using pd.concat(). This



results in a comprehensive feature set
that encapsulates information from both
textual data and categorical labels.

2. Normalizing the Data:

Normalization was applied to the feature
matrix using the MinMaxScaler from the
sklearn.preprocessing module. This pro-
cess rescales the feature values to a range of
[0, 1], ensuring that all features contribute
equally to the model training. Normalization
is particularly important in machine learning
as it improves convergence during training
and mitigates the influence of features with
larger ranges.

3. Encoding the Labels:

The categorical labels in the ’Categories’ col-
umn were encoded using the LabelEncoder.
This encoding converts the string labels into
integers, making them suitable for classifica-
tion tasks. Each unique category is assigned
a distinct integer value, which facilitates the
training of machine learning algorithms.

4. Splitting the Dataset: The dataset was di-
vided into training and testing sets using
the train_test_split function from the
sklearn.model_selection module. A test
ratio of 0.4 was specified, meaning that 40%
of the data would be allocated for testing while
the remaining 60% would be used for training
the model. The random state was set to 42 in
order to ensure reproducibility of the split.

5. Verification of Dataset Shapes: After split-
ting the dataset, the shapes of the resulting
training and testing feature matrices and la-
bels were printed to verify the integrity of the
operation. The shapes confirm that the dataset
was correctly divided, with 86 samples in the
training set and 58 samples in the testing set.

Output:

Training features shape: (86, 3547); Testing
features shape: (58, 3547); Training labels
shape: (86,); Testing labels shape: (58,)

The data manipulation steps outlined above
effectively prepare the dataset for machine
learning modeling by creating a robust fea-
ture matrix, normalizing features, encoding
labels, and splitting the dataset into training
and testing sets. This preparation is crucial

for ensuring that the subsequent modeling pro-
cess is accurate and efficient.

3.3 Data Evaluation
In this section, we evaluate and compare the per-
formance of two classification models: Logistic
Regression and Support Vector Machine (SVM).
The models were applied to a specific dataset, and
their performances were measured using key evalu-
ation metrics, including accuracy, precision, recall,
and F1 score.

1. Model Training and Predictions:

• Logistic Regression: LR is a statisti-
cal method used for binary classification
that models the probability of a categor-
ical dependent variable based on one or
more predictor variables using the lo-
gistic function. The model was trained
using the training data, and predictions
were made on the test set.

• Support Vector Machine (SVM): SVM
is a supervised machine learning algo-
rithm used for classification and regres-
sion tasks that finds the optimal hyper-
plane to separate data points of different
classes in high-dimensional space. This
model was trained in a similar manner,
using the training data and making pre-
dictions on the test set.

Model Accuracy Precision Recall F1 Score

Logistic Regression 0.4655 0.2790 0.4655 0.3209
SVM 0.4310 0.2179 0.4310 0.2744

Table 1: Comparison of Evaluation Metrics for Logistic
Regression and SVM models.

2. Confusion Matrix Visualization: Confusion
matrices were plotted for both models to pro-
vide a visual representation of their perfor-
mance. The confusion matrices show the dis-
tribution of true positives, true negatives, false
positives, and false negatives, which helps
identify specific areas where each model may
struggle. Both the confusion matrices can be
observed through Figures 7 and 8.

3. Performance Comparison: A bar graph was
created to compare the evaluation metrics of
both models visually. The analysis revealed
that - Logistic Regression outperformed SVM
in all evaluation metrics, including accuracy,



cs
.A

I
cs

.A
I, 

cs
.C

L
cs

.A
I, 

cs
.C

L,
 c

s.C
Y,

 c
s.M

A
cs

.A
I, 

cs
.C

L,
 c

s.I
R

cs
.A

I, 
cs

.C
L,

 c
s.L

G
cs

.A
I, 

cs
.L

G
cs

.A
R,

 c
s.C

L,
 c

s.L
G

cs
.C

L
cs

.C
L,

 c
s.A

I
cs

.C
L,

 c
s.A

I, 
cs

.C
R

cs
.C

L,
 c

s.A
I, 

cs
.C

V
cs

.C
L,

 c
s.A

I, 
cs

.C
V,

 c
s.H

C,
 c

s.M
A

cs
.C

L,
 c

s.A
I, 

cs
.C

V,
 c

s.M
M

cs
.C

L,
 c

s.A
I, 

cs
.C

Y
cs

.C
L,

 c
s.A

I, 
cs

.C
Y,

 c
s.L

G
cs

.C
L,

 c
s.A

I, 
cs

.L
G

cs
.C

L,
 c

s.C
R,

 c
s.L

G
cs

.C
L,

 c
s.I

R
cs

.C
L,

 c
s.L

G
cs

.C
R

cs
.C

V
cs

.C
V,

 c
s.A

I
cs

.C
V,

 c
s.A

I, 
cs

.C
L,

 c
s.L

G
cs

.C
V,

 c
s.C

L
cs

.C
Y

cs
.C

Y,
 c

s.A
I, 

cs
.C

L,
 c

s.C
V,

 c
s.L

G
cs

.C
Y,

 c
s.A

I, 
cs

.C
L,

 c
s.L

G
cs

.D
L,

 c
s.C

L
cs

.D
L,

 c
s.C

L,
 c

s.C
Y

cs
.D

L,
 c

s.C
L,

 c
s.C

Y,
 c

s.S
I

cs
.H

C
cs

.IR
, c

s.A
I

cs
.IR

, c
s.A

I, 
cs

.C
L

cs
.IR

, c
s.A

I, 
cs

.S
E

cs
.L

G
cs

.L
G,

 c
s.A

I
cs

.L
G,

 c
s.A

I, 
cs

.C
L

cs
.L

G,
 c

s.A
I, 

cs
.D

C,
 c

s.P
F

cs
.L

G,
 c

s.A
I, 

cs
.S

I
cs

.L
G,

 c
s.C

L,
 c

s.S
I

cs
.N

E,
 c

s.A
I, 

cs
.C

L
cs

.R
O,

 c
s.A

I
cs

.S
E

cs
.S

E,
 c

s.A
I

cs
.S

E,
 c

s.A
I, 

cs
.C

L,
 c

s.P
L

cs
.S

E,
 c

s.H
C

na
n

Predicted Label

cs.AI
cs.AI, cs.CL

cs.AI, cs.CL, cs.CY, cs.MA
cs.AI, cs.CL, cs.IR

cs.AI, cs.CL, cs.LG
cs.AI, cs.LG

cs.AR, cs.CL, cs.LG
cs.CL

cs.CL, cs.AI
cs.CL, cs.AI, cs.CR
cs.CL, cs.AI, cs.CV

cs.CL, cs.AI, cs.CV, cs.HC, cs.MA
cs.CL, cs.AI, cs.CV, cs.MM

cs.CL, cs.AI, cs.CY
cs.CL, cs.AI, cs.CY, cs.LG

cs.CL, cs.AI, cs.LG
cs.CL, cs.CR, cs.LG

cs.CL, cs.IR
cs.CL, cs.LG

cs.CR
cs.CV

cs.CV, cs.AI
cs.CV, cs.AI, cs.CL, cs.LG

cs.CV, cs.CL
cs.CY

cs.CY, cs.AI, cs.CL, cs.CV, cs.LG
cs.CY, cs.AI, cs.CL, cs.LG

cs.DL, cs.CL
cs.DL, cs.CL, cs.CY

cs.DL, cs.CL, cs.CY, cs.SI
cs.HC

cs.IR, cs.AI
cs.IR, cs.AI, cs.CL
cs.IR, cs.AI, cs.SE

cs.LG
cs.LG, cs.AI

cs.LG, cs.AI, cs.CL
cs.LG, cs.AI, cs.DC, cs.PF

cs.LG, cs.AI, cs.SI
cs.LG, cs.CL, cs.SI
cs.NE, cs.AI, cs.CL

cs.RO, cs.AI
cs.SE

cs.SE, cs.AI
cs.SE, cs.AI, cs.CL, cs.PL

cs.SE, cs.HC
nan

Tr
ue

 L
ab

el
0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

LR Confusion Matrix

0

2

4

6

8

10

12

Figure 7: LR Confusion Matrix

precision, recall, and F1 score which can be
observed from the Figure 9.

4. Overall Performance: The average scores
for each model were calculated to determine
overall performance which showed that Logis-
tic Regression’s average ccore was 0.3828 and
that of SVM’s was 0.3740. The results indi-
cate that Logistic Regression performed better
overall, suggesting it may be a more suitable
model for this dataset and classification task.
This evaluation underscores the importance
of using appropriate metrics to assess model
performance and the potential for further im-
provements through hyperparameter tuning
and exploring additional algorithms.

4 Conclusion

In this analysis, we thoroughly explored and ma-
nipulated the dataset to derive meaningful insights
for classification tasks. We employed two machine
learning models: Logistic Regression and Support
Vector Machine (SVM), to evaluate their perfor-
mance in predicting outcomes based on textual fea-
tures extracted from the data.

The data pre-processing steps included trans-
forming the text data into numerical representa-
tions using TF-IDF, effectively capturing the sig-
nificance of terms within the documents. Our eval-
uation metrics — accuracy, precision, recall, and
F1 score provided a comprehensive assessment of

cs
.A

I
cs

.A
I, 

cs
.C

L
cs

.A
I, 

cs
.C

L,
 c

s.C
Y,

 c
s.M

A
cs

.A
I, 

cs
.C

L,
 c

s.I
R

cs
.A

I, 
cs

.C
L,

 c
s.L

G
cs

.A
I, 

cs
.L

G
cs

.A
R,

 c
s.C

L,
 c

s.L
G

cs
.C

L
cs

.C
L,

 c
s.A

I
cs

.C
L,

 c
s.A

I, 
cs

.C
R

cs
.C

L,
 c

s.A
I, 

cs
.C

V
cs

.C
L,

 c
s.A

I, 
cs

.C
V,

 c
s.H

C,
 c

s.M
A

cs
.C

L,
 c

s.A
I, 

cs
.C

V,
 c

s.M
M

cs
.C

L,
 c

s.A
I, 

cs
.C

Y
cs

.C
L,

 c
s.A

I, 
cs

.C
Y,

 c
s.L

G
cs

.C
L,

 c
s.A

I, 
cs

.L
G

cs
.C

L,
 c

s.C
R,

 c
s.L

G
cs

.C
L,

 c
s.I

R
cs

.C
L,

 c
s.L

G
cs

.C
R

cs
.C

V
cs

.C
V,

 c
s.A

I
cs

.C
V,

 c
s.A

I, 
cs

.C
L,

 c
s.L

G
cs

.C
V,

 c
s.C

L
cs

.C
Y

cs
.C

Y,
 c

s.A
I, 

cs
.C

L,
 c

s.C
V,

 c
s.L

G
cs

.C
Y,

 c
s.A

I, 
cs

.C
L,

 c
s.L

G
cs

.D
L,

 c
s.C

L
cs

.D
L,

 c
s.C

L,
 c

s.C
Y

cs
.D

L,
 c

s.C
L,

 c
s.C

Y,
 c

s.S
I

cs
.H

C
cs

.IR
, c

s.A
I

cs
.IR

, c
s.A

I, 
cs

.C
L

cs
.IR

, c
s.A

I, 
cs

.S
E

cs
.L

G
cs

.L
G,

 c
s.A

I
cs

.L
G,

 c
s.A

I, 
cs

.C
L

cs
.L

G,
 c

s.A
I, 

cs
.D

C,
 c

s.P
F

cs
.L

G,
 c

s.A
I, 

cs
.S

I
cs

.L
G,

 c
s.C

L,
 c

s.S
I

cs
.N

E,
 c

s.A
I, 

cs
.C

L
cs

.R
O,

 c
s.A

I
cs

.S
E

cs
.S

E,
 c

s.A
I

cs
.S

E,
 c

s.A
I, 

cs
.C

L,
 c

s.P
L

cs
.S

E,
 c

s.H
C

na
n

Predicted Label

cs.AI
cs.AI, cs.CL

cs.AI, cs.CL, cs.CY, cs.MA
cs.AI, cs.CL, cs.IR

cs.AI, cs.CL, cs.LG
cs.AI, cs.LG

cs.AR, cs.CL, cs.LG
cs.CL

cs.CL, cs.AI
cs.CL, cs.AI, cs.CR
cs.CL, cs.AI, cs.CV

cs.CL, cs.AI, cs.CV, cs.HC, cs.MA
cs.CL, cs.AI, cs.CV, cs.MM

cs.CL, cs.AI, cs.CY
cs.CL, cs.AI, cs.CY, cs.LG

cs.CL, cs.AI, cs.LG
cs.CL, cs.CR, cs.LG

cs.CL, cs.IR
cs.CL, cs.LG

cs.CR
cs.CV

cs.CV, cs.AI
cs.CV, cs.AI, cs.CL, cs.LG

cs.CV, cs.CL
cs.CY

cs.CY, cs.AI, cs.CL, cs.CV, cs.LG
cs.CY, cs.AI, cs.CL, cs.LG

cs.DL, cs.CL
cs.DL, cs.CL, cs.CY

cs.DL, cs.CL, cs.CY, cs.SI
cs.HC

cs.IR, cs.AI
cs.IR, cs.AI, cs.CL
cs.IR, cs.AI, cs.SE

cs.LG
cs.LG, cs.AI

cs.LG, cs.AI, cs.CL
cs.LG, cs.AI, cs.DC, cs.PF

cs.LG, cs.AI, cs.SI
cs.LG, cs.CL, cs.SI
cs.NE, cs.AI, cs.CL

cs.RO, cs.AI
cs.SE

cs.SE, cs.AI
cs.SE, cs.AI, cs.CL, cs.PL

cs.SE, cs.HC
nan

Tr
ue

 L
ab

el

0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SVM Confusion Matrix

0

2

4

6

8

10

12

Figure 8: SVM Confusion Matrix

Accuracy Precision Recall F1 Score
Metrics

0.0

0.1

0.2

0.3

0.4

Sc
or

e

Comparison of Evaluation Metrics: Logistic Regression vs SVM
Logistic Regression
SVM

Figure 9: LR vs SVM Model Comparison

model performance. The results indicated that Lo-
gistic Regression outperformed SVM across all
metrics, achieving an accuracy of 0.4655, precision
of 0.2790, and recall of 0.4655, thereby highlight-
ing its suitability for this particular classification
problem.

The insights gained from this analysis under-
score the importance of selecting the appropriate
model based on performance metrics tailored to the
specific dataset and task. Future work may focus
on optimizing model parameters, experimenting
with additional features, and exploring advanced
algorithms to further enhance predictive accuracy.
Overall, this exploration and evaluation process il-
lustrates the critical role of data manipulation and
modeling in deriving actionable insights from com-
plex datasets.
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